

Journal of Applied Sciences

ISSN 1812-5654

A New Pregnane-type Alkaloid from Sarcococca saligna

Ismat Naeem, Tahira Moeen Khan and Raheela Anwar Department of Chemistry, Lahore College for Women University, Jail Road, Lahore, Pakistan

Abstract: A new alkaloid, named sracosalgmine [(20S)-20-(dimethylamino)-16β, 3β-dimethoxy-pregn-5-ene] was isolated from *sarcococca saligna* and its structure was established on the basis of spectroscopic techniques including ¹H, ¹³C-NMR and inverse 2D-NMR techniques (DEPT, HMQC and HMBC) UV, MS etc.

Key words: Sarcococca saligna, Buxaceae, steroidal alkaloids, sracosalgmine

INTRODUCTION

Sarcococca saligna Muel. (syn. Sarcococca pruniformis Lindl.) is an evergreen shrub abundantly found in the northwest region of Pakistan^[1]. The leaves of this plant are commonly used locally for the treatment of fever and rheumatism^[2,3]. A number of steroidal alkaloids have been reported from the leaves and from the aerial parts of this plant some of them showing cholin estrase inhibition^[2-18]. The steroidal alkaloids isolated from this plant also show presence of antispasmodic, antidiarrheal, antisecretory and calcium antagonist properties^[19,20]. Some terpenoids have also been isolated from this plant^[21]. A number of compounds have been identified by GC-MS technique from aerial parts of Sarcococca saligna[22]. The present study describes the isolation of one new pregnane-type alkaloid, sracosalgmine and its structure determination on the basis of spectroscopic techniques.

MATERIALS AND METHODS

General experimental procedure: IR spectra: JASCO 302-A spectrophotometer; UV spectra: Hitachi U3200 spectrophotometer; El, FD and HREI MS: JMS 11x100 (with data system) and JMS-DA 500 mass spectrometers; 1 H and 13 C NMR spectra: Bruker NMR spectrometer at 500 and 125 MHz, respectively, at room temperature; Chemical shift values (δ) in ppm, coupling constants (J) in Hz. Standard pulse sequences were used for COSY, HOHAHA, DEPT, HMQC AND HMBC experiments.

Chromatographic conditions: TLC (precoated silica G-25 plates UV 254); CC: Silica gel, 230-400 mesh. Detection of the spots: 254 and 336 nm by UV and Dragendorff's spray reagent.

Plant material: Aerial parts of *Sarcococca saligna* Muel. Forty grams were collected from Kuldana Murree Hills, Pakistan, in October 2003.

Extraction and isolation: The ethanolic extract of the air-dried aerial plants (17 kg) was evaporated to a gum (1.8 kg) and extracted with pet ether to remove non-polar constituents. Total alkaloids (810 g) were obtained by extraction into 10% acetic acid. Partial separation of the alkaloids was achieved by extraction with CHCl₃ at different pH values (3.5, 8.5). The fraction obtained at pH 3.5 (74 g) was subjected to CC on silica gel and eluted with CHCl₃ and then with CHCl₃ - MeOH to obtain several fractions. A fraction obtained by CC elution with CHCl₃: MeOH (43:7) yielded a solid which was further purified by preparative TLC using *n*-hexane: Ethylacetate: Diethyamine (8.5:1.3:0.2) as eluent to afford a new compound named Sracosalgmine (5.0 mg).

Sracosalgmine: White solid m.p. 212-217° C; $[\alpha]_D^{27}$ +77 (c 0.44, CHCl₃); UV λ max (MeOH) inconclusive; IR ν _{max} KBr: 3550, 2950, 1665 (cm⁻¹); MS m/z (%) 389 (M⁺, 3), 375 (4), 360 (2.7) 149 (1.5), 105 (0.8), 84 (1.8), 72 (100%), 73 (7.0), 58 (7.8); ¹H-NMR (CDCl₃, 500 MHz) δ : 0.73 (3H, s, CH₃–18), 0.98 (3H, s, CH₃–19), 1.33 (3H, d, J = 6.4 Hz, CH₃–21), 2.17 / 2.38 (2H, m, H – 7), 2.85 (3H, d, J = 2.4 Hz, NCH₃) 2.65 (3H, d, J = 2.4 Hz, NCH₃) 3.04 (1H, m, H-3), 3.19 (1H, q, J = 6.4 Hz, H-20), 5.34 (1 H, b.s, H-6) 2.98 (1H, m, H-16), 3.11 (3H, b.s, OCH₃), 3.34 (3H, s, OCH₃) (Table 1).

