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A PI Type Fuzzy-neural Network Controller for Induction Motor Drives
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Abstract: For high performance electrical drives, a desirable control performance must be provided even when
the parameters and load of the motor are varying during the motion. This study proposed a Proportional
Integral (PI) type Fuzzy-Neural Network (FINN) controller for a vector controlled mduction motor drives to deal
with these issues. The fuzzy-neural controller based on Sugeno fuzzy model was adopted for this study and
FNN mputs were selected as the speed error and the error mtegral to eliminate steady state errors. Experimental
results showed the speed control performance of the proposed control system was presented for various

operating conditions of the motor.
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INTRODUCTION

High accuracy is not usually imperative for most
electrical drives, however, n high performance drive
applications, a desirable control performance i both
transient and steady states must be provided even when
the parameters and load of the motor are varying during
the motion. Controllers with fixed parameters can not
provide these requirements unless unrealistically high
gains are used. Thus, the conventional constant gain
controllers used in the high performance variable speed
drives become poor when the uncertainties of the plant
exist, such as load disturbance, mechanical parameter
variations and unmedelled dynamics in  practical
applications'”. Therefore, control strategy of high
performance electrical drives must be adaptive and robust.
As a result, interest in developing adaptive coentrol
methods for electrical drives has increased considerably
with in the last two decades and several adaptive control
methods based on linear model have been developed for
induction motor drives™".

In the past decade, fuzzy logic and neural network
control techmiques have been applied to electrical drives
to deal with nonlinearities and uncertainties of the control
system. Fuzzy control has the ability of implementing
expert human knowledge and experience expressed in the
form of linguistic rules. Tt is easy to understand the
structure of the fuzzy controller and to modify the control
laws. Hence, fuzzy logic control introduces a good tool to
deal with the complicated, nonlinear and ill-defined
systems which cannot be described by precise
mathematical models. However, fuzzy controllers have
difficulties in determining suitable fuzzy control laws and

tuning the parameter of the membership fimctions for
system changes®”. The major advantageous features of
neural network are their leaming and generalization
capability and fault tolerance. It can adapt itself to
changing control environment using the system mput and
output and it does not require complicated control
theories and exact knowledge of the system. However,
neural network has some problems in traimng: the
sensitivity of the controlled system which is difficult to
obtam for unknown and nonlinear systems is required and
the local mimmum of the performance index can be
trapped. Besides, it is difficult for the user to decide the
structure of the neural network for the desired control”.

Fuzzy-Neural Network (FNN) approach incorporates
the fuzzy logic controller inte the neural network
structure. Neural network provides connectionist
structure and learming abilities to the fuzzy logic
controller. Tn recent years, FNN control is applied to
induction motors®™" and used to update the control gain
of the sliding mode position controller for an induction
motor drive!"!, Fuzzy-neural network controller is
augmented with an IP controller™, PD controller”? and an
adaptive controller’™. In this study, a PI type FNN
controller based on Sugeno fuzzy model is proposed for
induction motor drives. The FNN controller uses the
speed error and error integral as mputs and gives the
torque current command as output. The backpropagation
algorithm 13 used to tram the FNN online in the direct
adaptive control scheme. Speed control performance of
the proposed control system is evaluated under the
parameter and load variations of the motor using the
experimental setup including the DSPACE-1104 signal
processor control card.
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FUZZY-NEURAL NETWORK CONTROL
OF INDUCTION MOTORS

The mathematical model of a three phase Y-
comnected squirrel cage induction motor is given in the
synchronously rotating d-q reference frame by the
following set of equations:

V= Al (1)
V: [Vds Vqs 0 O]T (2)
I: [ids Iqs Idr Iqr]T (3)
RpL, -oL — pL, -ol,
A meLs Rs+pLs meLm me
- me _wlern Rr+er _wler (4)
Colem me mler Rr +er

Where, @, and w, are synchronous speed and rotor speed,
respectively and slip frequency is w,= w,~w, The rotor
flux orientation implies that A,=A, and A,=0. Then, two
umportant relations can be derived as following. The
required slip frequency can be calculated as a linear
function of the stator g axis (torque) current and an
mverse function of the d axis (flux) current:

Lo 1ty

0,=— : 5
’ Tr A’dr Tr lds ( )

The electromagnetic torque 1s a linear function of the
stator q axis current and the rotor flux:

T,= %gi—i‘ il = Ko (6)
where, K; 1s the torque constant. Block diagram of the
induction motor drive including the proposed FNN
controller is shown in Fig. 1, which consists of a induction
motor loaded with a DC generator, current controlled
PWM voltage source mverter, vector control mechamsm
and a speed control loop. The control algorithm, current
control and PWM generation is realized in a PC including
DSPACE-1104 signal processor control card.

ARCHITECTURE OF FNN CONTROLLER

Sugeno type FNN controller as shown m Fig. 2 138
adopted for this study. For a first order Sugeno FNN, a
common tule set with two fuzzy if-then rules is the
following™™:

r1286-1291, 2005
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Fig. 2: Structure of fuzzy-neural network controller

1. : 1 : 1 S o 1 1
RUIFx,is A, and x, is A,, then y=f =a +a x +a,x,

R%IF x, is A® and x, is A?, then y=f, =a +a’x, +a’x, (7)

Where, x; is the input variable, y is the output variable,
Al are linguistic variables of membership functions
N (%) and al € R are parameters of the linear output
function f(x,x,.....x,), which are called as consequent
parameters.

