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Abstract: This study focused for estimating the parameters of margmal model for repeated binary responses
through the Generalized Estimating Hquations (GEE) methodology. The GEE were applied to observe how
certain covariates relate to change of the disease status overtime. Tn addition, we focused on the methodology
of GEE using conditional and unconditional residuals along with common correlation structures seen in
longitudinal studies. Here, the GEE has been applied to the data of four repeated binary observations of the
registered patients at BIRDEM. We demonstrate that the estimator of the correlation based on conditional
residuals is nearly efficient when compared with maximum likelihood. This estimator also yields more efficient
estimates of the correlation than the usual GEE estimator that 1s based on unconditional residuals. Finally the

results of applying the data set are presented.
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INTRODUCTION

An increasing popular approach for estimating the
parameters of marginal models for repeated binary
responses 15 the GEE methedology. To assess the fit of a
model, 1t 1s necessary to identify the influential elements.
In particular, Liang” and Prentice™ have developed
moment-based generalized estimating equations which
only require specification of the form of the first two
moments of the vector of binary responses for each
individual. Tnstead the modeling the association between
the pair of binary responses in terms of the marginal
correlations, Lipsitz? | T.iang™ and Carey™ propose using
the marginal odds ratio. Carey” estimate the marginal
odds ratio using conditional residuals and have shown
that their estimating equations for the odds ratio are
highly  efficient when compared to the optimal
second-order joint estimating equations (GEE2) of Liang™.
Carey" also demonstrate that there are very significant
computational savings from using their method rather
than the optimal joint estimating equations. Albert!™
proposed generalized estimating equations for estimating
the parameters of both the mean and partial correlation
structures. They highlighted on the use of this method
for modeling the effect of spatial location and
subject-specified covariates on spatially correlated binary
data. Albert™ describe a methodology for jointly modeling
the number of events and the vector of correlated binary

severity measures. They functionally linked the

regression parameters for the counts and binary means
and discussed GEE approach for parameter estimation.
They also discussed the conditions under which the
proposed joint modeling approach provides marked gains
1n efficiency relative to the common procedure of simply
modeling the counts. In this study, we demonstrate that
the measures of association between pairs of binary
responses, e.g., the parameters can be estimated using
conditional residuals and the usual GEE estimator can also
be found using unconditional residuals.

Generalized estimating equations: The GEE approach
provides consistent estimators of the regression
parameters which needs only the correct specification of
the form of the mean function of the vector of responses
for each individual. Tn longitudinal studies, there is an
implicit ordering of the times of the observations of each
individual. We assume that the ith individual 1s observed
attimest=1,2,......... .T, where, T, need not be the same for
all N individuals. With binary response obtained at time
t, we forma T, x 1 vector

where, the binary random variable Y, = 1 if the ith
individual has response 1 (success) at time t and Y, = 0
otherwise. Each individual has a T=1 covariate vector x,,
measured at time t, which includes both time-stationary
and  time-varying covariates. Let X,=|x,...... .
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represent the T,x] matrix of covariates for the ith
individual. Tn the cluster data setting, Y, is the vector of
bimary responses for the T; umuts within a cluster.
The marginal distribution of Y, 1s Bernoulli with

x,.8)

exp(6, )
l1+exp (8, ) U

Ty :ﬂit(B): E(Yn

=pr(Yo=1pxB )=

where, 8, = In (m, /(1-m;)) and B is a Tx1 vector of
parameters. The m, (B) can be grouped together to form a
vector T; () contamning the marginal probabilities of
success, T, () =E[Y/X, B] = [T oo ,Tig]. Since Y, is
binary, the logistic link function, 8, = x,p, is a natural
choice, although, i principle any link fimetion could be
chosen.