RESULTS AND DISCUSSION

An ethanolic extract of aerial parts of Sarcococca saligna after evaporation was triturated

Table 1: 13C NMR data of Sracosa	lgmine :	(in CDCl₃)
----------------------------------	----------	------------

	Chemical	,		Chemical	
Carbon	shift (δ)	Multiplicity	Carbon	shift (δ)	Multiplicity
1	37.2	CH_2	13	43.2	C
2	28.0	$^{ m CH}$	14	56.4	$^{ m CH}$
3	80.4	$^{ m CH}$	15	39.5	CH_2
4	38.7	CH_2	16	65.3	$^{ m CH}$
5	140.9	C	17	55.3	$^{ m CH}$
6	121.3	$^{ m CH}$	18	12.2	CH_3
7	31.8	CH_2	19	19.3	CH_3
8	31.7	$^{ m CH}$	20	52.5	$^{ m CH}$
9	49.9	$^{ m CH}$	21	13.0	CH_3
10	36.1	C	22	36.0	$N CH_3$
11	21.0	CH_2	23	43.3	N CH₃
12	30.8	CH_2	24	55.6	OCH_3
			25	54.8	OCH_3

with *n*-hexane to remove non-poplar compounds. The insoluble residue was then partitioned between chloroform and aqueous acid solution at various pH values. The chloroform fraction was subjected to repeated column chromatography to afford compound 1 and two known alkaloids *Saracosanaene* 2 and *Saracodine* 3 identified on the basis of reported spectral data^[12].

Compound 1 was isolated as a white solid. The HREI mass spectrum of compound 1 revealed a molecular ion peak. at m/z 389 suggesting the molecular formula of the compound 1 as $C_{25}H_{43}NO_2$. Hence the compound 1 possessed five degrees of unsaturation. Four of these were accounted for a tetracyclic pregnane type structure and one for a double bond. The compound 1 showed a base peak at m/z 72.0835(C_4H_9N), which is characteristic of 20α - dimethyl amino group^[23]. The IR spectrum (CHCl₃) showed absorptions at 3350 (NH) and 1664 cm⁻¹ characteristic of amino and methoxy functions, respectively.

The ¹H NMR spectrum of compound 1 displayed two three-proton singlets at δ 3.34 and 3.11 indicating the presence of two methoxy groups. Two three-proton singlets at δ 0.73 and 0.98 were assigned to two angular methyl groups. A doublet at δ 1.33 ($J = 6.4 \,\mathrm{Hz}$) was due to C-21 methyl group showing COSY 45° interaction with H-20 proton (δ 3.19). While two doublets ($J = 2.4 \,\mathrm{Hz}$) at δ 2.65 and 2.85 were due to dimethylamino group at C-20, which was supported by the presence of a base peak m/z 72 in the mass spectrum. In the ¹H NMR spectrum H-20 and H-17 methine protons also resonated comparatively downfield at δ 3.19 and 1.50, respectively. The de-shielding and splitting of N-methyl signals was atributed to the vicinity of an OCH₃ group at C-16, which was supported by NOESY experiment indicating long range coupling between methoxy function at C-16 and N-methyls resonating at δ 2.85 and 2.65 (J = 2.4 Hz). The H-6 olefinic proton (δ 5.34, br.s) showed interactions with

Fig. 1: Structure of compound 1 (Sracosalgmine)

H–7 protons resonating at δ 2.01. The H-3 proton resonated at δ 3.06 and showed COSY interactions with H-4 methylene protons resonating as multiplets at δ 2.17 and 2.38. The assignment of chemical shifts was further confirmed by HMQC, HMBC and DEPT spectroscopic techniques. On the basis of above evidences, compound 1 was inferred to be a new alkaloid isolated from *Sarcococca saligna* and named sracosalgmine [(20S)-20-(dimethylamino)-16 β , 3 β -dimethoxy-pregn-5-ene].

ACKNOWLEDGMENTS

This study was supported by the H.E.J. Research Institute of Chemistry, Karachi University, Karachi, Pakistan. The authors thank Prof. Atta-ur-Rahman and Prof. Iqbal Choudhry for spectroscopic techniques.

REFERENCES

- 1. Nasir E. and S.I. Ali, 1972. The Flora of West Pakistan, Fakhri Printing Press, Karachi, pp. 457.
- Chatterjee, A., B. Das, C.P. Dutta and K.S. Mukherjee, 1965. Steroidal alkaloids of Saracococa pruniformis Lindle. Tetrahedron Lett., 1: 67.
- Kiamuddin, M., Hye and K.M.A. Humayun, 1970. Pharmacalogical activity of an alkaloid from Sarcococca saligna. Pak. J. Sci. Ind. Res., 13: 59.
- Kohli, J.M., A. Zaman and A.R. Kidwai, 1964. Separation and characterisation of the alkaloids of Sarcococca pruniformis. Tet. Lett., 45: 3309.

