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ABSTRACT

Statistics is one of the most important discipline used in Basic and Applied research including
Agricultural Sciences, Biological, Medical, Engineering and Social Sciences etc. Most of the researchers are
using the statistical techniques in a wrong way because of the lack of knowledge about these technigues.
In this paper an effort has been made to discuss an appropriate statistical techniques used in agricultural
research. The most commonly used techniques are Regression analysis and Experimental Designs.
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INTRODUCTION

Statistical technigues are greatly used in Agricultural, Medical, Engineering, Social, Biolegical and Physical
Sciences etc. Since all the research decisions and findings based on these techniques. Therefore careful statement
of the problem and use of proper methods in data analysis must be made to come up with meaningful results. Use
of inappropriate statistical technique can lead to wrong interpretation of the data. In this paper an effort has been
made to discuss an appropriate statistical techniques used in agricultural research, The most useful techniques used
are:

1. Regression and Correlation Analysis.
2. Basic Experimental Design.

Regression analysis is used to establishing the actual relationship between two or more variables, for example
the grain yield depends on rainfall or different doses of fertilizers etc, the milk production of animal depends on feed,
the systolic blood pressure depends on age etc (Agarwal, 1991). All these problems are dealt with simple linear
regression analysis. After fitting the regression line we can estimate (forecast or predict) the fitted values of
dependent variable for the fixed value of independent variable. Some times it is relevant to check the goodness of
fit of the regression model. This is dealt with the coefficient of determination (R%). The high value of R? determines
that the fitted model is appropriate. But it is not necessary that for high value of R? the model will be appropriate,
because the value of R inherently increases with the increase of independent variables in the regression model. So
in such a case it is suggested to use the criteria of R¥-adjusted instead of R, because R¥-adjusted is the rescalling
of "R?"by degrees of freedom so that it involves a ratio of mean squares rather than sum-of-squares and is given
by the relation: R®-adjusted = 1- MSE/MS (total).

Before applying this technique (linear regression) the following assumptions must be checked:

). The variance of Yi's (dependent variable) at each Xi is the same i.e. it has constant variance (0%).

i). The Yi's (dependent variable), for each Xi's are normally distributed. Where Xi's are fixed and Yi's are random
variables.

iii). The regression line Y= a + bX will pass through the mean (X, Y).

If the above three conditions are not fully satisfied then simple linear regression technique will not be an

appropriate. In this case the conclusion drawn about the parameters must be inappropriate and will give misleading
results.
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The best way to check all these assumptions is, to plot a Scatter diagram of the observed data. If this diagram
gives us a straight line then we can use simple linear regression line of Y on X but if the plotted line is not straight
{linear) and the value of R? is too large, in such a case the interpretation will lead missing results by applying simple
linear regression technique. So, in this case the simple linear regression line will not be used for prediction purpose,
because it will yield suspicious results.

If the line is not linear then it is advised to use quadratic, cubic or exponential curve depending on the
relationship between X and Y obtained from scatter diagram. In this case we cannot say that there is no relationship
between the variables because in such a case there will exist some relation between the variables but not linear.

On the other hand if we have a multiple regression (Y= a + [,X; + X, +...+ BX, + g) problem, like the grain
yield of a crop depends on amount of rainfall and different doses of fertilizers etc. In such a case the following
assumptions must be satisfied before applying the ordinary least square method, to estimate various number of
parameters.

1. The residual terms € and € are independent of each other i.e.
Cov (e.g) = O.
2. The residual term €, has zero mean for all |. This implies that for given X/'s,
E(Y) =a+ BX) + BXo +.+ BeXe
Var (g) = o for all |, i.e. the variance of error terms is constant.
E (X.g) = O for all regressors, i.e. ¢ and X variable are independent.
€,s are normally distributed with a mean of zero and a constant variance o7,
We assume further in a multiple regression model that there exist no exact linear relationship between any two
of the regressors i.e. E(X,, Xj) = 0

SIS

It any of one of the assumption is violated, the least square principle will yield wrong results i.e. if Cov (€,€)
+ O the problem will be dealt through autecorrelation i.e. first it is necessary to detect autocorrelation and then use
the method of least square for estimation of parameters. If for all | the variance of error terms is not constant, the
problem will be dealt with hetroscadasticity, if for all regressors E (X,e) # O this means that there exist error in
variables. If the error of measurements are found in the explanatory variables but not in response {dependent)
variable, it is better to use inverse least square method for the estimation of parameters. Similarly, if E (X, X) # O
then this indicates that there is a problem of multicollinearity. So in this case it is required to remove the problem
of multicollinearity from the data.