We are interested in making inference about [, as
well as the parameters, say « of the joint distribution of Y,
and Y, (Table 1), where:

T = BOYL Yo XX Poo) = pr(Yi, =1, YV = 1 |x.%B.0)

This jomnt probability can be modeled in terms of the
two marginal probabilities 7w, (P) and m(P), as well as an
association parameter (contained in «). Although the
following methods can be used for any association
parameter (e.g., marginal odds ratio, kappa coefficient,
relative risk), we focus on the marginal correlation
coefficient. From Table 1, the correlation between the
responses at times s and t is

)

P = P (B, a)fcorr( o
_ B - = (Y, ﬂ
[7{15(]77{15) 11(17ﬂ1t):|A

In terms of the correlation coefficient, the joint
probability m;, can be written as

Tt ™M 1t+p15f|:ﬂ15 1 m ) 1t(1_nitﬂ% (2)

In the following, let ¢ denote the parameters of the
correlation between pairs of binary responses. Then, to
estimate (B,x), we suggest modifying the estimating
equations proposed by Carey!” which were originally
developed to estimate the marginal odds ratio. The
estimating equations for P are given by:

u(B)= iﬁffl[\ﬂ-ﬂl(éﬂzo 3

where, D, = dm/8p and V,is the T xT, “working”
covariance matrix of Y, The tth diagonal elements of

>

Table 1: Cross-classification probabilities for times s and t, s#t

Time t
1 2
Time (sec) 1 T Thig=Thisy This
0 =Ty 1-To Tyt T 1-m
Ty 1-my 1.0

Ve, P) is var(Y,) = m, (1-m,), which is specified entirely by
the marginal distributions i.e., by p. The st th off-diagonal
elements of V. 18 cov(Y,T,) = m, -m,T, where T,
specified by Eq. 2.

If ¢ 138 unknown (which 1s typically the case), then it
must be estimated with a set of estimating ecuations
similar to (3). Following Carey™™ for a pair of times s<t we
form the conditional residuals {Y, - B(Y,)| Y..= v, X}, that
15, deviations about conditional expectations. These
random variables can than be grouped together to form
the [T(T;-12]x1 vector of conditional residuals, (U, - 1),
where:

18

= U Ujpoennns LU (‘1'1-1)'1'1}: L1 Tl LA TTE N TE nl(Tl-l)Tl}’:i
Wlth Ulst Yit and MNig = E(Yit|Yis = Yie X): for s<t.
From Table 1,
qst(JB>a) :E(th YSZYivJB:a)
— Ty T,
= 1w ) e
yw|:ﬁ15 ( ym)|: 1_Eis :| (4)

In order to form another set of moment estimating
equations similar to (3), we need to take appropriate linear
combinations of [U, - 1,]. Thus a second set of (moment)
estimating equations for & is given by:

u,(@)=2& W2 uen (B.a)|=0 5)

where, C, = &1, / da and W, = diag{var(Y,|Y, = y,)}
with var(Y,| Y, = v..) = N.(1-M;.). Using these estimating
equations, the estunate ( B.6) is the solution to (3) and
(5) and can be obtained using a Gauss-Seidel algorithm.
Using Taylor series expansions similar to Prentice”
assuming that regression for Y, and the model for the
assoclation has been correctly specified, (ﬁ:d) 18
consistent for (B,a). In addition, N%{(ﬁ - ﬁ),(d —Ot)}
has an asymptotic distribution which is multivariate
normal with mean vecter 0. In contrast to (5), Prentice!
forms the unconditional residuals {Y,Y,- B(Y,Y,|X)}, that
is, the deviations about unconditional expectations.
These random variables can then be grouped together to
foml [T(T-1)2]=1 vector, (p;-v,), where

= AP P Pyt v
w1th P,=(Y . Yyand v, =
2]

= AV Vi g Nioms s
E(Y,, Y,|X), for s<t. Then,
proposes the following set of (moment)
estimating equations for «,

Prentice!
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Ay r e 3 st | —
u(¢)-2 AN, v (Ba)| =0 ©

where, A; = &v, / da and P, =cov(P ). Prentice® also
suggests specifying the “working” covariance matrix for
P, as diag{var(P,)}, where var(P ),= m,(1-m,) since
(Y,..Y,) is binary. Assuming that the regression for Y; and
the model for the association has been correctly specified,
the estimating equations proposed by Prentice™ yield
estimate {3, that are consistent for (B,c). In addition,
N/ {(ﬁ - p).(a *05)} has an asymplotic distribution
which 1s multivariate normal with mean vector zero.