FNN mputs was
x,=e(t) and the integral of the emror x,=[e(t), where
e(t)=w*(t)-w(t) and w™* is the reference speed and w is
actual

selected as the speed error

rotor speed. The input layer transmits input
signals to the first layer. Every node in the first layer
acts as a membership function M,; (%) and its output
specifies the degree to which to given x, satisfies the

quantifier Al
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Fig. 3: Block diagram of the experimental rig
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Fig. 4: Experimental implementation of the control system using MATLAB/Simulink

b

i

“’Ai (x;)= eXp{-[(Xi-mij)f'GfT} (8)
where, {mf,gij,bij}

are parameters of the membership function H’Ag (%),
which are called as premise paramefers. Every node
in the second layer was labeled 11 and performs
fuzzy and operation. Every node in this layer was
a fixed node, which operates the incoming signal from
every set of the membership function nodes for their
for their cormresponding input. Each node output
represents the firing strength of a rule.

1= min(u (x,), 1 3(%,) ©)

Every node in the third layer was labeled N and it
calculates the normalized firing strength of a rule. That

wag, kth node calculates the ratio of the kth rule’s firing
strength to the sum of all rule’s firing strength;

R

W= 10

T My (10)

Every node k in the fourth layer calculates the weighted
consequent value [I,f , where |1, is the output of layer
4 and f function is,

k k k
f,=a;+xa+x,3; (11)

where, {a];,ai‘,ag} is parameter set which are referred to
consequent parameters. The only node in the fifth layeris
labeled 3 and it sums all incoming signals to obtain the
final inferred result for the whole system.

f,_ o
y= =B
Pyt (12)
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Backpropagation algorithm is used to update the premise
and consequent parameters of the FNN. Premise and
consequent parameters of the FNN are modified as

OF _ g1 M (13)
da; ZHy
oF YH, M (x, -m’)
SRt Tk Tk () 2b— i (%)
1k 2 i~
anf TR gp AT o A

(14)

where, 6'=3E/3Y is the local gradient calculated from the
system dynamics.

EXPERIMENTAL RIG

The FNN system proposed in this study was
implemented using the dSPACE-DS1104 signal processor
control card. DS1104 produces PWM signals for the
mverter using the stator currents and rotor position
measured from the current sensors and encoder umit,
respectively.

DS-1104 control card includes master processor of
PowerPC 603e/250MHz and slave-processor of Texas
Tnstruments TMS320F240 (Fig. 3). The control algorithm,
current control and PWM modulation is realized in a PC
with dSPACE-1104 control card. dSPACE-DS1104 control
card allows user to construct the system in
MATLAB/Simulink and then to convert the model files to
real-time codes using the Real-Time Workshop of the
MATLAB/Simulink and Real-Time Interface (RTI) of the
dSPACE-DS1104 control card The RTI software
comprises of four sub-libraries, (ASPACE RTI1104),
mcluding some sub-blocks which provide the connection
between Simulink and physical equipment such as;
digital-analog  converter, analog-digital converter,
incremental encoder interface and various pulse with
modulation units. These blocks are added to Simulink
libraries by RTIL. Hence, experimental implementation of
the control system is realized using Matlab/Simulink
diagram as shown in Fig. 4.

Real time values of the physical systems” variables
can be assigned to the user defined variables using the
dSAPCE-Control Desk Developer (CDD) software. Thus
the graphical user interface can be designed by the user,
to observe the real time values of the variables or to
change the mput variables such as reference speed.

EXPERTMENTAL RESULTS

Some experimental results were provided to

demonstrate the effectiveness of the proposed fuzzy-
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Fig. 5: Step response of the motor for no load condition
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Fig. 6: Sinusoidal speed response of the motor for no
load condition
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Fig. 7: Step response for the increased inertia
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Fig. 8: Step response of the motor for 0.9 pu load
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Fig. 9: Step response of the motor for 0.9 pu load
disturbance

neural controller. Sampling rate of current and speed
control loop was 70 us and 700 ps, respectively. FNN
controller was tramed online using the simulation moedel
of the motor and then tramned FNN controller was used for
experiments. Tracking performances of the FNN controller
were tested for various load conditions and mechanical
parameter variations. First, tracking response for no load
condition 18 given in Fig. 5 for step reference and in
Fig. 6 for sinusoidal reference. In the second experiment,
inertia of the motor was increased by a coupled disc about
four times of the nominal value and the speed tracking
response 1s shown m Fig. 7 for step reference. As the
mechanical time constant of the drive was increased, rise
time was increased compared to Fig. 5. In the third
experiment, the controller was tested under with the speed
dependent load produced by the DC generator. The

maximum value of the load was 90% of the nominal value.
The speed tracking response is shown in Fig. 8. Finally,
Fig. 9 shows the
when 90% load disturbances was applied. As seen in the
Fig.5-9, excellent tracking performance was obtained
with no steady state error and no overshoot and control
performance of the drive 1s acceptable for load
disturbance.

performances of the controllers

CONCLUSIONS

In this study, FFIN approach was applied to nduction
motor drive. PI-type FINN based on Sugeno fuzzy model
was adopted for this application in direct adaptive
control scheme. Speed error and error integral were
selected as mputs to the FNN, to eliminate the steady
state error. FNN was trained online using the simulation
model of the moter and then trained FNN was used in
experiments. Experimental results showed the
effectiveness of the FNN were presented for various
load conditions.

Motor parameters:P=1.1kW, V=220V, P=2 f{=50Hz,
T=3.72N.m R,=8.5Q, R =4.53Q), L.,=0.5955H], L, =0.5999H,
L,=0.5787H, ]=0.0019, B=0.000263.
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