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Anisotropy in the Ray Tracing with the Emphasis on Hexagonal Symmetry (TIV)
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Abstract: For ray tracing purposes, the difference between the phase and group
velocities is clarified in order to derive numerically the change in ray velocity due to
anisotropy. The simplest anisotropy case of broad geophysical applicability is the
transverse isotropy or hexagonal symmetry. The main notations introduced by Auld, 1990
to describe the transverse isotropy of vertical symmetry axis (TIV) have been used.
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Introduction

Seismic anisotropy is the variation of welocity as a function of the signal propagation
direction through a medium. The important features of wave propagation in anisotropic solids
are |) the variation of wave velocities with direction ii) the three-dimensional (3-D) displacement
of the particle, which leads to shear-wave splitting and iii) the propagation of energy deviated
both in velocity and direction from the direction of the phase propagation. A complete theory
and the main notations describing the transverse isotropy of vertical symmetry axis (TIV) have
been introduced following Auld, 1990 which are used to drive Thomsen's formulas'.For ray tracing
purposes it is important to clarify the differences between the phase and group velocities in
order to numerically derive the change in ray velocity due to anisotropy. Group velocity is the
speed at which wave energy travels in a given direction radially outward from a point source in
a homogeneous elastic anisotropic medium (Winterstein, 1990). Phase velocity is the velocity in
the direction of the phase propagation vector, normal to the surface of constant phase
(Crampin, 1989).The simplest anisotropy case of broad geophysical applicability is the transverse
isotropy with a vertical symmetry axis (TIV). It serves as a good introduction to anisotropy for
geophysicist and helps to define the basic terminology and methodology for anisotropy studies
(Alkhalifah and Tsvankin, 1995).

Equations of motion
The equation of motion is obtained using Newton’s law

[9Tdv-Jpav 9T R 0 p &, 0 (1)
o o at at

p is the density of the medium and U, 1) :w

(1), straightforwardly have

is the particle velocity. Using equation
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ar 3l (2)

A uniform plane wave y(x, ) propagatingalong the 14, =1, L=1. L=1) direction fis
proportional to pietE® where |1]=1 and k is the wavenumber; is the velocity of advance of
wavefront (constant time i.e. constant phase) and is called the phase welocity. Using
vz ell@t-E® and the relations from operators act on a plane wave substituted in the wave equation
for general homogeneous media, gives the dispersion relation

3T, 2
YO Uj(%] v, i-1,2,3 3)

where T a 3x3 matrix called the Christoffel matrix: its elements are functions only of the plane
wave propagation direction| and of the stiffness constants ¢, of the medium. The dispersion
relation (3) is an eigenvalues problem

2
w
([K] are the eigenvalues). It has the unique solution {i.e. there is no propagation in

J =1

the medium) if the determinant of the system is non-zero; since this is not physically satisfactory
we want a zero determinant

2 (#e
&

where, | is identity matrix.

Solving equation {4} gives 3 possible expressions for the phase velocity il , only waves having
one of these phase velocities propagate in the medium. K

We can calculate an eigenvector associated to each eigenvalues that corresponds to the
polarization of the wave propagating with the phase velocity. Mathematically the three
eigenvectors are mutually orthogonal which means that physically the three polarizations are in
the direction of propagation that is the quasi-longitudinal wave and is simply denoted P. Another
eigenvector is orthogonal to the first one but not to the direction of propagation that is the
quasi-traverse shear wave and is denoted SV. The last eigenvector is orthogonal to the direction
of propagation (and to the other eigenvectors) that is the exactly traverse shear wave and is
denoted SH.

Hexagonal symmetry and vertical axis

This system has one of the axes of symmetry such that a rotation by an arbitrary angle
around this axis does not change the tenscr i.e. the tensor behaves isotropically in the plane
perpendicular to this axis. Because of this, the symmetry is also sometimes called fransverse
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isotropy, especially in the case when the axis of rotational symmetry coincides with the -axis of
the coordinate system.

A crystal with a hexagonal symmetry has a lattice (of atoms) built from two equal vectors in
the horizontal plane, with an angle of 120 degrees and a third vector orthogonal to the
horizontal plane. This kind of lattice allows a great number of symmetries such that the
appearance of the lattice after the transformation remains unchanged. Thus, stiffness constants
are not all independent (i.e. there are less than 21 constants to describe such crystal) since
constraints are imposed on them by the principle that symmetrically equivalent directions in a
crystal must have equivalent elastic properties (Auld, 1990).

