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Dynamic Simulation and Nonlinear Vibrations of Flexible Robot Arms
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Abstract: Mechanical flexibility of robotic manipulators is a major problem in motion
control. The slender, flexible mechanical structure may cause undesirable vibrations,
which has to be controlled in order to achieve satisfactory performance. To control
flexible systems, an accurate dynamic model is essential. Basically, two types of
flexibility exist in the robots; link flexibility and joint flexibility. Both have been
addressed in the literature, individually or together. In this paper, a dynamic model for
a two arm flexible manipulator, carrying a payload with rotary inertia, is presented. Arm
and joint flexibilities are considered. The Lagrangian approach in conjunction with the
finite element method is employed in deriving the equations of motion. All the dynamic
coupling terms between the system reference rotational motion, joint torsional
flexibility and arm bending flexibility are considered. The results of numerical simulation
show the significant effect of joint flexibility in the vibrations of compliant manipulators
in the form of high frequency and small amplitude vibrations. The effects of the payload
are shown to be increasing the amplitude of vibrations and decreasing the frequency
of oscillations. The dynamic model is highly nonlinear and the dynamical equations of
motion are solved using numerical integration procedures.
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Introduction

Using light-weight elements in space mechanisms and robotic chains has increased the
tendency for modeling flexibility of elements and joints. Dynamic modeling of rotational flexible
members has noticed extensive attention in two previous decades and has been a suitable tool
for design and control purposes. Considering flexibility of joints in dynamic modeling of rotational
members is more complicated and realistic, especially in high speeds.

Xi et al. (1994) studied the coupling effects between link and joint deflections in a
manipulator, using natural frequencies of the system. By introducing inertia and stiffness ratios,
coupling effects are discussed for two cases: a rigid member with a flexible joint and a flexible
member with a rigid joint. Gamara and Yuhara {1999) presented dynamic model of a flexible robot
manipulator with two flexible members and flexible joints. Dynamic equations obtained using
Newton-Euler method and finite element method is used for dynamic analysis. Usoro et al. {1986)
used Lagrange methed in association with finite element method for mathematical modeling of
light-weight flexible manipulators. Elemental kinetic and potential energies are used to develop
dynamic model of the system. Simulation results for a two-arm manipulator under its weight with
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no external excitation are presented. Low (1994) presented vibration analysis of a rotating beam
carrying a tip mass at its end. Using Hamilton’s principle the system equations of motion and the
associated boundary conditions are derived. Li et al. (1998) presented a systematic approach to
dynamic modeling and mode analysis of a single-link flexible robot, which has a flexible joint, a
hub at the base end and a payload at the free end. They showed that for a given flexible system,
the fundamental frequency is mainly affected by the payload mass, while the second frequency
is mainly affected by the payload inertia. A new flexible rotor beam element is suggested by
Shigang et al. (1997} to study the dynamic behavior of flexible manipulators. They showed that
joint flexibility plays a significant role in the dynamic behavior of flexible manipulators. Recently,
Al-Bedoor and Almusallam (2000) used small deformation theory to model a rotating flexible arm
driven through a joint, which is flexible in torsion. They have shown that the joint torsional
flexibility has a pronounced effect on the dynamic behavior of the system.

In this paper, a dynamic model for a two arm flexible manipulator, carrying a payload with
rotary inertia, is presented. Arm and joint flexibilities are considered in the analysis.

Dynamic model

In this section a dynamic model for a two-member robot with flexible links and joints is
developed. Schematic diagram of the flexible two-member robot is shown in Fig. 1. Suppose that
the joints or motors axis are flexible and experience small torsional deformations. The hubs are
assumed to be rigid and flexible members are joined to the hubs radially, so that the longitudinal
axis of members is in the direction of hub’s radius. The members are assumed to be inextensible
and the Euler-Bernoulli beam theory is adopted for the analysis.

