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A Classical Model for Study of Solids with Atom as Linear Oscillator
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Abstract: The purpose of present study was to apply a classical model for solid study. Tn the proposed model
atoms were considered as points of mass having small oscillations near their equilibrium positions. Based on
this consideration, the partition function was solved and with regard to equipartition theorem, its simplified
equation has also been achieved. The model was applied to solid and necessary work for compressing solid,
in order to obtain the compressibility factor as a function of solid volume and the temperature, has been
calculated. A literal expression for pressure applied to solid and also an expression showing the compressibility
variation have been deduced. For numerical application, alumimum was chosen as a solid in order to find out
its parameters. The model can also easily be applied to other metals.
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INTRODUCTION

A low compressible solid of volume V, containing N
atoms, assumilable to 3N identical, mdependent and linear
oscillators at thermal equilibrium at T°, has been
considered. The results of the linear oscillation modeling
in conjunction with the approximation given by the
energy equipartition theorem were successfully accepted.
Each atom, being at rest and in its equilibrium, was
considered to have a negative energy of -F,, it has also
been supposed that the initial position and energy; X,
and E,, were function of the volume V of solid.

At 0°K, the solid was considered as to be at
equilibrium and at zero absolute pressure that is defined
by V.. The necessary work due to variation of
compression from 0°K to any pressure P and at any
temperature T, has been calculated with the help of Taylor
series. The pressure P could be expressed as a function of
solid volume V and of compressibility coefficient ;. The
work resulted by the solid in compression phase from V,
to V, has been deduced as a function of compressibility
coefficient ;. The variation of compressibility as a
function of temperature near equilibrium, which is defined
by volume V,, 18 also shown. This study has finally been
applied to aluminum as an example of application but can
easily be applied to other metals.

Modeling: Anatom was considered as a point of mass m,
and subjected to move along X-axis. Its energy can be

given by!'l;

UG =, [ (1-Exp-XX P-1) ] @

E, and X, having positive constant values. This atom
can vibrate around its equilibrium position, which can be
considered as a linear oscillator. The oscillation is due to
thermal agitation resulted by temperature, T. It was
supposed that 1/p = KT<<E,, which implies that the atom
vibrates at definite distance.

The atom is at its stable equilibrium when its potential
energy 1s mimmurmn, that means;

AUfAX = 2B, X, (Bxp-XoX )(1-Exp-X,X ) =0 2

Hence, X=0.
Further we can have;

FPURK? | Xy = 2B X% (Bxp- X%X)
( 2Exp-XpX —1)] = 26X > 0 3
X=0

It 15 obvious that X=0 13 a stable equilibrium position
for the atom m question. As the system is a stationary
system and not a relativistic one therefore, the
Hamiltonian can be written as;

Hy=T+U, @
The oscillation energy at rest is zero therefore;

Ho = P /2mg + Eo(1-Exp-XXo) &
The partition function is then;

Ze= [Exp-(Pxf f2my) dPx | Expl- BE.(1-Exp-X%, )] dX ©

—e —oo
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The dependence of X and t, can be written as™”

>

£= 1- Exp-(XX,) ¢
dt =X, Bxp-XX, . dX =X,(1-t) dX ®
Taking (8) into account, (6) will become;
Zs =(1/XU)IOEXp-( Pix 5 /2my )
dPx } (Exp-(3E £)/(14).dt ©
The left integration yields
Z=(1/Xy). (2mmy /B2, }@xp-(BED £)/(1-t).dt (10)

—oo

For the second part integration, which 1s now based on
time, one should go through following procedure;
We put;

I:i (Exp-(BE; £)/(14).dt (1)
We also put;

L= j: (Exp-(BE, /(-1 ).dt {12)
In addition we know that;
L S];:EXP'(E'EU VALt < Exp-(BEp V7). dv %(1/2)-(-“/|3Eu 43
On the other hand we can have;
L :_lljjeﬁxp-(ﬁEo /(1-0.dt = jE;cp-(ﬁEotZ) “Z:;t“.dt (14
The convergence is uniform, therefore;

Ili: lj Et“Exp-(BEotZ).dt (15

n=0 -1+g

With the same procedure the second part integral will
become as following;

=1
L= Z; [ t*Exp-(BEot?).dt {16)
p=0 "y
We can then have the following successive integrals;
-1 o
U= 7 Exp-(BEoL).dt= [£P Exp-(REct).dt=T" a7
oo 0

44

[T |= 17| < Zﬁp Exp-( BEo).dt =T, (18)
L= } 120 Bxp-( PER).dt = (2BE)A2p+1). Lps=
0
12fmPE V/QPEP=1x2x3x ... *(2p-1) 19
On the other hand we can have,
Z”;)IZPZJ?WEO-Z 172*3....(2p-1) )
-

p=0

(2PEY”

The convergence factor Z¢, can be written as following;

2 0o o
Ze=(1/x7) % Y Jt7Exp-pE,t® dt 2D
n=0 <
Calculating (21), yields;
Z¢=(X, p)2myE, [1+KTA2E,) +0(e?)] (24
Now the mean energy 1s;
n={H ) H, =K T? %(Log 7.6) 23
As KT/(ZE,)=<1, then
U=KT [1+KT/(2E;)] 24

The proposed model yields a specific heat per atom
gram greater than 3R,. The equipartition theorem attribute
to a degree of free oscillation corresponding with energy
of u=KT. In this case the simplified expression for Zc¢ 15
presented as;

Z.¢=(WX, B2 m /E, 25
We are then guided to study the model for t tending to
zero, which means for X tending to zero, therefore;

UGOE X X2 26

Hence;

