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An SQP Method for Solving the Nonlinear Minimax Problem

Zhibin Zhu
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Abstract: Tn this study, a new algorithm is presented to solve the following nonlinear minimax problem

minimize M () =1r<ria<1}:1 fJ(M),x cR ™,

This algorithm belongs to the sequential quadratic programming (SQP) type methods. At each iteration, the
search direction d 1s obtained by solving one quadratic programming according to the K-T condition of the
minimax problem. When d 1s equal to zero, then the corresponding iteration point x 15 a K-T point, otherwise,
d 15 a descent direction. Unlike the SQP type algorithms for nonlinear programming, the direction d doesn't
induce any Maratos like effect. A particular linear search with above-mentioned direction assure global
convergence as well as superlinear convergence. Numerical results to date suggest the resulting algorithm is
effective.
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INTRODUCTION

The minimax optimization problem can be stated as
minimize M (#)= max f; (#),#neR ",

1sjsm ()

where f,(j=1~m) are real-valued functions defined on R™.
The objective function Mgx) has discontinuous first
partial derivatives at pomts where two or more of the
functions f(x) are equal to M;even if £(%)(j=1~m) have
continuous first partial derivatives. Thus we can not use
directly the
minimize M _ (x)'].

well known gradient methods to
For excellent works on this topic and
its applications was reported™.
The minimax problem (1) is equivalent to the
following nenlinear programming:
min t

s.t. fJ(%)—tsO,jEI={1,....,m}. (2)

According to (2), the K-T condition of (1) is obtained as
follows:
0) [ Vi(»)
+
1 e’
u (€ () -M () -0,
u > O,fj(s«c)—Mf(n)s 0,j=1~m,

u=0,

3)

where:

eT=(1,....,1) eR™,F(u) =f (x),
£(#)......L () ER™,

of  af,

VE(u)=| : :
of  af.
dn,  In,

=(Vf,,....Vf JeR™™

The active set 1s denoted as follows:

102) = (I £G0=Mx), jel}. @

A lot of approaches have been proposed for solving
the problem (1), most of them transform the minimax
problem into the nonlinear programming problem (2) and
solves it by well-established methods. Vardi® uses some
slack varnables to handle mequality constramnts of (2),
then solves only equality-constrained minimization
problem taking advantage of trust-region strategy.

Charalambous and Conn™ propose an algorithm to

solve the minimax problem directly, in which two distinct
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search directions are necessary to compute: The first, the
horizontal direction, attempts to reduce Mx) whilst, at
the same time, keeping those functions whose values are
close to M{x), approximately equal. The second, the
vertical direction, amounts to attempting to decrease the
error to within which those functions are equal to My(x)
by means of linearization. Then, under assumptions that
the minimax solution is unique, that £(j=1~m) are convex
and twice differentiable and that the strict
complementarity satisfied,  global
convergence 1s proven. However, computational effort 1s

condition  1s

large and the rate of convergence 1s at most linear.

Due to its superlinear convergence rate, the
sequential quadratic programming (SQP) methods are
considered among the most effective methods for solving
nonlinear programming problems. A new algorithm 1s
proposed by Zhou and Tits!"” with taking advantage of
the idea of SQP algorithms to solve the problem (1). There,
m order to avoid the Maratos effect, it takes a
nonmonotone line search along a direction d which 1s
obtained by solving a QP subproblem. However, it is
observed that, with such a line search and the direction d,
1t may not ensure that the full step of one 1s accepted. For
this reasor, it 1s necessary to perform a nonmonotone arc

search along ;.42 based on a correction y which is
obtained by solving another QP subproblem. Moreover,
1ts convergence rate 1s two-step supperlinear.

A SQP type algorithm is proposed by Xue!! to solve
the problem (1). However, in order to obtain the one-step
superlinear convergence rate, there it is necessary to make
two additional assumptions which are too strong: Firstly,
the entire sequence generated by the algorithm converges
to the K-T point of (1); Secondly, the stepsize is always
equal to one after finite iterations.

In this paper, a new SQP algorithm 1s proposed to
solve the problem (1) directly according to the K-T
condition (3). This algorithm overcomes the shortcomings
just pointed out. Tt performs a monotone line search along
a direction which s obtained by solving only one QP
subproblem. With such a particular line search, we point
out, because of the intrinsic properties of the minimax
problem (1) in contrast with the nonlinear programming,
unlike"” there does not exist any Maratos-like effect and
the search direction 1s not necessary to revise amy
Global convergence is obtained without the
above-mentioned strong assumptions in™. Under some
suitable conditions which are weaker than those in!'
one-step superlinear convergence rate 1s provei.

more.

