Pakistan Journal of Applied Sciences 2(9): 922-924, 2002
© Copyright by the Science Publications, 2002

Object Oriented Modeling of Multimedia Applications

Pantano Rokou Franca Maria
Department of Cultural Technology and Communication
University of Aegean, Greece

-

Abstract: The field of multimedia software engineering is still unexplored and in a quite virgin state.
Multimedia engineering is an emerging area combining software engineering, multimedia computing, visual
languages and visualization. An analysis of how visual modeiing of structure and dynamic behavior of a
multimedia application differs from modeling conventional software yields th

procedures and languages. Therefore, multimedia application process has been
test methods. There are no specific multimedia development processes nor g
them. In order to fill this gap we introduce a hybrid of OOM {(Object Oriented M
needs of multimedia applications. Here, will be presented an innovative ap

engineering from two different, yet complementary,

engineering principles properly tailored to the

Key Words: Multimedia Software Engineering, Object Oriented Modeling,

UML Diagrams

€ need of specific modeling
truncated to implement-and-
raphical notations adapted to
odeling)adapted to the specific
proach of multimedia software

perspectives: 1. The application of multimedia computing
and visualization languages to the practice of software engineering and 2. The application of software

development of multimedia applications and systems.

Unified Modeling Language (UML),

Introduction

Multimedia applications are interactive software systems
in which objects of diverse discrete and continuous
media types are combined and presented together.
Multimedia application is defined an application that
integrates two or more media types and shows time and/
or action related dynamic behavior (Selic et af,,1994). An
analysis of how visual modeling of structure and dynamic
behavior of a multimedia application differs from
modeling conventional software yields that aspects of the
graphical user interface and time-dynaric behavior
ought to be integral parts of a coherent multimedia
application model. In this sense, we extend the model-
view-controller paradigm towards multimedia.

Materials and Methods

Framework: In the beginning of the 90s, the great
diversity of proposed object-oriented design notations
and methods caused a lot of problems in the software
development field. In particular, due to a lacking
standardized approach, object-oriented models were
hardly understandable by designers, who were not an
expert of the used, specific notation. Therefore, existing
object-oriented models were hardly reusable in projects
where another notation has been chosen, and thus one
of the main advantages of an cbject-oriented approach
were extremely cut down. This created a strong
maotivation, particularly in industry, to standardize on a
single object-oriented notation. In response, the Object
Management Group (OMG) defined the Unified Modeling
Language (UML), which it adopted in 1997 as its
standard notation for object-oriented analysis and
design.

While the UML was clearly successful in unifying the
different graphical notations, it has been argued that it
was less successful in providing a shared definition of the

922

pragmatics and semantics behind the underlying
concepts. In particular, the following issues have been
noted:

lack of clear guidelines on which aspects of a system
are to be modeled by which diagram types,

lack of heuristic, pragmatic guidetines on how these
diagram types are to be actually used for the
various aspects,

lack of precise rules on how to transform a UML
description into fragments of programming language
code (e.g., Java) or GUI builders, and, last but not
least, ‘
lack of a precise meaning (semantics) of UML-based
descriptions.

The Benefits of UML:

1. Your software system is professionally designed and
documented before it is coded. You will know
exactly what you are getting, in advance.

Since system design comes first, reusable code is
easily spotted and coded with the highest efficiency.
You will have lower development costs,

Logic ‘holes’ can be spotted in the design drawings.
Your software will behave as you expect it to.
There are fewer surprises.

The overall system design will dictate the way the
software is developed. The right decisions are made
before you are married to poorly written code.
Again, your overall costs will be less.

UML lets us see the big picture. We can develop
more memory and processor efficient systems.
When we come back to make modifications to your
system, it is much easier to work on a system that
has UML documentation. Much less 'relearning'
takes place. Your system maintenance costs will be
lower,

If you should find the need to work with another

b

Pantano Rokou Franca Maria: Object Oriented Modeling of Multimedia Applications

developer, the UML diagrams will allow them to get
up to speed quickly in your custom system. Think
of it as a schematic to a radio. How could a tech fix
it without it?

If we need to communicate with outside
contractorsor even your own programmers, it is
much more efficient.

Types of UML Diagrams: “Each UML diagram is
designed to let developers and customers view a
software system fromadifferent perspective and in
varying degrees of abstraction. WUML diagrams
commonlycreated in visual modeling tools such as GDPro
include { UML, 1997):

¢ Use Case Diagram displays the relationship among
actors and use cases.

Class Diagram models class structure and contents
using design elements such as classes, packages
and objects. It also displays relationships such as
containment, inheritance, associations and others.
State Diagram displays the sequences of states that
an object of an interaction goes through during its
life in response to received stimuli, together with its
responses and actions.

Sequence Diagram displays the time sequence of
the objects participating in the interaction. This
consists of the vertical dimension (time) and
horizontal dimension (different objects).
Collaboration Diagram displays an interaction
organized around the objects and their links to cne
another. Numbers are used to show the sequence
of messages.

Activity Diagram displays a special state diagram
where most of the states are action states and most
of the transitions are triggered by completion of the
actions in the source states. This diagram focuses on
flows driven by internal processing.

Component Diagram displays the high level
packaged structure of the code itself. Dependencies
among components are shown, including source
code components, binary code components, and
executable components. Some components exist at
compile time, at link time, at run times well as at
more than one time.

Deployment Diagram displays the configuration of
run-time processing elements and the software
components, processes, and objects that live on
them. Software component instances represent
run-time manifestations of code units.

