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Abstract: In the present study, planar oxidation problem is solved using a new developed mtegral techmque.
The technique starts by assuming a profile for oxygen concentration for oxidized and metallic layers,
respectively. The two profiles contain three unknowns such that one of them i1s common between the two
layers, which is the moving (oxidation) front. Apply the first order integral moment in each layer, separately,
yields the main unknown in the assumed profiles, meanwhile, the moving front remains unknown. By achieving
the energy balance at the moving boundary yields a non-linear equation, its solution iteratively, yields the
location of the moving boundary at each time step. The results of the present method were compared with the
analytical solution and gave a good agreement between the two solutions.
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INTRODUCTION

In advanced turbine engines and hypersonic aircraft
it 13 required in their structure to withstand severe
mechanical loading and temperature variations!*?. Metal
matrix composites have the properties of withstanding
different mechanical loads due to their high strength and
relatively high temperatures. Mechanical failure in these
applications is induced by a number of interacting damage
modes, such as fiber cracking and slip banding.

Another type of failure can be occurred to these
applications due to environmental effect such as
oxidation. The oxidation process in metallic alloys is a
complicated chemical process based on a two-way iomnic
diffusion and flow of molecular oxygen through the
porosity of the oxide scale!.

The oxidation process in metallic alloys can be
modeled as phase change problem with moving interface
suggested by Lagouds”™. According to this model, the
moving interface 1s characterized by an oxygen jump at
the interface between the oxidized and metallic parts.
There are very few cases where exact analytical solutions
are available except for those problems where the moving
interfaces vary with the square root of time!®”. Therefore,
many efforts have been emphasized on developing
numerical techmques.

Numerical methods for solving boundary value
problems with moving interfaces can be generally divided
into to groups, variable and fixed grid methods!®. The
major advantage of numerical methods in the first group
is capturing the unknown moving interface explicitly,

where the exact location of the moving interface is
evaluated on a grid at every time level. However, the
usage of variable grid methods to solve multi-dimensional
boundary value problems with moving interface is
algorithmically complicated, while the fixed grid methods
are often used for solving such problems™.

The main objective of the present study was to
ntroduce a sunple and efficient algorithm for solving
one-dimensional two phase heat transfer problem. The
present algorithm starts by assuming a profile for oxygen
concentration for oxidized and metallic layers, in which
three unknowns appear such that one of them 1s common
between the two layers, which is the moving front.

Apply the first order mtegral moment in each layer,
separately, vields the main unknown in the assumed
profiles, meanwhile, the moving front remaims unknown.
By achieving the energy balance at the moving boundary
yields a non-linear equatiorn, its solution iteratively, gives
the location of the moving boundary at each time step.
The results of the present method were compared with the
analytical solution and gave a good agreement between
the two solutions.

PROBLEM DESCRIPTION AND FORMULATION

Suppose that a semi-infinite solid, be the physical
domain. Assume that the free surface of the solid x =0, 1s
exposed to a constant oxygen concentration C, and imtial
oXygen concentration is zero.

Assume that oxygen concentration in oxidized and
metallic layers is denoted by C, and C,, respectively.
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According to Lagouds mathematical model™, the problem
can be formulated as a one dimensional moving boundary
problem. State equations describing this process can be
stated as follows!'*':

ac, (xt) D &, (xt)

0<x<X(t) (1)

at b
A e N @)
at x
Initial conditions:
X(0)=0 (3)
C,(%0)=0 0<x<oo ()
Boundary conditions:
clot)=c, t=0 (5)
C(X(t).t)=C, 0 (6)
C(X(t)t)=(C -[c]} =0 7
b, éc, (;(t),t)_Dl ac, (;{X(t),t) 0 ]dit(t) ®
Where:

D, Oxygen diffusivity for oxidized layer

D, Oxygen diffusivity for metallic layer

.. Critical oxygen concentration for the oxide formation
[C] JTump of oxygen concentration across the interface.

DEVELOPMENT OF THE INTEGRAL METHOD

Assume a quadratic profile for oxidized and metallic layers
of the following forms:

©)

o[l

In these equations, a(t) and b(t) are three unknowns
are to be determmed as a major and principle part of the

required solution. Because the physical plane is a semi
infinite solid L. is a truncated boundary long enough for
accurate solution. The next step 1s to take the first mtegral
moment for oxidized layer from x = 0 to x = x(t) and the
metallic layer from x=x(t)to x=1, ie,

=M ac, (xt), - =g, {(xt) i

= S (11)
"]L de = D i wdx (12)
=iy Ot fam X

Integrate both sides of Eq. 11 and make use of the
oxidized profile given by Eq. 9 and boundary conditions
given by Eq. 5 and 6 leads to:

a(t)=c,-c, (13)