Description of algorithm: The following algorithm is proposed for solving problem (1).

Algorithm A

Step 1-Initialization and date: %" ¢ R", B, € R®® a symmetric positive definite matrix.

1
ecf0,2),k=0;
( 2)

Step 2-Computation of the main search direction d*: Compute (2°,d*) by solving the following quadratic problem at %™

min z+lgr B d
2 (5)
s.t. fj(%k) -M(#9) +VE, (#5Tdez,jel.
Let A" be the corresponding multipliers vector. If (2", d)= (0, 0), STOP;
Step 3-The line search: Compute t, the first number t of the sequence {1,'4,%,.....} satisfying
M, (o +td®) < M, () + ot (6)

Step 4-Updates: Compute a new symmetric definite positive matrix B,,,. Like Vardi® we use Powell's modification'

12]

B, = BEGS(B,Au*,v ), 7

where:

A =w -y K= Y AS(TE (k1) -VE (49)),7 =By F+(1-0)B A, ()
j=1
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—

Iy 9T AU 0.2(Au") B Ak,
0=y  0.8(AxM)TB,Au

otherwise
l(AMk)TBkAxk—(y BT Ay

Let ™' = "+ td"k = k+1. Go back to step 2.

Global convergence of algorithm: Tt is first shown that Algorithm A is well defined. The following general assumptions
are true throughout the paper.

Al: £(j=1-m) are continucusly differentiable.

VE(w) : :
A2: For all xR, the vectors ! ) . JEIXD ] are linearly independent.
A3: There exist two constants O<a<b, such that a|d|*<d™B,d<b|d|? for all k, for all deR".
Lemma 1: The solution (z°,d*) of the quadratic subpreblem (5) is unique and z+4(d*)" B,d*<0.
Proof: Since (0,0) 1s a feasible point of (5) and B, 1s positive definite, it is clear that the claim holds.
Lemma 2: Let (25,d%) be the solution of the QP (5) at %", the following are equivalent:
i) (@ dH=(0.0)
(i) Z=0,
(iii) d=0;
(iv) ZH%A(d9" B,d=0.
Proof: ()=(ii). Itis clear, (il)=(iii) Since =0, then =0 by Lemma 1; (iii)=(iv). Since I(2¢"}={j | £(3"=M{%").j€I} is nonempty,
let jeTI(%"), (5) implies that Z>0. So, Z4+44(d) B,d"=0, thereby, 24+'4(d)" B.d=0; (iv)=(i). Since Z+(d9" B,d=0, it is clear
that{0,0) is unique solution of (5) by Lemma 1, that is to say (2",d")=(0,0).
Lemma 3: If (25,d5)=(0,0), then »¢* is a K-T point of (1). If 3" is not a K-T peint of (1), then #*<0, d*#0 and

VE( d < 2<0,je(x).

[Bkdk] S g (ij_(lxk)] .

1) o
RSCE () - M (89) +VF, (T d5-79) =0,
Az 0,8, (0 =M () + VE (9" d -7 <0, jel. (9)

Proof: From (5), we have

T (£,d9)=(0,0), then

(95 4]
1=1 B
ASCE (5 - M () =0 (10)
;sz 0,£, (4 ~M (a9 < 0,jel.
It shows that %* is a K-T point.

If % is not a K-T point, then (2°,d")#(0,0). So,
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ZHa(d)" B d <0, Z<-t(d9 Bd <0,
and
VE( d < 2<0,el(x").
The claim holds.
Lemma 4: Algorithm A is well defined.
Proof: We only need to show that the line search yields a step t,=('4) for some fimte 1=i(k). Denote
a2 G HdD)-M()-atz =1 ()-M V() -tz ro(t), j€T.
For jel'l (%), since £(x)<, M{x") continuity of f implies that there exists some a >0, such that a,<0.
For jcI (35, from (5), the fact <1 implies that there exists some a >0, such that a,<0.
Define t =min {a , jEI} . It is clear that the line search condition (6) is satisfied for all t in [0-1] .
In the sequel, we'll prove that any accumulation point %" of {3"} generated by the algorithm must be a K-T point of
the problem (1). Since there are only finitely many choices for sets I{x")<l, we might as well assume that there exists a
subsequence K, such that
w5-u', BB, dd', 22, A4, LEI0M =1 keK, (11
where L. 13 a constant set.

Lemma 5: If x*>%", B-B., keK, then &0, keK.