Data and variables: In our study we have used the
repeated measures data diabetes mellitus to carry out the
analysis. Here the follow up data on 528 patients
registered at BIRDEM (Bangladesh Institute of Research
and Rehabilitation m Diabetes, Endocrine and Metabolic
disorders) in 1984-94 are used to identify the risk factors
responsible for the transitions from controlled diabetic to
confirmed diabetic state as well as confirm diabetic to
controlled stage of diabetes. We have taken into account
the four consecutive visits of the patients from the
registration. The response variable 1s defined in terms of
the observed glucose level 2 h of 75 g glucose load for
each follow-up visit. The cut-off pomnt for the blood
glucose level is 11.1 m mol L', If the observed response
is less than 11.1, then the patient is defined as non
diabetic (categorized as 0) if the response 1s greater than
or equal to 11.1 then the patient is said to be diabetic
(categorized as 1) according to WHO (1985) criteria. We
mclude six mdependent variables m this study. They are
age, sex, education level, area of residence, family hustory
of father and mother and time. Out of these variables, age
represents the age of the respondents at each visit. Time
represents the length of time of the consecutive visits.
These two variables are continuous variables and used
directly m the analysis. Sex, education level, area of
residence and family history of father and mother are
categorical variables. Here sex is a dichotomous variable
with two categories 0 and 1, O stands for female and 1
stands for male.

Education level is categorized again 0 and 1. Here, O
represents the patients having below secondary
education and 1 represents the patients having the
secondary education or more. Area has two categories, 0
represents rural and 1 represents urban or semi-urban.
FHFM represents the genetic lustory of the parents.
This variable has two categories, 0 representing the
non-diabetic father and mother and 1 representing anyone
or father and mother diabetic.

RESULTS AND DISCUSSION

The logistic regression model is considered as one
of the most inportant and widely applicable techmiques n
analyzing repeated outcome variables. To assess the fit of
amodel, it is necessary to identify the influential elements.
In the logistic regression analysis for repeated binary
measures we adjust for setting and the covariates. We
assumed independence, exchangeable and autoregressive
working correlation structures and we obtamed standard
eITOrs.

These analyses were carried out using specially
written S-plus program and results shown in Table 2 and
3. We found that for the repeated binary responses, the
variables education level, area, family history of father and
mother (1.e., the disease status of the parents) and time are
signficant under mdependence, exchangeable and
autoregressive correlation assumptions and thus have
comsiderable effect in changing the disease status. We
also found that under all assumptions education level and
area shows negative association and Family History of
Father and Mother (FHFM), time shows positive
association. Among these variable education level, area
and time are significant at 5% level of significance in all
cases (GEE for conditional and unconditional residuals)
(Table 2 and 3). The only variable Family History of Father
and Mother (FHFM) is significant at 10% level of
significance in all cases. The estimated coefficients of the
variables age and sex are found to be msigmficant in all
cases. Hence it may be conclude that the variables age
and sex has no significant effect on the transition from
confirmed diabetes state to controlled diabetes state.