The coordinate systems used in the model are shown in Fig. 1 and 2. XY is the inertial
reference frame. xX™'y™ is the body coordinate system attached to the first arm motor shaft. In
fact, this coordinate is the same local coordinate attached to the first joint. The body
coordinate attached to the second motor shaft is x™y™ which is the same local coordinate
attached to the second joint. Another body coordinate system x™y" is attached to the first hub
and x" axis is in the direction of undeformed longitudinal axis of the first arm. x"%" is a body
coordinate system attached to the second hub and x* axis is in the direction of undeformed
longitudinal axis of the second arm.

The first arm has n1 elements. The ith element has two nodes, | and [+1. Each element has
a local coordinate system xy attached to it’s first node I. The position of the ith element
coordinate system is defined by the position of the first node, §,, in the local coordinate system
""", The second arm has n2 elements with similar characteristics as that of the first arm in its

local coordinate system.

Kinetic energy of the system
The total kinetic energy contains kinetic energies of the first and second members. The end
position of the first member is defined by:

Rendlz[A(el)][IA(Tl)]I"hl (1)

end]
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where M is the position vector of the end position of the first link in the hub coordinate
n
system xhewyd”y, given by:

b . .
Fenay =Lyt h+u2n1+1(x’ i 2)

U, 0%,t) and L,n1 are transverse elastic displacement of the end position and length of the first
member, respectively. The global position vector of a point p on the ith element of the second
member can be written as:

Rp :R!p+Rend1 (3)
R, =[A©) ITACK ) I[TA®) 1[TA(Y) I @
=S i b (x, 9 i

where 1 s the position vector of point p in the body coordinate system of the second hub,
x"y" and [A(0,)] and [A(0.)] are the rotational transformation matrices from the motor coordinate
system x™y™ to the XY inertial system and from the motor coordinate system x™y™ to the
reference frame with angle 8,, respectively. [A{W,]] and [A(W,)] are the rotational transformation
matrices from the hub coordinate system x"'y"' to the motor coordinate system x™y™ and from
the hub coordinate system x"%" to the motor coordinate system x™y™, respectively. u(xt) and
S, are the transverse elastic displacement of point p and the axial position of the ith node,
measured relative to the xX™y"™ coordinate system, respectively. 8, and 0, express the rigid body
rotations of members and W, and W, are small torsional deformation angles measured relative to
the motor coordinate systems.

The wvelocity vector of point p may be derived by differentiating equation (3) and
substituting for rotational matrices and position vectors from equations (4) and {5). The kinetic
energy of the ith element on the second member with mass per unit length p, and length |, may
be written as:

1.1 LT
U12=§j02 PR, Rdx (6)

The kinetic energy expressions for hubs and joints may be expressed as:

L L
Uh1=§ J,, 0,77, Us1=§ J5,0)°

L r s g Ly o o
Uh2=§ Ty O+ W +0,+W)%, U32=§ J5,0,+%,<0)° (7)

512



Pak. J. Applied Sci., 3 (7): 510-523, 2003

First flexible 2nd hub 2nd flexible
member / member
First hub
First flexible
joint

Fig.1: Schematic diagram of the flexible two-member manipulator

where Jy, Jiz Jio and J.; are the mass moments of inertia of the hubs and joints about their
centerlines, respectively. Since, these expressions are local kinetic energies, the global kinetic
energies may be obtained by adding the term mR’ related to each term, to equations (7). The
kinetic energy of the elements of the first member,U;, may be computed with the same
procedure.

The total kinetic energy of the system may be calculated as:

nl nz
U=} u, 121 Uy Uy +Up, +Ug +Usg, (8)

il=1 =

Potential energy of the system

The potential energy of the system consists of the elastic strain energy of the links and

joints, the potential energy of the axial shortening due to transverse deformation and inertial

forces and the gravitational potential energy. The potential energies stored in the members with
elastic rigidity El and in the joints with torsional stiffness k, are given, respectively, as:

