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Abstract: The Anderson Darling and Modified Anderson Darling test statistics are considered for testing
the goodness of fit of the three parameters Generalized Pareto Distribution. The test statistics for testing
the goodness of fit of the completely specified distributions are modified by replacing the Generalized
Pareto distribution by their probability weighted moment estimates. The tables for critical values are
derived for these empirical distribution function tests for various sample sizes.
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Introduction

Uncertainty in the rainfall intensities and in the flood
frequency analysis creeps in because a meteorologist
and a hydrologist can never be sure about a fitted
distribution being the same as nature has used to
generate flood flows and also the data sample may not
truly reflect the complete characteristics of the
population. It is unlikely that a consensus will ever be
reached regarding the selection of a universal parent
distribution of flood flows. In literature to get over this
uncertainty many candidate distributions with different
parameters and parameter estimation techniques are
examined, various goodness of fit criteria are used to
evaluate the performance of candidate distributions.
Decision making values usually lie at the tail region as
compared to a two parameter distribution. So the
Generalized Pareto (GP) distribution which is a three
parameter distribution is selected.

Generalized Pareto Distribution (GP) was introduced by
Pickands (1975) and has since been further studied by
Davison (1984);, Smith (1984 and 1985) and Van
Montfort and Witter (1985). Van Montfort and Witter
(1986) has demonstrated its applications to the
distribution of peaks over threshold of rainfall series
using the maximum likelihood method of estimation.
Hosking and Wallis (1987) used the method of
moments and the method of probability weighted
moments for the estimation of the GP distribution.
Using Montecarlo simulations, they concluded that the
estimates obtained by the Method of Moments (MOM)
and Probability Weighted Moments (PWM) were more
reliable than the Maximum Likelihood Estimates (MLE).
They also observed that the GP distribution gave the
better fit to large peaks, thus suggesting its use for
modeling Peaks Over a Threshold (POT). The GP
distribution was also used by Wang (1991) for the
comparison of POT and Annual Maximum (AM) models
by PWM method. A comparative study for the
estimates of the GP distribution was made by
Moharram, Gosian and Kapoor (1993) and concluded
that PWM method is best when the value of the shape
parameter is less than zero and particularly if shape
parameter might be less than -0.2, then PWM
estimates will probably be preferred because of their
low bias.

The GP distribution has applications in a number of
fields, including reliability studies, in the modeling of
large insurance claims, as a failure time distribution.
Its application  include use in the analysis of
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extreme events e.g. for the analysis of the
precipitation data. in the flood frequency analysis, in
the analysis of the data of greatest wave heights or
sea levels, maximum winds loads on buildings, in the
maximum rainfall analysis, in the analysis of greatest
values of yearly floods, breaking strength of materials,
air craft loads etc. The GP distribution has been quite
popular not only for flood frequency analysis but for
fitting the distribution of extreme natural events in
general.

Once a distribution function is assumed or selected for
study at hand, it remains to estimate its parameters
and when the parameters of the model are estimated,
it is then desirable to access how well the distribution
fits the observed data. Goodness of fit tests are often
essential to reveal departures from the assumed
model. In this study the parameters are estimated by
PWM method and critical points are derived for the
Anderson Darling and Modified Anderson Darling tests
for the Generalized Pareto distribution.

Materials and Methods
As defined by Van-Montfort and Witter (1985) a
random variable X is said to be distributed as
Generalized Pareto (GP) distribution:
X(F) =b+alc[l - (1-F)
=b - a log(1-F)

where a = scale parameter,

b = location parameter and

¢ = shape parameter
Method of Estimation: The possible methods for
estimating the parameters of the GP distribution are
methods of moments, method of maximum likelihood,
ordinary least squares, Probability Weighted Moments
(PWM) method, Generalized moment methods etc. As
a comparative study of the estimation of GP
distribution by Moharram et al, (1993) and Hosking
and Wallis (1987) that the PWM estimates will probably
preferred because of their low bias, so we have used
the PWM method. '
Greenwood (1979) defined the probability weighted
moments of X as:
Mps  =E[XP{F()}{1-F(x)}']

