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Abstract: The watershed is a powerful segmentation tool developed in mathematical morphology, which has
the drawback of producing over-segmentation. In this study, in order to prevent its over-segmentation, a
strategy to obtam robust markers for atherosclerosis images segmentation is presented. In such sense, it 1s
mtroduced an algorithm, which was very useful in order to obtain the markers of the atherosclerotic lesions.
Images were pre-processed using the Gauss filter and a contrast enhancement. The obtained results by using
this strategy were validated calculating the False Negatives (FN) and False Positives (FP) according to criterion
of physicians, where 0% for FN and less than 13% for FP were obtained. Extensive experimentation showed
that, using real image data, the proposed strategy was very suitable for this application. These images will be
subject to an additional morphometrical analysis in order to study automatically the atherosclerosis and its

organic-consedquences.

Key words: Gauss filter, enhancement, markers, image segmentation, reconstruction, watershed method,

atherosclerosis

INTRODUCTION

Segmentation and contour extraction are important
steps towards image analysis. Segmented images are
now used routinely in a multitude of different
applications, such as, diagnosis, treatment planmng,
localization of pathology, study of anatomical structure,
computer-integrated surgery, among others. However,
image segmentation remains a difficult task due to both
the variability of object shapes and the variation in image
quality. Particularly, medical unages are often corrupted
by noise and sampling artifacts, which can cause
considerable difficulties when applying rigid methods.

The pathological anatomy 1s a speciality, where
the use of different techmques of Digital Image
Processing (DIP) allows to improve the accuracy of
diagnosis of many diseases. One of the
important diseases to study 1s the atherosclerosis and its
organic-consequences, which i1s one of the principal
causes of death in the world today" ™. The atherosclerosis
produces as final consequence the loss of elasticity and
increase of the wall of the arteries. For example, heart
attack, cerebral attack and ischaemia are some of its
principal consequences™.

Many segmentation methods have been proposed for
medical-image data”'!. Unfortunately, segmentation
using traditional low-level image processing techmques,

most

such as thresholding, edge detection and other classical
operations, requires a considerable amount of mteractive
guidance in order to get satisfactory results. Automating
these model-free approaches is difficult because of shape
complexity, shadows and variability within and across
individual objects. Furthermore, noise and other image
artifacts can cause incorrect regions or boundary
discontinuities in objects recovered from these methods.

In Mathematical Morphology (MM) important
methods  have been  developed for 1image
segmentation”’*. One of the most powerful tools
developed in MM is the watershed transformation, which
is classic in the field of topography and it has been used
in many problems of image segmentation. However, the
watershed transformation has the disadvantage of
producing over-segmentation. For that reason, the correct
way to use watersheds for grayscale image segmentation
18 to mark the regions we want to segment, that 1s, the
objects, but also the background. One and only one
marker must correspond to each region. The design of
robust marker detection techniques involves the use of
specific knowledge of the series of images under study™™.

The goal of this study was to present a strategy to
obtain robust markers for segmentation of atherosclerotic
lesions. In such sense, it is introduced an algorithm to
obtain markers, which identifies comrectly the
atherosclerotic lesions and elimimates considerably all
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spurious information. The validity of our strategy was
tested by using watersheds segmentation, where the
atherosclerotic lesions, according to the criteria of
physicians, were correctly delineated. These mmages will
be subject to a further morphometrical analysis in
order to study automatically the atherosclerosis and its
OTZAINC-COISeqUenICes.

THEORETICAL ASPECTS

Pre-processing: With the goal of diminishing the noise in
the original images we used the Gauss filter. Several
researches were carried out with many images, arriving to
the final conclusion that the best performance are
obtained, according to our application, with ¢ = 3 and a
3x3 window size. Smaller dimensional windows produce a
lot of noise, mainly due to change of intensity. Larger
dimensional window causes loss of information in the
atherosclerotic lesions. It was verified that with these
parameters the noise was considerably smoothed and the
edges of the interest objects (lesions) were not affected.