1 5%u L gtuff

VS]—E s Bl [@de VSZ—E o B, ® [@ dx,

V. =ik wt v =Lk w? (9)
SJI_E t1 -1 SJZ_E t2 2

The gravitational potential energies of the ith element of the first and second members due to
reference motion may be expressed, respectively, as:
. 2.
Vgii=pgSl sinB, +p,glising,

Y
V. 27pi83, 1:1 sin@lerZgSilzsin(Bl+62)+p2g122 sin(®,+8,) (10)
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The axial shortening potential energy produced by transverse deformations is given by:

1 11
Vg12= 02 Fp2d6 ()

where sz is the axial inertial force at point p due to the reference motion of element i of the
second member, given by:

1 . . . .
Fo=17 pp [(-0,+F +0,+W) (S, +x)]dx+

nz . . . . .
Z P, lj [[ Sﬁ%] (81+T1 +62+T2)2] (12)

j=i+l

where the first part expresses the inertia force of the ith element and the second part
represents the influence of inertia forces of all the elements to the right of element i. db is the
axial shortening due to the transverse deformations, given approximately as:

2 \ox (13)

The elemental potential energy of the first member may be calculated with the same procedure.

dd

14

The total potential energy of the system may be written as:
1l na
V= Z} (Vsil +Vgil +Vai1) +§ (VsiZ +Vgi2 +Vai2) +Vsj 1 +Vsj2 (14)

Discretizing with finite element method
The finite element method is used to discretize elastic members. In this methed,
deformations are expressed in terms of the nodal degrees of freedom as:

uix, t) = [N(x)l{a(t)} (15)
where [N] is matrix of the shape functions and {q} is vector of the nodal degrees of freedom.
Substituting equation (15) into equations {8) and (14}, the kinetic and potential energies may

be obtained. The Lagrangian of the system may be expressed in terms of 8, 8;, W,, W, qy, Qayeeeey

q2n1+2n2+2) as:
L=U-v (16)

The boundary conditions dictate q, and g, to be zero. The equations of motion may be obtained
using Lagrange’s equations in the following form:
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(17)
d(aL) oL
dulaq) aq

where Q; represents moment or general force applied to the ith degree of freedom of the
system.

Dynamics of the payload

The payload, as shown in Fig. 1, is located at the tip of the second member with a mass of
m, and a moment of inertia J, about its mass center. To obtain kinetic and potential energies of
the payload, position vector of the payload in the coordinate system XY may be written as:

R, =[A @) [[TACE) I[IAQ,) [[TAP)]r] +r,,, (18)

where . and r,,, are position vectors of the payload in the x"y" coordinate system and the
[‘L end1 p p y y y

tip of the first arm, respectively, given as:

r{‘z =S, i, 9jt
s = [A@) IITACE ) ] (19)
't =S, i, 05

where S and S, are the axial positions and u(L;,t} and u(L,t} are transverse elastic deformations
1 H

of the ends of the two arms.
The kinetic energy of the payload may be calculated as:

1 STo Ll o LA

UL=§ my, RLTRL+EJL(61+T1+B2+T2 +“2n2+2)2 (20)

where the first part expresses the translational kinetic energy of the payload and the second
part is the rotational kinetic energy of the payload. The velocity vector of the payload may be
obtained by differentiating equation (18).

The potential energy of the payload consists of two parts; the gravitational potential energy
and the axial shortening potential energy. The gravitational potential energy is due to the rigid
body motion and may be expressed as:

Vngng[SLzsin(Bl+BZ)+SLlsinB]] 21)

The axial shortening potential energy is due to the inertial forces of the payload and may be
represented as:

515



Pak. J. Applied Sci., 3 (7): 510-523, 2003

VaL:% my SL2(91+T1+92+T2) (u’LZ)Z (22)
Utilizing Lagrangian of the payload, equations of motion of payload may be obtained using
Lagrange’s equations. Finally, the entries of equations of motion of the payload are added to the
corresponding entries of the equations of motion of the whole system. The system of second-
order equations of motion is transformed into a system of first-order equations. A computer
scheme is developed to integrate equations of motion. Simulation results are presented in the

next section.