F(X) aU@X EX X @n

This approximation shows that we are studying small
movements of atom around equilibrium position of a
quadratic potential.
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Application to solid: Tn order to compose a solid a certain
amount of work should be provided. This amount of work
15 then considered as internal energy of solid. The work
provided 1s;

T'=-NE; (V) ()

Each atom, at its equilibrium positior, has a negative
energy of - E(V).
The internal energy of the solid can be written as;

U=tt=1" =NE;(V) 29

At zero Kelvin, the system can be considered at its
equilibrium if its internal energy 1s minimal. By applyimg
Taylor series we are able to deduce the necessary work
for compressing the solid, at zero Kelvin and at zero
pressure to a pressure of p, that is to say from volume V,
to volume V;

dE,,  (V-V)? d%E,
E(V)=E(V)+(V-V)) |Vu — W‘vﬁ--- 30
Then;, X
N (V-V))* d2g | 31)
2 gy
The compressibility factor can be defined as;
o1
Ko = 70 (@ViaP), _, 32)
Calculating for dP, we can have;
dpP=P =- (V-V,) &)
Xovo
On the other hand we can have;s
v V-V,
at'=[Pdv= L VY (34
Va XoYo 2

Comparing (31) with (34), we can deduce for

compressibility factor as;

“E(V)

d
Vxo="NV, \[;2 |y, 35

In thus relation, the energy of atom individually is, in fact,
positive and equal to +E,.
We can have for free energy the following relationship;

E:E‘T=O+EOsc1llat1on (36)

In which;

E=U-T§ 7))
At T=0;

E‘ == U (38)
Therefore (36) becomes,

E = -NE; (V)Y*Eosiition (39)

For a linear oscillator we can write;
E=-KT LogZc G

Free energy of solid of volume V, can be deduced as
following;

(V) ,/E (V) @n

E-=
NI 2m

E (V)+3KT Log

Now the literal expression of the solid can easily be
obtained;

p-SE T (42
aT
PN dE,(V) 3NKT dX,(V) 3
dv X dv

0

If the pressure becomes zero P=0, then;

dE ax
N o(V) 3aNKRT d¥,(V) M)
av X, av
Knowing that;
dE; (V) d?E (V)
(V-V)——"|, +...
dv avz ot (“5)

Combining (44) and (45), yields;

Vo angrdp X,|
=- —Lo v
A ay Y @
{(46) can be written as following;
v
g, Py @)
dv XOCV

B, 1s the dilatation coefficient at zero pressure and C, the
specific heat of solid.

In order to get the variation of compressibility as a
function of temperature near the equilibrium position,
defined by volume V,, we can have;
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av
apr

1

,V(

I (4%8)

As the solid has very small compressibility, then we can
have;

2

d’E
1/x:—V0£|T:—NVO 0
av dve

d?LogX,
‘vu+3NKTVOW|VD (49)

First derivation of (49) yields;

-y, V. d®LogX

dy 0) (50)
aT ¢ dyz
As, dy/dT, is negligible, then we can have;
dLogy ﬁOVOZ dZLogXO(V)‘
dT Y dvz 1)

Numerical application: case of aluminium: For aluminum,
we have the experimental values such as:

d]:i% = 5.5x107%(K) "= Cte, Py = 6.78x107° (K),
% (300°K) = 1.37x10~ m*/N
V=1.003x10° m’

These data yield for v, 8, the numerical values as;

d P ¥y
-2 Log¥X |, =—2%-v-217
av 8 olv, X, C, ¥
d?LogX
5--v2 280 ) 76
de 1}
Where;
v ax
-2 %), =12.9
XO dv2 0

0 is, in fact, the Gruneisen constant.

If X, =Ku " %" where K is a constant, p is specific
mass and 7y is the compressibility, it can be easily seen
that the following state equation, is a solution near the
equilibrium, which 1s defined by the volume V;

46

(Vy-V)/V,=AP-BP? 52
The first derivative of (52), yields;
dV=V,(2PB-A)dP 53

Considering the equations (38), (45) and (48), we can
deduce;

>4

(Vo V)Vy =5y P-2.34 %2 P

As the solid 1s of small compressibility therefore, for
all the range of temperature, the state equation can be
given by following equation;

(Vo V)R (TIVy = P-2.34y(T) P? (53

RESULTS AND DISCUSSION

The concept of considering atom as a linear
oscillator, offered a simple classical model for study of
solids. One-dimensional oscillation of atom has been
considered. Atom itself was considered as a point of mass
This
simplification made the partition function be easily solved

and was subjected to move along X-axis.

and with a reasonable assumption its simplified
expression has been established and linear oscillator
Hamiltomean was also expressed and hence the mean
energy of such linear oscillator was deduced.

An  expression for compressibility has
established and fimally the necessary work for
compressing a solid, from its volume at zero Kelvin to any
at

been

volume any temperature, as a function of
compressibility factor and temperature was established. A
literal expression for the pressure applied to solid and also
an expression showing the compressibility variation have
been deduced.

As a numerical application, aluminum has been
chosen for which,y, the Gruneisen constant and 8, have
been calculated. U=Kt 1s not valid in our model unless at
high temperature, which limits our model. On the other
hand, ¥;, 18 actually depending on the frequency V,, of the
studied linear oscillator, therefore Einstein model can be
used for solid study with better precision. In addition,
quantum mechanics generalize the classical study results
for all temperatures while classical study offers less
complexity in obtaining results and much simplicity in

calculations.
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This study showed that a classical model with an
aspect of linear oscillation of the atom can be applied for
study of solids. Sunple assumptions were considered in
order to establish relations for compressibility coefficient,
pressure applied to solid and Gruneisen constant. The
model was well applied to aluminum as solid in order to
find out the physical parameters. The model has a
sinplicity for calculation and can be used for all metals as
solids.
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