Similarly, integrate both sides of Eq. 12 and make use of
the metallic profile given by Eg. 10 and boundary
conditions given by Eq. 7 and & leads to

b(t) = (t){m} (14)

The three unknowns are now reduced to only one that is
the location of the oxidation front. To find the oxidation
front fellow up the following procedure:

&

(1) From Eq. (9) find pa
e,

(2) From Eq. (10) find T [l

(3) Substitute from step (1) and (2) into Eg. 8 and
simplify, leads to:

dx(t) B, B, (15)
dt Lx(t) x(t)

Its exact solution 1s given by:

x? (t)-z[HﬂX(t)*?m}[“ﬁ (16)

ln[_m(t)w_J +2n,t=0
n;

Where:

M, =B1'B2 (17)

1245



J. Applied Sci., 5

n, = LB, (18)
B -0D [o;[o]} (19)
1 2 [C]
B,=-D [CEI'CDJ (20)
2 1 [C]
RESULTS AND DISCUSSION

The following numerical data are taken from™™'",

D, =0.274 ym’ D, =0.166 pm’ C, =065
C,=10 C, =065 [C]=0.25

Since the exact analytical solution to the planar oxidation
problem is available, a comparison between exact
solution™ and the present method is made as shown
mFig. 1 m which 1t 1s clear that there i1s a good
agreement between the two solutions with very small
error can be neglected.

(7): 1244-1249, 2005

Tt is clear from this Fig. 2 that at the same depth from the
surface oxygen concentration increases by growing up
the time, meanwhile, at the same time and by going inside
the domain oxygen concentration decreases which
describes the physics of the process very well.

On the other side, oxygen concentration i the
metallic layer verses depth from the surface at the same
three different times 1s shown in Fig. 3. Each curve i this
Fig. 3. starts from the same oxygen concentration at the
oxidation front due to the assumed profile for metallic
layer in the beginning of the present method.

Another topic to check the ability of the present
method for tracking the oxidation front and physical
behavior of the process is evaluation of oxygen
concentrations against time at different depths from the
surface, this is clearly shown in Fig. 4. Tt is clear that, at
the same time 1if the depth 1s closer to the surface its
oxygen concentration 1s much higher than that of other
depth away from the surface.

Oxygen concentration in the metallic layer agamst
time at different depths from the location of the
oxidized front 1s studied and the results are shown m
Fig. 5.

150.00

120.00 1

é

Oxidation front

=)
=
=
=]
L

30.00 7

Location of oxidation front
—6—  Analytical solution
—o—  Present method

0.00 T T
0.00 4.00 8.00

Fig. 1: Location of oxidation front

1200 16.00 20.00 24.00
Time (h)

1246



J.

Applied Sci., 5 (7): 1244-1249, 2005

1.00

0.95 4

0.90 4

o o
o0 o0
[=] Lh
A :

Concentration in oxided layer
o=
N
Lh

0.65 1

Concentration in oxided layer at different times

—o— Afterlh
—e— After2h
—%— After12h

0.60
0.00

20.

00 40.00 60.00 80.00 100.00
Depth from the surface {Micron)

Fig. 2: Oxygen concentrations in oxidized layer at different times

0.400 <

0.396 1

0.392 1

0.388 A

Concentration in non-oxided layer

0.384 4

Concentration at different times
—o— After1h

—€—  After2h
—— Afier12h

0.380
20.00

40.00

60.00 80.00 100.00 120.00 140.00
Depth from the surface (Micron)

Fig. 3. Oxygen concentrations in metallic layer

1247



1.00

J. Applied Sci., 5 (7): 1244-1249, 2005

0.95 4

0.90 1

0.85 1

0.80 4

Oxygen concentration in oxided layer

0.75 1

0.70

Concentration at different depths from the surface
—6— Atx =35 Micron
—— Atx =10 Micron

—+— Atx=15 Micron

0.00

200

4.00 6.00 8.00 10.00
Time (h)
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CONCLUSIONS

In the present study, the planar oxidation problem
was studied due to its practical importance in engineering
and mndustry. The problem 1s solved through a new
computational integral method. A profile for each phase
that appears is assumed in a quadratic form and three
unknowns appear throughout the analysis. Once applying
the first order mtegral moment the three unknowns
reduces to only one, that the oxidation front. Achieving
the energy balance thermodynamically at the oxidation
front yields a non-linear equation. Tts solution, iteratively
leads to the position of the oxidation front at each time
step. The present method has the advantage of easy
mathematical manipulation, small errors occur that can be
neglected and low number of iterations to achieve the
required accuracy. Finally, the present method succeeded
to explain the physical behavior of the problem.
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