Simulation and Results

Dimensions and material properties of the members are shown in Table 1. The torque
profiles in the form of sine functions with different amplitudes, which are applied to the joints,
are shown in Fig. 2 and 3. Each member is modeled with two elements.

Fig. 4 and 5 show the angular positions of the first and second members that vibrate around
its initial releasing condition. Change of angular velocities of the two members are shown in Fig.
6 and 7. The oscillating behavior of the first member is a small amplitude and high frequency
vibration superposed on the motion of the link with the frequency of the applied torque. The
pronounced effect of the joint torsional flexibility on the tip deflection of the arms can be seen
in Fig. 8 and 9. Second mode of vibration of the links is strongly excited on the bending
deformations of the members. Joint torsional deflection and the torsional velocity of the first
member are shown in Fig. 10 and 11. The high amplitude oscillations in Fig. 11 are due to the
nonlinear interaction between the joint torsional deflections and the arm bending deformations.

It should be mentioned that the angular positions of the arms significantly change by varying
amplitudes of the applied torques. If the applied torques have the same amplitude, the angular
position of the first arm will be clockwise. If amplitude of the applied torque to the first joint
is twice the amplitude of the torque applied to the second joint, the torque applied to the first
arm balances the reaction of the second arm, causing the angular position of both links to be
in the same direction, counterclockwise. Also, the response of the second arm is similar to the
response of a single link manipulator and the second member acts as a payload on the first
member.

To show the effects of the payload on the vibration behavior of the system, the amplitude
of applied torques are increased to compensate the added payload inertia. Fig. 12-15 show
angular positions and angular velocities of the two members, respectively. It may be seen that
adding payload at the tip of the second member significantly changes vibration behavior of the
system, especially that of the second link. The payload increases the amplitude of oscillations
and decreases the frequency, due to added inertia. The senses of angular position and angular
velocity of the second link reverses and another mode of vibration is observed in the response
of the system. Tip deflections of the members are shown in Fig. 16 and 17. It may be seen that
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Fig. 2: Deformed configuration of the flexible two member manipulator

3-

[ %]
1

[y
1

£

torque 2 (N M)
[=]

]
=y
1

' 1
(%) ~
L A

0.2 0.4 0.6 0.2 1 1.2

Time (s)

Fig. 3: Applied torque to the first member
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Fig. 4: Applied torque to the second member
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Fig. 5: Angular position of the first member
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Fig. 6: Angular position of the second member
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Fig. 7: Angular velocity of the first member
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Fig. 8: Angular velocity of the second member
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Fig. 10: Top deflection of the second member
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Fig. 11: Torsional deflection of the first member
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Fig. 12: Torsional velocity of the first member
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Fig. 13: Angular position of the first member with payload
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Fig. 14: Angular position of the second member with payload
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Fig. 15: Angular velocity of the first member with payload
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Fig. 16: Angular velocity of the second member with payload
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Fig. 17: Tip deflection of the first member with payload
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Fig. 18: Tip deflection of the second member with payload

Table 1: Dimensions and material properties of the manipulator

Length of members L

Mass per unit length m
Hubs moment of inertias Jy
Shafts moment of inertias J.
Hubs diameters D,
Flexural rigidity El
Motar shafts torsional stiffnesses k,
Mass of payload m,

Moment of inertia of payload

4

0.5m
1.4kgm™'
4x107 kgm?
11107 kgm?
10 cm

270 Nm?

33000 Nm rad™’
0.5kg
1.6x107% kgm?

the amplitudes of vibrations are increased as a result of increase in the applied torque
magnitudes and the frequency of the oscillations are decreased when the payload is added to

the system.

A dynamic model for a two-member flexible robot with a payload has been developed. The
joint compliance and link flexibility have been considered. The results from the numerical
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simulation showed the significant effect of joint flexibilities in the dynamics and vibration
behavior of flexible manipulators, therefore, in the design and control of compliant manipulators
should be considered in addition to the link flexibility.
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