Proof: First of all, in view of (6) and Lemma 3, it is evident that {M{%")} is monctonous decreasing. Hence, considering
to {1}, ®¥*and continuity of M%) it holds that

M)~ Mn"), koo (12)
Suppose by contradiction that d"#0, then z'<0. Since
£ )M )HVE( d < 2", €L,

LetkeK, koo, then
£ M HVE( ) d <z, jel.
The corresponding QP problem (5) at »” is
min z +%d ™B,d

. (13)
s.t. £ -M (™ +VE () dez,jel.

It is clear that (z', d") is a feasible solution of (13) and B. is positive definite. So, we might as well @) let be the
unique selution of (13). Since

zk+%(dk)T Bkdk=min{z+%dT Bkd\fi(nk)—Mf(nk)+ij(%k)Tdsz,j€I}

as keK, k-+ we obtain that
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z*+%(d*)T B*d*=min{z+%dT B*d|fj(s«c*)+ij(n*)Tdsz,jeI}

d™B d.

=5+

1
2
So, it can be seen that #=z *<0,d=d "+0 thereby,

VE(Vd <2'<0, jel(x),
and for keK, k large enough, we have

kg

z z*<0,ij(%k)Tdks%,VfJ(x*)Td*<0,j€1(%*) (14)

| —

From (14), similar to Lemma 4, we can conclude that the step-size t, obtained by the linear search is bounded away from
zero on K, 1.e.,
tezte = mfft, keK}, keK

So, from (6), (12), we get

0 =lim(M (1) -M .(»9) limet,z *< loct*z *<0
ke K keK 2

Tt is contradiction, which shows that d*-0, keK.

According to Lemma 3, Lemma 5 and the fact that (z', d) is the solution of (13) , we can get the following
convergent theorem.

Theorem 1: The algorithm A either stops at the K-Tpoint {%"} of (1) in finite iteration, or generates an infinite sequence
{%"} whose all accumulation points are K-T point of (1).

Rate of convergence: Now we strengthen the regularity assumptions on the functions involved. Assumption Al are
replaced by:

AT': The functions £(j=1~m) are two times continuously differentiable.

We also make the following additional assumptions:
A4: The sequence generated by the algorithm possesses an accumulation point a (in view of Theorem 1, a K-T point).
AS: B-B., koeo

A6: The matrix 3 uj*vzfj =Y uj*vzfj (#")is nonsingular and it holds that
=1 jeleen)

T v *i72 #* * *
d [Z u "V (u )] d>0v0zdeY(x*,u"),

i=1
where, 1" = (uj*aj el) is the corresponding K-T multipliers of 3" and

Y(a"u") -{deR " |VE (47 d -0, je 1. u">0)
A: The strict complementary slackness are satisfied at the K-T point pair (3", u’), ie, 1w >0,jel(»")
Theorem 2: The Kuhn-Tucker point %" is isolated.

Proof: This proof is similar to that oft™ but with some technical differences since assumption A2 about the linear
mdependence constraint qualification is different with that of the nonlinear programming and the details are omitted.
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Lemma 6: The entire sequence {x%"} converges to the K-T point %', i.e., x-%", k-,

Proof: From (5) and (6), we have that
M (5 1)« Mo(95) + ot z K< M (95 —%aoctk\ld X2

So, from (12), it holds that

lim st %4 =1im t |d**>=0

oo koo
Thereby, according to assumptions A6, A7, Theorem 2 and proposition by Painer and Tits!"" we have x*-x", K-
Lemma 7: For K-, we have

df=0,A50", T=T(%"), 2=0 (|d)

where:

Ly = {]E)-M")+VEST d2=0} (18)
Proof: According to Lemma 5 and »%"%’, B,~B., K-, it helds that
d"- 0,2 -0,k - .
Since (%", u") is a K-T point pair of (1), we have
() {770) we
1 -eT
uj*(f; (x™-M(x") =0,uj*z 0,jel
Denote

VF

N =

#*

g‘f)] D, = diag((£ (x") M £(x"))2. jel

From A2, it 1s clear that
(NIN_+D)is nonsingular,

and
0
*=o(N'N +D )" NT
u ( * *+ *) *( 1] (19)
At the same time, denote
Vi . .
N, - _gﬁk)],Dk=d1ag((fi(xk)-Mf(xk))Z,JeI
Rk=NkT Nk+Dk+diag((fj(Mk)—Mf(nk)) (ij(s«ck)Tdk—zk),_jEI).
From (9), we have
k
[ BH ] +[Vf(%’rk)] Ak:o’
,eT —-e
(D, = diag (£, (x") - M (xN(VE (A -2 ), jeD)A -0,
thereby,
k
R Ak= N/ Bkld ] (20)
Since R ~N *T N,.+D_,
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it is obvious , for k large enough, that
R, is nonsingular and Rk*U(N;r N_+D )"
So

i

_ T
A= RN

B,d*
1

- (NN, D)y NT [ 0] “u,

In addition, according to d*~0, z*~0 and (18), it is clear that L,cI(x").