Contrast enhancement: Contrast enhancement is a very
used technique as previous step to segmentation. There
are many methods in the literature that can be seen’'*", In
this study, the contrast via histogram modification is
improved according to the following steps:

FuncProb [i] = HistgramalmagEntrada [i]/ CantPixelsTmagEntrada
FuncTranst [i] = FuncTransf [i-1] + FuncProb [T] (1)
HistogramalmagSalida [i] = FuncTransf [i] * CanfNivelesGris,

where, FuncProb, FuncTransf and HistogramalmagSalida
are, respectively, probability function transference
fumction of the mput image and the transformed istogram
of the output image;, i being the gray level,
CantPixelsImagEntrada 1s the quantity of pixels of the
input image and CantNivelesGris 1s the quantity of gray
level

Morphological grayscale reconstruction: Let ] and I be
two grayscale images defined on the same domain, taking
their values in the discrete set {0, 1, ........ , L-1} and such
that T < I (1.e, foreachpixel pe D;, I{p) < I (p)). L being
an arbitrary positive integer. In this way, it is useful to
introduce the geodesic dilations according to the
following definition!'™:
Definition (Geodesic dilation): The elementary geodesic
dilation of 61(1) of grayscale mmage I < I “under” I (J 1s
called the marker image and T is the mask) is defined as:

8 (I) = (TeBYAT (2)

where, the symbol A stands for the pomntwise minimum
and J @ B 1s the dilation of T by flat structuring element B.
The grayscale geodesic dilation of size n > 0 is obtained

by:

SV (1) =8 e Ve 087 (1),n times  (3)

This leads to the following definition of grayscale

reconstruction!'?

Definition (Grayscale reconstruction): The grayscale
reconstruction p, of T from T is obtained by iterating
grayscale dilation(T) s of J “under” I until stability 1s
reached, that 1s:

p (1) =V &V (D) (4)

nz1

Definition (Geodesic erosion): Similarly, the elementary
geodesic erosion 8§1) (J) of grayscale image J=>T
“above” I 1s given by:

e’ (1) =(JOB)VI (3)

where, V stands for the pointwise maximum and J 6 B 1s
the erosion of T by flat sttucturing element B. The
grayscale geodesic erosion of size n = 0 is then given by:

si“) (I = e%l) o . ° si”(]),n times (6)

Reconstruction turns out to provide a very efficient
method to extract regional maxima and mimma from
grayscale images. Furthermore, the techmque extends to
the determination of maximal structures, which will be call
h-domes and h-basins. Lets stay the following defmition:

Definition (Regional maximum): A regional maximum M
of a grayscale image I is a connected component of pixels
with a given value h (plateau at altitude h), such that
every pixel in the neighbourhood of M has a strictly lower
value.

Regional maximum should not be confused with local
maxima. Recall that a pixel p of I 13 a local maximum for grid
G 1f and only if its value I(p) 1s greater or equal to that of
any of its neighbours. All pixels belonging to a regional
maximum are local maxima, but the converse is not true.

Definition (H-dome transformation): The h-dome image
Dy, (T) of the h-domes of a grayscale image T is given by:

D, (1) =I-p; I-h)
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This provides a useful technique for extracting domes
or valleys of a given height, which are called h-domes.
Geometrically speaking, an h-dome can be interpreted in
the same way as a maximum: an h-dome D of image Iis a
connected component of pixels such that:

® Every pixel p that is a neighbour of D satisfies: I{(p) <

min {I{(q) | qe D},
® max{I(@|qeD}min{I(g|geD}<h

Besides, the value of pixel p of h-dome D in image D,
(INisequaltoI(p)-min {I{(q)| q= D}.

The h-dome fransformation extracts light structure
without involving any size or shape criteria. The only
parameter (h) is related to the height of these structures.

Watershed segmentation: In what follows, it is
considered grayscale images as numerical functions or as
topographic relief.

We consider the successive thresholds T, (I) of I, for
h=0toL-1,

TyI)={peD:| I(p) > h}

It is said that they constitute the threshold
decomposition of I, where these sets satisty the following
inclusion relati onship:

T, (I)cT,, (I)¥he[l,L1]

According to this point of view, an alternative
definition can also be proposed for the notion of regional
minimum:

Definition (Regional minimum): A regional minimum M
at altitude h of a grayscale image I iz a connected
component C of T, (I) such that C n Ty, () = ¢, T, (1)
being a threshold of T at level h.