Table 2: FEstimates obtained by GEE assuming the various comrelation strictures within repeated outcomes with associated Wald test statistic for conditional

residuals
MLE Exchangeable Autoregressive

Wald Odds Wald Odds Wald Odds
Parameters Estimates statistic ratio Estimates statistic ratio Estimates statistic ratic
Constant 0.2959 1.0155 1.3443 0.3093 0.9891 1.3625 0.3396 1.0466 1.4044
Age 0.0005 0.1134 1.0005 0.0005 0.0942 1.0005 0.0003 0.0669 1.0003
Sex -0.0872 -0.7822 0.9165 -0.0860 -0.7189 0.9176 -0.075¢ -0.6101 0.9272
Edlv -0.3679 -2.9976 0.6922 -0.3659 -2.7769 0.6936 -0.3579 -2.6161 0.6991
Area -0.3263 -2.7031 0.7216 -0.3289 -2.5381 1.7197 -0.3282 -2.4369 0.7202
FHFM 0.2032 1.7144 1.2253 0.2071 1.7272 1.2301 0.2006 1.7143 1.2221
Time 0.0819 3.5754 1.0855 0.0705 3.0385 1.0729 0.0795 3.2906 1.0828

Likelihood ratio=172.54

Likelihood ratio=179.166

Likelihood ratio=193.368
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Table 3: Estimates obtained by GEE assuming the various correlation structures within repeated outcomes with associated Wald test statistic for unconditional

residuals
MLE Exchangeable Autoregressive

Wald Odds Wald Wald Odds Wald Odds
Parameters Estimates statistic ratio Estimates statistic ratio Estimates Estimates ratio
Constant 0.2959 1.0155 1.3443 0.3123 1.0368 1.3666 0.3453 1.0947 1.4124
Age 0.0005 0.1134 1.0005 0.0004 0.0894 1.0004 0.0003 0.0672 1.0003
Sex -0.0872 -0.7822 0.9165 -0.0796 -0.6895 0.9235 -0.0733 -0.6122 0.9294
Edlv -0.3679 -2.9976 0.6922 -0.3612 -2.8395 0.6968 -0.3457 -2.6132 0.7077
Area -0.3263 -2.7031 0.7216 -0.3285 -2.6267 0.7200 -0.3241 -2.4909 0.7232
FHFM 0.2032 1.7144 1.2253 0.2044 1.6636 1.2267 0.2041 1.6868 1.2265
Time 0.0819 3.5754 1.0855 0.0721 3.2228 1.0748 0.0794 3.4012 1.0826

Likelihood ratio=172.54 Likelihood ratio=180.401

Likelihood ratio=193.84

Table 4. Asymptotic relative efficiency of the GEE Estimator based on conditional and unconditional residuals relative to the MLLE

Unconditional residual

Conditional residual

Variables R E.(Exchangeable) R.E.(Autoregressive) R.E.(Exchangeable) R.E.(Autoregressive)
Age 1.038 1.077 1.0750 1.115
Sex 1.036 1.073 1.0730 1.111
Edlv 1.037 1.076 1.0740 1.115
Area 1.036 1.077 1.0730 1.116
FHFM 1.037 1.072 1.3074 1.111
Time 0.976 1.018 1.0110 1.054

From Table 4, we found the asymptotic efficiency of
the GEE estimator assuming exchangeable and
autoregressive correlation relative to the ML method.
Comparing the results we come to the conclusion that
parameters are estimated more efficiency by the GEE
estimator based on conditional residuals than the

unconditional residuals. Under the assumption of

autoregressive correlation structure the asymptotic
relative efficiency is more than other correlation
structures.

CONCLUSIONS

From the present data set it can be seen that
parameter estimates based on both conditional and
unconditional residuals are more efficient than the ML
estimates. We may conclude that for analyzing the data in
case of chronic disease (i.e., diabetic mellitus), where the
response variable 13 binary and the resulting estimates of
GEE based on conditional residuals can be used more
efficiently under the assumption of autoregressive
correlation than that based on unconditional residuals.
Furthermore, estimating equations based on conditional
residuals could be constructed to estimate the association
of repeated ordinal data. We comecture that these
estimating equations will also be more efficient than the
estimating equations based on unconditional residuals in
the present data set.
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