On the contrary, for jel(x"), assumption A7 implies that u, 0. So, A%>0 for k large enough, thereby, it holds that
LM +VE() -2 =0,1 e, JEL,.

So, L,=T(%").

Thereby, from I(x")cl.=L, and A2, it is clear that Z=C(|dY).
In order to obtain superlinear convergence, we make the following assumption:

A8: V{(x) (j=1~m) are Lipschitz continuous on some ball B(x', €)of radius €>0 about %, 1.e., there exist some v;>0, such
that

IV £V GOl <yl €T, YxyeBee, €)
Lemma 8: Under assumptions Al-A8, |x"+d"'|=o(|x""|) if and only if the following condition holds:

A9: The sequence of matrices {B,}satisfies

By— Y 19rix)|a| = O(HdkH)c> [Bk— Zm: ljkVij(xk)} dk| = O(HdkH)c> [Bk— zm: uj*szj(x*)} ak| = O(HdkH)
1

jere") =1

Proof: This proof is similar to the proof of Theorem by Xue!''.

Lemma 9: If assumptions Al-A9 are true, thery, for k large enough, t,=1.
Proof: Firstly, we prove, for k large enough, that

fj(xk+dk) M +a 25,7 €l. 20
Let

s;=H(¢ " +d")-M (%)-00z =1, (3")-M (- VE (o) ' d ez o | ), jeT.
Denote
L((o+d =47 | £ (ae"+d") = M (s}
it is obvious, for k large enough, that I{x*+d")cI..
For jel'l(x"), the facts £(x)<M{x") and d"~0, 2=0(|d"|) imply that s;<0, ( for k large enough).
For jeli. (s*+d"), from (5), the facts <1, d*-0, z=0(|d"|) imply that s;<0,  for k large enough).

From above analysis, in order to prove that (21) are true, we only prove, for k large enough, that

L +d") = Mo +d") < Mo oz, v g1 +d").
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ie.

Y feredn - Y
jeT(at+d ¥y

M.+ dS s Y (M razh),

JEI(J{k+dk) JEI(Mk+dk)

While, it is always proven that

y f (i +d®) < y

(M (") +az ),
JEI*\I(Mk +d

_]EI'\I(?‘Ek-*dk)
Thereby, it only needs to prove that

Y OofeEed) < ¥ M9 razh),

jeTenn jeliey
ie.

Y Aj‘fj(nk+dk)s Y Af(Mf(%k)mzk),
1el(n™) jeln™

From (9) and 1,=1(%"), we have

MOAVEWD --BAY Y ARl
Jel(u™ o 1el(n™ ! (22)
Denote

se Y ATOEdH - Y MM - Y Azt
jel(e™ jel(e™ JeIint)

Y AOH M5 a2 @y [ ¥ kﬁ‘Vij(nk)]‘“‘
jella™

eI
o X KECE 06 -M (25 + TE (657 a5 +o(1dH)
jelin

=(1-0) 3 AUE () M) +(1-0) Y

Afvg(uk)Tdk
jelqun) jeTn)
sy X ATVZt;(nkJ]dkmUdkF)
eI

from (22) and AR, we get

“(1-a) X 2z, M)+ () ¥ AVE G

JEI(H™ JEI(x")
+%(dk)T y Afvzfj(nk)—Bk]dk+o(|dk|2)
jelin™)
1 1
= Y MG M) (o) 3 ATE ) M6 V(6T
? Jel(n™ 2 JeI(e™
(@ ¥ Aj‘Vijmk)—Bk]dk+o<|dk|2)
jETCem)
<(E-w) ¥ Aroridd)

Jell(n*)
a(a *5) Id 5% +o1d"?).

b3 | =
)

<

Since as(0,4), 1t holds that s<0. So, (21) are true, for k large enough. Thereby, we have, for k large enough, that

MO < M)+
1e., t.=1 . The claim holds.
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From Lemma 8 and Lemma 9, we can get the following theorem:

Jerl

Theorem 3: Under all above-mentioned assumptions, the algorithm is superlinearly convergent, i.e., | %™ '-x"|=of|x*»").