The same criterion of the regional maximum should be
considered for the regional minimum. According fo this
criterion of a regional minimum, it is possible to establish
the following definition ™

Definition (Catchment basin): The catchment basin C{M)
associated with a minimum M is the set of pixels p of D;
such that a water drop falling at p flows down along the
relief, following a certain descending path called the
downstream of p and eventually reaches M.

Uszing the former definitions, it iz possible to present
the watershed definition. The notion of watershed will
now gerve as a guideline for the segmentation of
grayscale images.

Definition (Watershed by immersion): Suppose that we
have pierced holes in each regional minimum of I, this
picture being regarded as a topographic surface. We then
slowly immerse this surface into a lake. Starting from the
minimum of lowest altitude, the water will progressively fill
up the different catchment basins of I. Now, at each pixel
where the water coming from two different minima would
merge, a dam is build (Fig. 1). At the end of this immersion
procedure, each minimum is completely surrounded by
dams, which delimit its associated catchment basin. The
whole set of dams which has been built thus provides a
tessellation of I in its different catchment basins. These
dams comrespond to the watershed of I, that is, these
represent the edges of objects.

Mathematically, this immersion process is made in the
following way: I being the grayscale image under study,
denote h_,, the smallest value taken by I on its domain D;.
Similarly, denote h_, the largest value taken by I on D
Let T,{I) be the threshold of T at level h. Let C(M) be the
catchment basin associated with a minimum M and C, (M)
the subset of this catchment basin made of the points
having an altitude smaller or equal toh, then,

Ci={pe CM),I(p) =h}=C M) Ty (D

In many practical case, one of the principal problems
is to obtain the regional minimum, due to the fact that, in
general, images are corrupted by noise. Therefore, the
correct way to use watershed for grayscale image
segmentation consists in first detecting markers of the
objects to be extracted. A marking function iz then
constructed, whose different catchment basins
correspond to the desired objects. When one works in an
other way, then the watershed transformation produces
over-segmentation. The over-segmentation mainly comes
from the fact that the markers are not perfectly appropriate

Minimg.

Fig. 1: Building dams at the places where the water
coming from two different minima would merge
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to the objects to be contoured. In short, the quality of the
segmentation is directly linked to the marking function.

In such sense, in this study, the proposed strategy
permits to obtain good markers, which were useful for the
segmentation process. These avoided the
segmentation.

over-

The method of evaluation: Manual segmentation generally
gives the best and most reliable results when identifying
structures for a particular clinical task. However, this task
18 very tedious and time-consuming for the segmenter and
thus 1t does not serve the needs of daily climical use
well. Until now and due to the lack of ground truth,
the quantitative evaluation of a segmentation
method is difficult to achieve. An alternative is to use
manual-segmentation results as the ground truth.

In order to evaluate the performance of the
proposed strategy, we calculate the percent of false
negatives (FN, atherosclerotic lesions, whuch were
not classified by the strategy) and the false positives
(FP, noise, which was classified as atherosclerotic lesion).
These are defined according to the following expressions,

f
FP = £ 100
Vp +fp
; )
FN = L 100
p+fn

where, V, is the real quantity of atherosclerctic lesions
identified by the physician, f, 15 the quantity of
atherosclerotic lesions, which were not marked by the
strategy and f, is the number of spurious regions, which
were marked as atherosclerotic lesion.

FEATURES OF THE STUDIED IMAGES

The studied images were of arteries, which had
atherosclerctic lesions and these were obtained from
different parts of the human body, from more of 80
autopsies. These arteries were contrasted with a special
tint in order to accentuate the different lesions in arteries
(fatty streaks (type I)), fibrous plaques (type II)) and
severe plaques (types LI and IV)). The arteries were
digitalized directly from the working desk. Tt is possible to
observe from the images that the different arterial
structures are well defined. Other works have used the
photograph of the arteries to digitalize the image"®*'”. This
constitutes an additional step, increases the cost of the
research and leads to a loss of some part of the
information in the original image. The segmentation
process is then more difficult too. In Fig. 2a a typical
image with lesions T and T can be seen, while in Fig. 2b is
shown 1its histogram. These images were captured via the
MADIP system with a resolution of 51 2x51 2x8 bit/pixels™.
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Figure 3 shows other examples with other types of
lesions.