In the case of the hexagonal symmetry, the equation of motion {4) is give by

C111:+C6615+C44122 (€} ceelly (crsrey )Ll U, v
ke ey el L, C6613+C111;+C44122 (c;5re JLL Uz| =pe” |V (5)
(e )L (C13+C44)1y12 C44+(1x2 *1;)“333122 e Vs

Thus there are only five independent elastic constants for describing a crystal with
hexagonal symmetry: ¢y, Cyz, Ci3y Cay Cigo

Equation (1) is simplified by imposing the propagation in the (x,y) plane; since the Christoffel
equation can be shown to be symmetric with respect to an arbitrary rotation about z-axis, we
could have chosen any meridian plane. We write the propagation vecto ias

10,=5in6,1,=0,1, =cos6) (6)

where 8 is the angle between the propagation direction and the vertical axis.
Solving the zero-determinant equation (4) yields the solutions satisfying

{%]1(%J2(%J 3) B (Up’Usngl) satisfying
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Thomsen’s notations

As introduced by Thomsen (1986), it is useful to recast equations (7) using notations involving
only two elastic moduli (e.g. vertical P and S velocities) plus three measures of anisotropy. These
three anisotropy coefficients should be nondimensional so that we can speak of a percentile of
anisotropy, should be efficient combinations of elastic moduli (c,;, Cy3, Cgs Cass Cee) in order to
simplify equations (7) and should reduce to zero in the case of isotropy. Some suitable

combinations are %11 %s % 4
2¢,, 2¢,,
1, 2 (8)
6:5 Cl2le  re, ) (e e )(E 7y m2,)
using the vertical P and S velocities
C C
ay=v,{0) = N A (UL (U S
P P 9)
Then equation (7) rewrites as
_ ;7 N
vp(e)fcxu\/esm 8+D(6)7cx0cxp(0)
2 2
VO, |1+ esind -2 D (0) =P, a__ ©O)
¥ ] —2 E 0% (10)
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Where is given by
D(B)%\jq2+4651n6+4sin48[e(q+e)6]% (1)
with
2
:17&: C337Cuy
q 7 (12)

&y 33

where g, & and y are called Thomsen’s parameters and are convenient variables to support
calculus; where he derived velocity formulas for weak values of these parameters. However,
inputs to describe anisotropy in some topics include the five independent elastic constants ¢y,
Ci3, Ca3, Cay and c (from which Thomsen’s parameters are evaluated).
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Phase velocity and group velocity

In a general homogeneous elastic medium, where the velocity is constant in any given
direction, it is obvious that a particle moves along a straight line; the energy propagates along
this line with the group velocity and the direction of propagation makes the group angle ¢ with
the vertical axis. This line defines a ray.

Because of anisotropy, the wavefront, that is the positions of constant propagation time,
is non spherical. The wave vector [ is locally perpendicular to the wavefront and makes the
phase angle with the vertical axis. The phase velocity that measures the velocity of advance of
the wavefront along the direction k[is given by the Thomsen’s formula (10).

Fig. 1 shows that a point on the wavefront (fixed propagation time) can be reached either
traveling either with the group V (@) velocity along the direction making the group angle ¢ with
the vertical axis, or traveling with the phase velocity along the direction that is perpendicular
to the wavefront and that makes the phase angle with the vertical axis. Note that the phase
velocity direction does not start at the source point.

Thud, in a homogeneous medium, wavefronts are defined by

[o2 .2 Joi- 2 13
t(x,2) = X 2 VX 'Z _Cosntant 13)
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Fig. 1: phase (wavefront) angle at two consecutive times and group (ray) angle
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We see that

tAx, Az)=At(x,2) . ¥>0. (15)

In other words, the traveltime along the ray is a linear function of the source-vga&ve%rent
oot -
(az ax)
is constant. Thus, to a phase angle corresponds one and only one group angle definingp a ray,

distance. Also, along a ray, the direction of the normal vector to the wavefront

whatever the propagation time.
The phase velocity is defined as the projection of the group velocity on the wavefront
normal direction (Fig. 1). Thus the group velocity is given in terms of the phase velocity by

: ) o 407 - f Lo e}
Vg0 o ) Vie o) u(e)\Jl o) »
and using the general form of equation {10} we get
_ I PR S 11} 17
Vip@1-0@)a0)s,| 10—t (&) ~one (17)

The general relation between group angle and phase angle is (Fig. 1)

dv 1 dv

© tand+> 35

t -0)]=—— -t =
O 7T T e @ (18)

v db

In anisotropic media, wavefronts traveling outward from a point source are not, in general,
spherical as a result of dependence of velocity upon direction of propagation. Shown in Fig. 1
are two wavefronts in space that are separated by unit time. The group velocity, v(p), denotes
the velocity with which energy travels from the source, while the phase velocity, , is the velocity
with which a wavefront propagates at a local point, that is, the propagation velocity of the
parallel plane-wave component. Here ¢ is the group angle, also called group angle and specifies
the direction of the ray from the source point to the point of interest. And is the ¢ phase angle,
also called wavefront-normal angles, it specifies the direction of the vector that is normal to the
wavefront, in general, different from group angle at any point of propagation, except at certain
singular points.

This research presents the anisotropy with some details in the transverse isotropy with
vertical axis of symmetry. The group velocity variation as function of the group angle needs is
derived from the phase velocity variation with the phase angle. This has been achieved using
simplifications of notations introduced by Auld, 1990. Transverse isotropy (TIV) is described by
five elastic parameters ¢y, Ci3, Caz Casr o
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