Numerical experiments: We carry out numerical experiments based on the algorithm. The results show that the algorithm
is effective.

During the numerical expeniments ¢=0.25 and B;=1, the n»n umt matrix. B, 1s updated by the BFGS formula (8). In
following Tables, IP 1s the mitial point, NIT 1s the number of iterations of algorithm, AS 1s the approximate solution

Problem 1: ('), Minimize the maximum of the following three functions:
f(x) :M‘ﬁ%;,
fz(%) :(2 7%1)2 +(2 7%2)2
f(u)=2exp (u, -u,)*

Problem 2: (""). Minimize the maximum of the following six functions:

fl(n)zxf+%§+ngfl,

£(n) =w; + 45+ (n, - 207,
Llu)=wn, +u,+n, -1,

Lin)=u +u,-u,+1,

£(n) :211? +6%§+2(5%3 -u, + 1),
f,(n) :%f*9%3.

Problem 3: Rosen-Suzulki Problem (®!'). Minimize the maximum of the following functions:

2,2 z, 2
f(u)=ul+uy+2u;+u, —5u, —5u, - 21u, +7x,,
2 2 2 2
Lln) =0 (n)+ LO{n] +my 05 +uy 8 —uy + 8, - %, —8),
2 2 2 2
Elw) =0 (n)+ 1O{n] +2u; +u3+ 20, -u, —n, - 10),

f,(s)=f{n)+1 0(%? +s«c§ +%§ +2u, -n, -, -5).
Problem 4: Wong problem 1 (*'1). Minimize the maximum of the following functicns:

£ () =(s, - 1002 +5(, - 1202 + 003 +3(m, -1 1 +102,
+7M§+%§—4%63«c7+10n6—8n7,

£(n) =L ()~ 10(2%?+3%3+4%3+M3+5M5* 127),
Llu)=f(n)+ 10(10%§+7%1 +3u, tuw, ~u, -282),
f(u)=f,(n)+ 10(M§+6M2+23M1 -8u,-196),

) =f(n)+ 10(4%?+M§+2M§—3%1M2+5%6—1 ln).

Problem 5: Wong problem 2 ('), Minimize the maximum of the following functions:

fl(%)=%f+ni+(%3—10)2+4(%4—5)2+(%5—3)2+2(M6—1)2+5M§
Ty - L1 1200, - 10V () - TP+ w4, - 14w - 160, +45,
£,(#)=F, (%) + 10 (3, -7 +4(x,-3)? +2u5 - Tu, -120),
£,() =f, () + 10 (5 + (s, -6 +8x,-2%,-40),
£,(#) =, () + 10(0.5(n, -8 +2(n, -4 +3ul -u_-30),
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f.(n)=f(u)+ 10(%f+2(%2 “2)-2m m, + 1dn, -64,),
()= () +10(dn, +5%,-3u, +9u,-105),
E(u)=f(n)+10010n, -8ny - 17u, +2u,),

£()=£ () + 10(-3m, +6u, +12(n,-8) -Tu, ),
L(u)=f(n)+100-8u +2u,+5m,-2un , -12).

In this paper, detailed information about solutions to

above mentioned problems is listed as follows:

Table 1: The information of the solution to Problem 1

P NIT AS M) 1)
1 1.1390376415

12 1.9522244802 1,2
-0.1 0.8995599528
Table 2: The information of the solution to Problem 2
IP NIT AS M) I(x)
1 0.3282597013
1 15 0.0000352743 3.5997197635 2.5
1 0.1313200675
Table 3: The information of the solution to Problem 3
IP NIT AS Mx) Ix)
0 0.0007775312
0 1.0002280777

22 -43.994 5737628 1,2,4
0 2.0001527822
0 -0.9976044295
Table 4: The information of the solution to Problem 4
P NIT A8 M) 1)
(1,2,0, (2.3303430966,1.9513781547,

-0.4774965234,

4,0, 35 4.3657068909,-0.6245328378, 680.6330291228 1,2,5
1,1) 1.0381072527,1.5942513585)

Table 5: The information of the solution to Problem 5

IP NIT _AS ML) I(x)
(23,5, (21719581349, 2.3635995920, 12,3,

8.7739159253,
51,2, 5.0959902926, 09905624265,

1.4305925107,

54 24311298294 5.6,
7.3,6, 1.3217510025, 9.8287025385, 7.9
10) 8.2798843768, 8.3760722933)
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