There are several remarkable characteristics of these
images, which are common to typical images that we
encountered in the atherosclerotic lesions:

1. High local variation of intensity is observed both,
within  the and  the
background. However, the local vanation of
intensities 15 higher within the lesions than in
background regions.

2. The lustogram of Fig. 2b shows that there 1s a low
contrast in the images.

3. The lesions IIT and IV have better contrast than the
lesions T and 1T (Fig. 3). Tn addition, due to variations
in the intensity of the background across the image
and the low
background intensities, principally for the lesions T
and TT, the atherosclerotic lesions in a region of the

atherosclerotic  lesions

contrast between lesions and

mmage may appear lighter than the background m a
distant region.

4. It 13 common of these images the diversity m shape
and size of the atherosclerotic lesions.

5. The boundary of the lesions,
principally for the lesions I and II, may be extremely
difficult to define. Due to variations in intensity, both
within the lesions and in the background, portions of
the atherosclerotic lesion may appear blended into
the background, without creating a distinct

boundary.

atherosclerotic

While the characteristics presented above testify the
difficulty in identifying atherosclerotic lesions, a close
examination reveals information that can be used. It was
observed that two features of the image, local vanation of
intensity and image intensity level, can be used to identify
regions of the mmage that describe lesions. High local
variation of intensity is exhibited by regions within and
near the boundaries of lesions. Thus, local variation of
intensity can roughly identify regions of the image that
contain lesions. Across the entire image, changes in
intensity level can not reliably distinguish atherosclerotic
lesions, due to possible nonumformity of the average
background intensity and low contrast between lesions
and background, principally, m the lesions I and IL
However, within a region of mterest, changes in intensity
level can effectively distinguish a lesion, since locally a
lesion has major varnation of intensities than its
surrounding background. The exact shape and size of thus
region are not important and hence the region is referred
to as an approximate region.
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Fig. 3: Atherosclerosis images with different lesions, which are marked with arrows

RESULTS AND DISCUSSION

With the goal of diminishing the noise in the
atherosclerosis images, the Gauss filter is used. In a
second step, we carried out to a modification of the
histogram to these images in order to increase the
contrast. Figure 4 shows the results of this procedure.

In order to exiract the approximate regions of interest,
after the histogram modification, we carried out a
morphological reconstruction. In the case of the lesions
Iand I, we carried out a reconstruction by dilation, while
for the legiong IIT and IV, we carried out a reconstmction
by erosion. It was verified that the reconstruction by
erosion (for the lesions ITT and IV) led to an image where
the dark zones correspond to these lesions (Fig. 5).

The result in Fig. 5b was obtained by using a rhomb
as structuring element of 5x5 size and a height equal to 60.
The selection of this structuring element and its size was
obtained via experimentation. Figure 6 shows the obtained
resultz (in the reconstruction) for other structuring
elementz. In all cases, the considered height was equal
to 60.

As can be appreciated in Fig. 6a, for a structuring
element minor than 5x5 size, the area of the atherosclerotic

lesions decreased. Comparing Fig. 5b with Fig. 6b and c,
one can see that for structuring elements (rhomb or circle)
major than 5x5 size, the results obtained were very similar,
but the computation time was increased. In Fig. 6d-f can
be observed that for segments as structuring elements,
the results obtained were not good, the lesions were
notably deformed. For these reasons, we considered that
the rhomb of 5x5 size was the most suitable.

With respect to the height, it was verified that for all
our images the optimal value was in the range from
40 to 60. In fact, Fig. 7 depicts the resultz obtained
considering a height out of this range.

In Fig. 7b and c, one can observe that for a large
height the atherosclerotic lesions were very smoothed,
however, the areas of the lesions were increased too.
Some of them were fused (see arrows). For a value smaller
than 40, according to the criterion of pathologists, the
area of the atherosclerotic legions decreased. Then, in
these cases, an exact delimitation of the lesions is not
obtained and the final results will be poor.