- 5. Chatterjee, A., K.S. Mukherjee and C.P. Dutta, 1996. Steroidal alkaloids. J. Ind. Chem. Soc., 43: 285.
- Kohli, J.M., A. Zaman and A.R. Kidwai, 1971.
 Alkaloids C of Sarcococca pruniformis.
 Phytochemistry, 10: 442.
- Miana, G.A. and M. Kiamuddin, 1969. Alkaloids of Sarcococca saligna Muel: Salignine. Pak. J. Sci. Ind. Res., 12: 161.
- Zhong-Mei Zou, Li. Li-jun Mo Yang, Shi-Shan Yu, Pu-Zhu Cong and De-Quan Yu, 1997. Steroidal alkaloids from roots of Sarcococca vagans. Phytochemistry, 46: 1091.
- Naeem, I., N. Khan, M.I. Chaudhry and Atta-ur-Rahman, 1996. Alkaloids of Sarcococca saligna. Phytochemistry, 43: 903.
- Atta-ur-Rahman, S. Anjum, A. Farooq, M.R. Khan and M. Choudhry, 1997. Two New pregnane-type steroidal alkaloids from *Sarcococca saligna*. Phytochemistry, 46: 771-775.
- Atta-ur-Rahman, S. Anjum, A. Farooq, M.R. Khan, Z. Perveen and M.I. Choudhry, 1998. Antibacterial steroidal alkaloids from *Sarcococca saligna*. J. Natl. Prod., 61: 202-206.
- Kalauni, S.K., M.I. Choudhary, F. Shaheen, M.D. Manandhar, Atta-ur-Rahman, M.B. Gewali and A. Khalid, 2001. Steroidal alkaloids from the leaves of Sarcococca coriacea of Nepalese origin. J. Natl. Prod., 64: 842.
- Chopra, I.C. and K. Handa, 1952. Chemical examination of *Sarcococca pruniformis* Lindl. Ind. J. Pharmcol., 13: 129.
- Naeem, I., N. Khan, M.I. Choudhry and Atta-ur-Rahman, 1999. Triterpenes from Sarcococca saligna.
 Proc. 10th Natl. Chem. Conf. J. Chemical Soc. Pak., Islamabad, pp. 115.
- Naeem, I. and N. Khan, 2002. Gass chromatography mass spectrometry studies of *Sarcococca saligna*. J. Pak. Chemical Soc., 24: 296.

- Atta-ur-Rahman, M.I. Choudhary, M.R. Khan, S. Anjum, A. Farooq and M.Z. Iqbal, 2000. New steroidal alkaloids from *Sarcococca saligna*. J. Natl. Prod., 63: 1364-8.
- Atta-ur-Rahman, A. Zaheer-ul-Haq, S. Khlaid, M.R. Anjum, M.I. Khan and M.I. Choudhary, 2002.
 Pregnane-type steroidal alkaloids of *Sarcococca saligna*: A new class of cholinesterase inhibitors.
 Helvetica Chimica Acta, 85: 678-688.
- Atta-ur-Rahman, Fareeda Feroz, Ismat Naeem,
 N. Khan, M.R. Khan and M.I. Choudhary, 2004.
 New pegnane-type steroidal slkaloids from Sarcococca saligna and their cholinesterase inhibitory activity. Steroids, 69: 735-741.
- Khalid, A., Zaheer-ul-Haq, N. Ghayur, F. Feroz, Atta-ur-Rahman, A.H. Gilani, M.I. Choudhary, 2004. Cholinesterase inhibitory and spasmolytic potential of steroidal alkaloids. J. Steroid Biochem. Mol. Biol., 92: 477-84.
- Giliani, A.U., M.N. Ghayur, A. Khalid, Zaheer-ul-Haq, M.I. Choudhary and Atta-ur-Rahman, Presence of antispasmodic, antidiarrheal, antisecretory, calcium antagonist and acetylcholinesterase inhibitory steroidal alkaloids in *Sarcococca saligna*. Planta Med., 71: 120-5.
- Ismat, N., N. Khan, M.I. Choudhry and Atta-ur-Rahman, 1999. Proc. 10th Natl. Chem. Conf. J. Chemical Soc. Pak., Islamabad, pp. 115.
- Ismat, N. and N. Khan, 2002. The J. Pak. Chemical Soc., 24: 296.
- 23. Budzikiewicz, H., 1972. Steroids in Biochemical Applications of Mass Spectrometry. Ed., Waller, C.R., Wiley Intl. Sci., New York, pp. 25.