The term coefficient of correlation is used in a bivariate situation, which is used to measure the strength of
association between two random variables. To be kept in mind that in regression problem Y is a random variable
while X is taken as fixed variable (non-stochastic variable) but in correlation problem both the variables are random.
The Spearman’s coefficient of correlation is used to measure the strength of linear association between two variables.
In certain situation the relationship between two variables is not linear (gquadratic or curvilinear) but we conclude on
the basis of calculated value that there is no relationship between two variables. This interpretation of the term
correlation coefficient is wrong because in such a case there will exist relationship between variables, which will
either be guadratic or curvilinear (the relationship is not linear).

In certain situations the response (Y) has more than one values for one value of X, in this case the simple
correlation coefficient is not correct to use because these observations are not independent. The coefficient of
correlation 1s not appropriate for comparing alternative methods of measurement of the same variable because it
assesses association not agreement. It can also give grossly misleading results if we are relating change overtime
to the initial value, Great care should be taken in comparing variables which both vary with time because it is easy
to get apparent association which is spurious.

There are certain situations in which the response is dummy (dichotomous), in such a case the problem will not
be dealt with usual regression model but it should be dealt with Linear Probability Model (LPM), Logit Model (LM)
or Probit Model (PM).

Use of experimental designs

Once the experimental results are obtained they have to be analyzed and interpreted. |n experimental situations
we may have large number of treatments. Our interest is to test whether all the treatments have the same effect. In
other words, our intention Is to test the null hypothesis, Hg: |J1i=H.=...}). against the alternative hypothesis, Hq:|l,
# [z # ... #Jk. For this purpose we may use Student’s t-test by taking all possible combinations. But it is a tedious
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procedure and theoretically not valid. The appropriate method for such tests is the analysis of variance (experimental
design).

The analysis of variance is the systematic algebraic procedure of decomposing the overall variation in the
responses observed in an experiment into different compenents. Fach component is attributed te an identifiable
cause or source of variation. The structure of these component part is determined by the design of experiments.

There are many types of experimental designs. They can be broadly classified as single factor experiments and
multi-factor (factorial) experiments. The single factor experiments are grouped as complete block designs and
incomplete block design,

When the treatments consist different levels of a single variable factor and all other factors are kept at a single
prescribed level, it is known as a single factor experiment. For example, in fertilizer trials several rates of single
fertilizer element, say nitrogen, may be tested. All other factors such as agronomic practices, water management,
insect control, etc., are kept at a uniform level.

The second misuse of statistical technique is that of experimental design in agricultural experiments. The
simplest design used in agricultural experiments is Completely Randomized Design (CRD). Completely randomized
design is the basic single-factor experiment. All other designs like randomized complete block design and Latin
square design stem from it by imposing restrictions upon the allocation of the treatments within the experimental
material,

The CRD is appropriate only when the experimental units are homogeneous. In field experiments there is
generally large variation among experimental plots due to soil heterogeneity etc. Hence CRD is not preferred in field
experiments. In laboratory experiments and greenhouse studies, it is easy to achieve homogeneity of experimental
materials. Therefore, CRD is most useful in such experiments.

This design is misused in nested data (hierarchical classification) because of taking wrong value of denominator
of an F-ratio. Most of the researchers are taking MSE as denominater but this is actually wrong. In such a situation
it is advised to a researcher, to take care of a proper F-test. To take a proper F-test we consider the expected values
of the mean squares under the different assumptions about the treatment, given in Table 1. In case of CRD (nested)
F; estimate (0% + ro® + nra?)/(o® + ro®.) under random effect model, while F; estimate {0 + ro?, + nr¥ a?/(t-1)}/o®
+ ro®.under fixed effect model. So, Fr = MST/MSE will be the proper F-test for treatment effect (Hy: o = O or Hy:
0%, = 0). In similar way, to test Hy: 0°. = O (there is no variation among the sampling units) we shall use F; =
MSE/MSS as a test statistic instead of MSE/MSE, because Fp estimate (0% + ro®_)/o? under the null hypothesis.

The second basic experimental design used almost in agricultural experiments is that of RCBD (randomized
complete block design). As discussed above that CRD requires homogeneous experimental units. But usually the
experimental units are not so homogeneous as required. In such situations the principle of local control is adopted
and the experimental material is grouped into homogeneous sub-groups. The sub-group is commonly termed as
block. The treatments are assigned randomly with in blocks. Each treatment will occur once in a block. Separate
randomization is used for each block. The blocks are formed with units having common characteristics that may
influence the response under study. In agricultural field experiments the soil fertility is an important character that
influence the crop responses. The uniformity trial is used to identify the soil fertility of a field. If the soil fertility is
found to run in one direction, then the blocks are made orthogonal of that. In animal experiments animals of same
age or little or weight may form blocks.

All the F-tests are taken in a wrong way in case of RCBD nested (hierarchical classification), because in all
effects MSE is taken in the denominator of an F-test by the researchers. To take a proper F-test one should take the
help of expected mean squares. Expected mean square provides proper F-test about various effects present in the
experiment. Since RCBD is a mixed effect model, in which the treatment effect is taken fixed while the effect of
blocks is random. For replications/blocks and treatment MSE while for Hy: 0. = O MSS will be taken in the
denominator of an F-test.