Modeling Structure: The structure of a system
identifies the entities that are to be modeled and the
relationships between them (e.g., communication
relationships, containment Telationships). UML provides
two fundamental complementary diagram types for
capturing the logical structure of systems: class
diagrams and collaboration diagrams.

Class diagrams capture universal relationships among
classes-those relationships that exist among instances of
the classes In all contexts. Collaboration diagrams
capture relationships that exist only within a particular
context-a pattern of usage for a particular purpose that
is not inherent in the class itself. Collabeoration diagrams
therefore include a distinction between the usage of

923

different instances of the same class, a distinction
captured In the concept of role. In the modeling
approach described here, there is a strong emphasis on
using UML collaboration diagrams to -explicitly represent
the interconnections be_tween architectural entities.
Typically, the complete specification of the structure of
a complex real-time system is obtained through a
combination of class and collaboration diagrams.
Specifically, we define three principal constructs for
modeling structure: Capsules correspond to the ROOM
(RealTime Object Oriented Modelling) concept of actors.
They are complex, physical, possibly distributed
architectural objects that interact with their surroundings
through one or more signal-based 1 boundary objects 2
called ports. A port is a physical part of the
implementation of a capsule that mediates the
interaction of the capsule with the outside world-it is an
object that implements a specific interface. Each port of
a capsule plays a particular role in a collaboration that
the capsule has with other objects. To capture the
complex semantics of these interactions, ports are
associated with a protocol that defines the valid flow of
information (signals) between connected ports of
capsules. In a sense, a protocol captures the contractual
obligations that exist between capsules{ ROOM,1994}).
There are unique challenges faced in real-time software
development. Every real-time software developer
recoghizes that the requirement for latency, throughput,
reliability, and availability are far more stringent than for
general purpose, or business software. For real-time
system developers, understanding the impact of design
decisions and effectively communicating functionality can
be a daunting task. An overriding concern is the
architecture of the software. This refers to the essential
structural and behavioral framework on which all other
aspects of the system depend.

To facilitate the design of good architectures, it is
extremely useful to capture the proven architectural
design patterns of the domain as first-class modeling
constructs. UML for Real-Time combines UML, role
modeling and ROOM concepts to deliver a complete
solution for modeling complex real-time systems. UML,
role modeling and ROOM are briefly described below.
UML is a general-purpose modeling language for
specifying, visualizing, constructing and documenting the
artifacts of software systems, as well as for business
modeling and other non-software systems. UML has a
strong set of general purpese modeling language
concepts applicable across domains. Role modeling
captures the structural communication patterns between
software components. In UML 1.1, collaboration
diagrams, which form the basis of structural design
patterns, became first «class modeling
entities{UML,1997). ObjecTime Limited {ObjecTime) was
a member of the UML 1.1 definition team and
contributed the role modeling capabilities of ROOM to the
UML standard.

ROOM is a visual modeling language with formal
semantics, developed by ObjecTime. It is optimized for
specifying, visualizing, documenting, and automating the
construction of complex, event-driven, and potentially
distributed real-time systems. It incorporates the role

Pantano Rokou Franca Maria: Object Oriented Modeling of Multimedia Applications

modeling concepts discussed in this document that
enable the capture of architectural design patterns UML
for Real-Time is a complete real-time modeling standard,
co-developed by ObjecTime an Rational Corporation, that
combines UML 1.1 modeling concepts, and special
modeling constructs and formalisms originally
implemented in ObjecTime Developer and defined in the
ROOM language(Selic and Rumbaugh). ObjecTime
Developer is a software automation tool that provides
model execution capabilities, and automatically
generates complete code for complex real-time
applications from these modeling constructs. UML for
Real-Time supports all of the automation capabilities that
are available in ObjecTime Developer today. Modeling
Perspectives as software systems become increasingly
more complex, software architecture, and technigues for
capturing it, become increasingly more important. In
addition the architecture of these systems

References

Selic, B., G. Gullekson, and P.Ward, 1994 “Real-Time
0Object-Oriented Modeling,” John Wiley & Sons,
New York, NY.

"UML Semantics,” version 1.1 {1 September 1997), The
Object Management Group, doc. no. ad/97-08-04.

"UML Notation Guide,” version 1.1 (1 September 1997),
The Object Management Group, doc. no.ad/97-08-
05.

"UML (1 September 1997) Extension for Objectory
Process for Software Engineering” version 1.1,
The Object Management Group, doc. no. ad/97-08-
06.

Real-time architectural modeling whitepaper by B. Selic
and). Rumbaugh: <http://www.objectime.com>

OMG’s UML 1.1 standard <http://www. rational.com>

ROOM, John Wiley and Sons,1994. NY.

Pantano Rokou F. 2002 Interactive Multimedia:
Technologies, design and implementation, Ed.
Kritiki, Athens.

Franca Garzotto, Paolo Paolini and Daniel Schwabe,
(Jan. 1993) HDM---a model-based approach to
hypertext application design <http://cqg-
pan.cqu.edu.au/Reading/papers/pl-garzotto.pdf:>,
ACM Transactions on Information Systems Vol. 11,
No. 1, Pages 1-26.

Daniel Schwabe, Gustave Rossi Simone and D. J.
Barbosa, Systematic hypermedia application design
with OOHDM <http://cq-
pan.cqu.edu.au/Reading/papers/pl16-schwabe.pdf>
in: Proceedings of the the seventh ACM conference
on Hypertext '96, pages 116-128.

Jin Conallen,October, 1999 Modelling Web Application
Architecture with UML <http://cq-
pan.cqu.edu.au/Reading/papers/p63-conallen.pdf>,
QJJmmqnicatiqng_ of the ACM, 42(10), 63.

	JAS.pdf
	Page 1