After obtaining both, the zize of structuring element
and the optimal height, the next stage of our strategy was
to segment the approximate region of interest, thatis, a
region that contains the atherosclerotic lesion and its
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(a) (b) (©) (d)
Fig. 4. (a) and (c) Filtered images with Gauss. (b) and {d) Improved images. It is evident the obtained good result with
the enhancement

(@) (b)
Fig. 5: (a) Resulting image of the histogram modification. (b) Image obtained by a reconstruction by erosion. The dark
parts correspond to the lesion TV

Fig. 6: (a) Reconstruction by a rhomb of 3x3 size. (b) Reconstruction by a rhomb of 7x7 size. (¢) Reconstruction by a
circle of 7x7 size. (d) Reconstruction by a diagonal segment (45°) of 3 pixels. (e) Reconstruction by a diagonal
segment of 5 pixels (45°). (f) Reconstruction by a diagonal segment of 7 pixels (45°). The height was equal to 60
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Fig. 7: (a) Reconstruction with a 5x5 rhomb and height equal to 30. (b) Reconstruction with a 5x5 rhomb and height equal
to 80. (¢) Reconstruction with a 5x5 rhomb and height equal to 120

(b)
Fig. 8: (a) Image of the reconstruction, where the arrows
indicate the lesions. (b) Regions of interest

neighbouring background. This step was carried out by
applying a simple threshold. In Fig. 8b one can see the
region of interest.

In Fig. 8b one can observe how all the indicated
lesions in Fig. 8a were detected. After this result, we
introduce the following algorithm to obtain markers for the
atherosclerotic lesions.

Algorithm to obtain markers: The steps of the algorithm
are described below.

1. Obtain the regions of interest. Let IREZI be the
resulting image.

2. Label the resulting image of the step 1. Then, to
create an auxiliary image, let IA1 be. All pixels of this
image are put in zero. In iterative way scan the IREZI
image (see appendix, function Mark Background
(...))- Then, this image is labeled with a value equal to
1 in all the background.

3. With the goal of finding connected components
(the lesions), scan again the IREZI image from the
top until the bottom and from the left until the right.
If there is a pixel, which belongs to a connected
component and in lal such pixel has a value of
zero, then other iterative method begins to work
(see appendix, function Mark Component (...)). This
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new iterative method marks with a determined value
within the TA1 image all pixels belonging to a
connected component. In addition, pixels within the
IREZI image are marked also with a value, which
identifies the connected component to which they
belong. This action is carried out in the whole image.
As this step is finished, in the IREZI image all the
connected components were filled and in the TA1
image all the connected components were labeled.

4. Create other auxiliary image (let [A2 be) with the same
values of the A1 image. Create also an array, which
controls if a connected component was reduced. In
the A2 image is where in each step the reduction of
the connected components are obtained, the final
result is represented in the A1 image.

5. Scan the labeled image (IA1). When a pixel is found,
which belongs to a connected component, via other
iterative method the same is reduced (see appendix,
function Mark Frontier (...)). In other words, in the
[A2 image is marked all the frontiers of the connected
component. If some pixel within the connected
component is remained, which is not frontier, then in
the TA2 and TA1 images are eliminated the frontiers
and this function begins again until all points are
frontiers. In this case, the result obtained (reduction)
is taken as the mark. In the array (step 3) is indicated
that the labeled component with this value was
processed and it is begun to look for another
component.

6. Finish whenever the IAl image is completely
scanned. When this step is concluded, in the IA1
image all marks of the atherosclerotic lesions are.
These marks are placed in the IREZI image, where the
connected components of the IREZI image after the
step two were filled. The IREZI image is the resulting
image.

The result of applying this algorithm to the image of

Fig. 8b is shown in Fig. 9. In Fig. 9b one can see that the

mark is unique for each atherosclerotic lesion, which is
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Fig. 11: (a) Initial image (see Fig. 10(b}). (b} Reconstruction by dilation { lesion IT )

always within it. Az we have pointed out, this procedure
was for the lesions Il and IV.