= IIX" {F()} {1-F(x)}* dF(x)

c#0
c=0

- j' {X(F}PF{1-F}* dF
0
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where p, r, s are real numbers and X(F) is the quantile
function of X.
Goodness of Fit Technique: Goodness of fit
techniques means the methods of examining how well
a sample of data agrees with a given distribution as its
population. The important goodness of fit techniques
are:
i. Tests of chi-square types
iii. Moment ratio techniques
il Tests based on correlation
iv. Tests based on empirical distribution function
Most of these test statistics suffer from serious
limitations. In general test of chi-square type have less
power due to loss of information caused by grouping.
The distribution theory of Chi-square statistics is a
large sample theory. The higher order moments are
usually under estimated and this fact prevents the use
of moment ratio techniques and so would be the case
with correlation type tests.
Several power studies have revealed Empirical
Distribution Function (EDF) tests to be more powerful
than other tests of fit for a wide range of sample sizes
(Stephen, 1974 and 1977). Recently, satisfactory use
of EDF tests has been difficult due to lack of readily
available tables of significance points for the case
where the parameters of the assumed distribution
have to be estimated from the sample data. This case
is referred to by Stephens (1974 and 1977) as case 3.
The significant points that have been available are
appropriate to the case where the parameters of the
distribution are known. This case is referred to by
Stephens (1974 and 1977) as zero case. Such tables
are of limited value in practice because the parameters
of the distribution are seldom known. When the
parameters are estimated, the critical values are
considerably smaller than for the specified parameter
case. Thus the use of these critical values which are
for specified parameters case to assess the agreement
of a theoretical distribution when parameters are
estimated from the data may result in accepting fitted
distribution that ought to be rejected.
The important EDF tests are Kolmogorov-Smirnov test
(KS or D), Anderson Darling test (AD or A2;) or
modified Anderson Darling (MAD or AU2,) and Cramar
Von Mises test (CVM or W2). Stephens (1976) has
shown that in a wide variety of situations AD is the
most powerful EDF test followed by CVM .and KS is
rather weak. It is important to understand the
behaviour of the upper tail of the distribution than it is
to fit the entire distribution. Although a particular
model may adequately describe most of the maximum
rainfall distribution, it would be useless for predicting
maximum or extreme values if the model breaks down
for the upper percentiles. For assessing the behaviour
of the upper tail of a distribution, a modified Anderson
Darling test is included in this study.
Empirical Distribution Function: Suppose a given
random sample of size n i.e., Xy, Xz, . . . , Xn and let
Xy<X@<...<Xm) be the order statistic and also
suppose that the cumulative distribution function of X
is F(x). The EDF is defined as:
Fa(X) = No. of observations < x
n

More specifically the definition is

Fn(X) =0 x < X(i)

Fn(X) =i/n X(,’) <x< X(i+1) i= 1,2,...,1'1“1

Fn(X) =1 X(n) <X

Thus Fn(x) is a step function which shows the

proportion of observations less than or equal to x for
any x. While F(x) is the probability of an observation
less than or equal to x.[(F(x)=P(X<x)].

EDF Statistics: A statistic measuring the difference
between Fn(x) and F(x) will be called an EDF statistic.
Anderson and Darling (1954) proposed an EDF test as:

[e o]
A% =n | {Fn(x) - FR}w () dF(0)
- 00
where y(x) = [{F(X}{1-FX)}]"'
Sinclair et al., (1990) proposed a modified form of the -
Anderson Darling test using the weight function:

wx) =[1-Fx1'

[s o}
AU, =n [ [Fn(x) - FGOI'w? (x) dF(O)

For computational purposes the Anderson Darling and
Modified Anderson Darling statistics are:

A% =-n lz;(zil){lo Ziy+ 1 ;
n = -N- - g Zgy+ log(I-Zgn-iy )}

n
n <& u 2i—1
A 223 2.3 - ogll- 20
i=1 i

i=1 n

where Z; = F(X), i=1,2,...,n

Results and Discussion

The main objective of the research reported here in
was to derive the significance points for the
distribution of Anderson Darling and Modified Anderson
Darling Tests for GP distribution when the parameters
are estimated by probability weighted moments
method. For this purpose a simulation procedure was
used to approximate the distribution of Anderson
Darling and Modified Anderson Darling tests. The GP
random variable X was generated by taking for each of
the fixed random sample sizes 10(5)40, 50 and 100
and for each value of the shape parameter -0.2, -0.1,
0.1 and 0.2. For each sample size the location and the
scale parameters (b, a) were set respectively at zero
and unity without loss of generality. It was expected
that the distribution of test statistic would be affected
more profoundly by the sample size in the range of
interest than the values of the scale and shape
parameters of the distribution. David and Johnson
(1948) imply that the distributions of Kolmogorov
Smirnov, Crammer Von Mises and Anderson Darling do
not depend on the values of location and scale
parameters. Each sample was used to calculate PWM
estimates. By using these parameter estimates, the
Anderson Darling test statistic values and Modified
Anderson Darling test statistic values were caiculated.
This procedure was repeated 1000 times for each
value of the shape parameter, thus generating 4000
Pseudo-independent values of Anderson Darling and
Modified Anderson Darling test statistics. These 4000
values were then ranked and the 50%, 75%, 85t 9ot
and 99" percentiles were found. A computer program
was developed in MINITAB, a statistical computer
package and the entire process was performed five
times and the critical values of these test statistics for
GP distribution are developed by computing the means
of the five percentile estimates.
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Table 1: Critical Values for the Anderson Darling Test for GP-distribution when the Parameters are Estimated