Table 3 presents the ANOVA table of Latin Square Design. Expected mean square reveals that for each effect
Mean Square Error (MSE) will be used as denominator to take a proper F-test. Latin Square Design is used in a
situation if there exists two sources of variations in the experimental units, this variation should be controlled by
double way blocking (row wise and column wise). This design is not useful if the number of treatments are fever
than four and greater than 10. Also the design is not valid for the comparison of two treatments because the degrees
of freedom becomes zero in that case.

Great miss happen occurs in factorial experiments while taking F-ratios for various effects, because it has been
observed in various agricultural experiments that always MSE is taken in the denominator while taking F-ratios. By
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Table 1: The ANOVA Table for CRD nested (with “t” treatments, “n” experimental units and “r* sampling units in each experimental unit)

5.0V DF 55 M5 E [M5] F-ratio
Treatment t-1) SST MST a® + ro®, + nraZ, (Random) Fr

a? + ro?, + (Y oa?/(t-1) (Fixed)
Experimental t(n-1) S55E MSE a2 + rod, Fe
Error nt (r-1) SSS MSS a?
Sampling Error
Total (ntr-1 SSTot

Table 2: The ANOVA Table for RCBD nested (with "t” treatments, "b” blocks and "n” sampling units in each experimental unit)

5.0V DF 55 MS E [M5] F-ratio
Replication/Block b-1) SSB MSB o + ro®, + nro®,(Random) Fe
Treatment {t1) SST MST a? + ro’, + nra?, (Random) Fr

a® + 1o, + (¥ o/ (t-1) (Fixed)
Experimental Error t-1ib-1) SSE MSE a° + roc. Fe
Sampling Error bt (n-1) SSS MSS a?
Total (btn-1) SSTot

Table 3: The ANOVA Table for PxP Latin Square Design (LSD)

S.0V DF SS MS E [MS] F-ratio
Rows (P-1) SSR MSR a? + Po,? (random) Fr
Columns P-1) SSC MSC a® + Pag.? (random) Fe
Treatment (P-1) SST MST a? + PYo#(P-1) (fixed) Fr
Error (P-1)(P-2) SSE MSE a?

Total (P=-1) SSTot

Table 4: ANOVA Table showing only the source of variation, degrees of freedom and E(MS), for three factors A, B and C (all the factors
are random)

Factor DF E(MS)

A (a-1) 0% + NOZ%p + NbO%, + NCO%; + bena?,
B b-1) 0% + NO%p, + aN0%, + NCO%; + acno®
C {c-M) 0%, + NOZ%p + Nbo%,, + ang, + abno?,
AB (a-1)(b-1) 0% + NO%p + CNO%,

AC {a-1)c-1) 0%, + NOZ%p + NboZ%y,

BC (b-1)c-1) 0% + NO%p, + aNo%,

ABC a1) (b-1) (c-1) 0%, + NOZ%p

Error abe(n-1) 0%,

examining the expected mean squares column of Table 4, we have noticed that, there is no proper test for testing
each of the main effects, because F-ratio Is the ratio of two mean squares’s having the same expectation under the
null hypotheses. If we could assume that all two-factor interactions are negligible, then we could put o7, = 0% =
o%,, = 0 and test for main effect could be performed.

While this seems to be an attractive possibility, we must point out that there must be something in the nature
of the process or some strong prior knowledge, in order for us to assume that one or more interaction are negligible.
In general, this assumption is not easily made, nor should be taken lightly. We should not eliminates certain
interaction from the model without conclusive evidence that it is appropriate to do so. A procedure recommended
by some experimenter is to test the interaction first, then to set at zero those interaction found insignificant and then
to assume these interaction are zero, when testing other effects in the same experiment. While some times done in
practice, this procedure can be dangerous, because any decision regarding the interaction is subject to both type
of error. (The conclusion obtained from preliminary testing can be wrong. If we falsely conclude in preliminary test,
that one or more compenents in testing main effect is zero, the test based on these conclusions will be biased. In
order to decrease the probability of type-ll error (assuming Hy is true, when it is false) preliminary tests may use
larger significance levels than usual, There is no standard level of significance a for preliminary testing. such as the
conventional Q.05 for final testing, but a’s from 0.20 to 0.30 frequently used and even larger levels have
sometimes been recommended. The larger a level increase the probability of type-l errors, but decrease the
probability of type-Il error). In such a situation it is advised to use the pooling method, approximate tests (proposed
by Satterth Waite) and conservative tests.

Similar procedure is advised to be used In the factorial experiments, depending whether the model is fixed,
random or mixed effect model or exact test is possible or not. This is possible only by examining the expected mean
squares.
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