Now, we will explain the steps that we carried out to
obtain the marks for the lesions I and II. Analyzing an
image for the lesions I and IT (Fig. 10), one can observe
that when we carry out an histogram modification, the
intengity iz slightly higher within lesions than local
surrounding background. In Fig. 10b can be seen the
resulting image of this transformation.
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After this step, it carried out a reconstruction by
dilation. Thiz reconstruction improved a lot of the
contrast of the lesions I and II. Figure 11 shows the
obtained result of the reconstruction. The result in
Fig. 11b was obtained by using a structuring element type
thomb of 5x5 size. The height was equal to 40. This study
also carried out several experiments with distinct
structuring elements for the lesions I and IL The
results obtained were very similar to those depicted in
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Fig. 12: (a) Regions of interest. The arrows indicate the connected components. (b) Image with marks. (¢) The marks

superimposed on the original image

Fig. 13: Steps to obtain the markers for the atherosclerosis lesions

Fig. ¢ and 7. It was verified that the structuring element
type thomb of 5x5 size was of the best performance. In
addition, with respect to height for the reconstruction, we
concluded that the optimal height was in the range from
40 to 60 too. Out of this range, the same results were
obtained as in the lesions [II and I'V.

Later, we obtained the approximate region of mterest
and the markers similarly as in the lesions TIT and TV. The
obtained results are shown in Fig. 12.

Figure 13 depicts all steps of the proposed strategy
to obtain robust markers for the atherosclerosis lesions.

Application of the proposed strategy for atherosclerosis
image segmentation by using the watershed method: As
we have pointed out the watershed transformation has the
drawback of producing an over-segmentation as it is
applied directly to the original image or the gradient
image. In fact, Fig. 14b shows the obtained result as we
applied directly the watershed transformation to a
atherosclerosis image without good markers for the
lesions. It is evident as the contours of the atherosclerotic
lesions were not well detected and it 1s observed a lot of
noise. However, in Fig. 14c 1s shown the excellent result
obtained according to our strategy and the algorithm,
which was introduced in this work. The contours of the
atherosclerotic lesions were well defined.

InFig. 15, the contours superimposed on the original
image are shown in order to see the exact coincidence of
the obtained contours.
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In Fig. 16, another example of an application of our
strategy 15 shown with another atherosclerosis image.
Another example with real mmage 1s shown m Fig. 17,
where one can see the contour superimposed on the
original image.

Validation of the results obtained: In order to evaluate the
performance of the proposed strategy, it was calculated,
according to the criterion of pathologists, the percent of
false positives and false negatives. In Table 1 the
numerical results are summarised. We carried out this
comparison with all images.

In Table 1, one can observe that the percent error for
the false negatives (FN) was equal to 0%, that 1s, all the
regions belongmg to the atherosclerotic lesions were
identified, which denotes the good performance of our
strategy. This behavior was the same for 80 segmented
mmages. In Fig. 15, 16¢ and 17b are indicated with arrows,
according to the criterion of pathologists, the false
positives. The percent of false positives (FP) was minor
than 13% was verified Nevertheless, one can see (Fig. 15,
16¢ and 17b) that the segmentation process was not
completely correct, due to the wvamation of the
intensity within images. For that reason, the result of the

Table 1: Numerical results of the validation

Tmages 'S f, f, N FP
Figure 14a and 15 9 1 0 0% 10%
Figure 16a and ¢ 10 1 0 0% P
Figure 17a and b 15 2 0 0% 11%
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Fig. 14: (a) Original image. (b) The watershed segmentation without marks in the lesions. (c) The watershed segmentation

according to our strategy

Fig. 15: The contours superimposed on the original image. The arrow indicates an object, which does not correspond

to an atherosclerotic lesion

;); !

Fig. 16: (a) Original image. (b) Watershed transformation. (c¢) Contours superimposed on the original image. The arrow
in Fig. 16¢ indicates an object, which does not belong to the lesion

segmentation process is presented to the pathologists for
manual segmentation. With a few mouse clicks on the
segmented image, the false positives are completely
eliminated from the rest of the image. This work is a part
of a global image analysis process in which these images
will be subject to a further morphometrical analysis.