(case 3)
n/pP 0.50 0.25 0.15 0.10 0.05 0.01
10 0.27728 0.37187 0.44760 0.50029 0.59692 0.74982
15 0.28560 0.39257 0.47889 0.53025 0.60644 0.86288
20 0.29214 0.40527 0.49856 0.55300 0.61466 0.92691
25 0.29982 0.41646 0.50625 0.56828 0.62331 0.99783
30 0.30483 0.42740 0.51656 0.58442 0.63985 1.10657
35 0.30901 0.43887 0.55529 0.64405 0.66443 1.28695
40 0.32299 0.45689 0.59098 0.65815 0.69582 1.58493
50 0.37126 0.52598 0.62397 0.70945 0.84550 1.91943
100 0.51268 0.76689 0.87670 0.91608 1.91479 2.68975;

Table 2: Critical Values for the Modified Anderson
Estimated (case 3)

Darling Test for GP-distribution when the Parameters are

AU2n
n/P 0.50 0.25 0.15 0.10 0.05 0.01
10 0.14062 0.20017 0.25963 0.30864 0.48918 0.55847
15 0.14475 0.20759 0.26520 0.31478 0.50516 0.61738
20 0.14666 0.21293 0.26827 0.31726 0.51093 0.63498
25 0.14843 0.21686 0.27103 0.31940 0.51273 0.65861
30 0.15084 0.21969 0.27369 0.32083 0.51425 0.68741
35 0.15259 0.22514 0.28028 0.34354 0.52005 0.75888
40 0.16541 0.23839 0.29589 0.39166 0.54237 0.79617
50 0.18209 0.27561 0.32647 0.42559 0.58912 0.87543
100 0.20632 0.32240 0.39500 0.59577 0.76245 1.28305
Table 3: Critical Values for the Statistics A2n and AU2n when F(x) is Completely Known (case Q)
Upper percentage points in modified forms
Statistics Modified forms
0.25 0.15 0.10 0.05 0.025 0.01
A2, For all n 25 1.248 1.610 1.933 2.492 3.020 3.857
AU2, For all n 0.620 0.746 0.998 1.303 1.623 2.060

Various probabilities of the upper tail areas of the
distributions of Anderson Darling and Modified
Anderson Darling statistics for the GP distribution when
the parameters are estimated (case 3) are presented
in Table 1 and 2, respectively.

The critical values of these test statistics for the
completely specified distribution are adopted from
D’Agostino and Stephens (1986) and Sinclair et al.,
(1990) and are presented in Table 3. In.case 3 the
dependence of the upper tail area probability P on the
sample size is investigated. It is found that the
distributions for case 3 for these EDF statistics depend
on the sample size. This is in line with Stephens
(1977) and Sinclair et al., (1990) resulits.

It has been seen that the significance points for the
case 0 are larger than the case when the parameters
of the distribution are estimated from the sample. So
by using these critical values of case 0 to assess the
agreement of a theoretical distribution when
parameters are estimated from the data may result in
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accepting fitted distribution that ought to be rejected.
Conclusion

Until recently satisfactory use of EDF tests has been
difficult due to lack of readily available tables of
significance points for the case where the parameters
of the distribution have to be estimated from the
sample, then the EDF tests no longer apply at least not
using the critical points which are for the specified
case. Thus the use of these critical values which are
for a specified parameters case to assess the
agreement of a theoretical distribution when the
parameters are estimated from the data may result in
accepting fitted distribution that ought to be rejected.
In general, when unknown parameters have to be
estimated particularly for finite sample sizes,
percentage points can only be obtained by simulation.,
So in this study the tail area probabilities are derived
by simulation for the Anderson Darling and the
Modified Anderson Darling tests for the Generalized
Pareto distribution, when the parameters are
estimated by probability weighted moments method.
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