CONCLUSIONS

This study proposed a strategy to obtain robust
markers for the atherosclerotic lesions. In such sense, we
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introduced an algorithm, which identifies correctly the
atherosclerotic lesions and eliminates considerably all
spurious information. With our strategy the application of
the watershed transformation provided excellent results
and we obtained the exact contours of the atherosclerotic
lesions. This study extensive experimentation by using
real image data, that the proposed strategy was robust
for the type of images considered. This strategy was
tested, according to the criteria of pathologists,
obtaining the FN and FP, where the percent for FIN was
equal to 09 and for FP minor than 13%.
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Fig. 17: (a) Image with atherosclerotfic lesions. (b) Contours superimposed on the original image. The arrows indicate an

objects, which donot belong to the lesions

Appendix

fint posX [8], int pos¥ [8],

i posX [0]=-1, posX [1]=-1, posX [2]=-1, posX [3]=0, posX [4]=1, posX
[51=1, posE [6]=1, posX [7]=0

i pos¥ [0]=-1, posY [1]=0, posY [2]=1, posY [3]=1, pos¥ [4]=1, pos¥
[5]=0, posY [6]=-1, posY [7]=-1,

if Ctnng waor, for example, valor=*E*

ff BYTE **Imagen,, **Bfux **B Auxl,

ff BOOL pontFind

i WMethod used to obtan marks
Jf It controls the moverment i the image
BOOL Operalmagen potntValid (unagned row, unsigned column)
{
retumn {{ row == 0 && { row < Heightlmag ) && (column = 0) &&
{column < Widthlmag 7),
1

ff To mark all the connected components wath walue equal to 215

vord Operalmagen Mark Component (unsigned row, unsigned column,
BYTE **Imag)

{

Imag [row][column] = label,

Imagen [row][column] =215, & Aumiliary image

for (int1=0,1< §, 1++)

1if ({pomntValid (row + posX [1], column + pos¥[t] 1) && (Imag[ row +
posX[i]][column + pos¥i]] = 03)

Mark_Component { row + posX[1], column + pos¥i], Imag),

1

1

i To 1denti fy wath 17 the pixels belonging to background

voud Operalmagen Mak Background (unsigned mow, unsigned column,
BYTE **Imag)

{

Imag[row][column] = 1, /f To mark background

for (int1=0,1 < §, 1++4)

1f ( poantValid { row + posX[1], column + pos¥1])) &d& (Imag[row +
posX[i]][column + posTi]] = 00

&& (Imagen [row + posX[1]][column + posYr]] = 0))
Mark_Background (row + posX[1], column + pos¥t], Imag),

1

fi To fll the connected components The mark wath value equal to 2 15 not
filled
vord Operalmagen drawComponent (unsigned int ¢, unsigned int c)

1f (Bauxl[r][c]==2)

{
Bauxl[r][c] =1,
Baux [r][c] =1,
1
else
{
Bauxl[r][c] = valor,
B.aux [r][c] = valor,
1

for (unstgned 1=0,1 <8, 1++)

1f ((powntValid (t + pos[i],e + pos¥[a] ) && (Bauxl[r + pos3[]][c +
pos¥a]] =17 &&

(Banzl[f+ posX[1]][c + pos¥T[1]] = walor })

drawComponent (T + posX[1], ¢+ pos¥[t] ),

1

I To wdentify the points that are frontiers

BOOL Cperalmagen Frontier (unsigned 1, unsigned ¢, BYTE **Imag)

{

for (unsigned 1=0,1< 8, 1++)

if ((powntValid (r + posX[i], ¢ + pos¥[] ) && (Imag [+ posX [1]][c +
pos¥li] ] ==1})

{

return TRUE,
brealk,
1
return FALSE,
1

/f To mark the frontiers for reducing the connected components
voud Operalmagen Mak Frontier (unsigned int £, unsigned it c)

Bauxl[f[c] =2,
for (unstgned 1=0,1 < 3 ,1++)

1f ((poantValid (r + posE[a],c + pos¥a])) &&de (Bauxl[r + posX[]][c +
pos¥1]] == valor))
1f (Frontier (r + posZ[1], c + pos¥ 1], Bauxl))
Mark_Frontier {r + pos3[1], ¢ + pos¥1]),
else

r
L

1f {1 pointFind)
i

L
pointFind = TRUE,
proximad =1+ posXfi],
prozma¥ = c+ pos¥i],
)

1

i

1
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