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Abstract: A kappa-like classification statistic is used for assessing the fit of GEE regression models with a
categorical response. The statistic is a summary measure depicting how well categorical responses are predicted
from the fitted GEE model. The statistic takes on a value of 1 if prediction is perfect and a value of 0 if the fitted
model fares no better than random chance, i.e., fitting the repeated categorical responses with an intercept-only
model. To assess the performance of the classification statistic, we conducted analyses by using BIRDEM data

and the concern 1s assessing the fit of the GEE categorical response models by determming how well the

covariates predict the subject’s responses.
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INTRODUCTION

Generalized Estimating Equations (GEE) are useful for
analyzing correlated data with categorical or continuous
responses [»?. Parameter estimation is conducted through
estimating equations which converge to a sum of mean
zero random variables if the mean structure 1s correctly
specified. There is no need to specify a joint distribution
for the responses. However, assessing model fit 1s further
complicated with GEE than for models assuming
independence because no likelihood is available and the
residuals are correlated within a cluster. Some methods are
available for assessing the fit of GEE regression models
with binary responses. Horton™ developed a goodness-
of-fit test for assessing such model fit by extending
Hosmer'” goodness-of-fit statistic for crdinary logistic
regression. Their proposed statistic has an approximate
chi-squared distribution when the model 15 specified
comrectly. Barnhart™ also propose a goodness-of-fit
statistic for assessing the fit of GEE binary regression
models. They extend Tsiatis’ method™ for assessing the
fit of ordinary logistic regression models. This approach
involves partitioning the space of covariates into distinct
regions and forming statistics  that are
asymptotically distributed as chi-square random variables
with the appropriate degrees of freedom. Barnhart’s™”
approach is best employed in the situation when there are
only discrete covariates available because then there is no

sCore

need to partition the covariates. Pan™ has proposed

goodness-of-fit tests for GEE with correlated binary data.
Pan’s two tests result in the Pearson chi-square and an
unweighted sum of residual squares, both of which are
based on the residuals. These two tests can only be used
when there 1s at least one continuous covariate available.
If the possibility of influential observations 1s of concern
to the data analyst, Preisser™ have proposed deletion
diagnostics for generalized estimating equations. The
diagnostics consider leverage and residuals to measure
the influence of a subset of observations on the fitted
regression parameters. Preisser” also generalize the GEE
procedure to produce parameter estimates and fitted
values that are resistant to influential data. Here, the
concern is assessing the fit of GEE categorical response
models by determining how well the covariates predict the
subject’s responses. We present the kappa-like
classification statistic, which mdicates how well the
proposed model predicts the categorical response.

GENERALIZED ESTIMATING EQUATION (GEE)

"' method as follows. Assume the

We outline Lipsitz!
response of interest is a categorical outcome with K

categories denoted z, = k if the tth subunit from the ith

2, LT =max(T)vi=1,2,.. . N)andk=1,2..... K. For
simplicity, we will assume that the data are balanced, i.e.,
T,=Tfori=1,2,......N. The following method will still be
applicable n the case of unbalanced data. The T(K-1)x1
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response vector Y, for cluster T consists of the binary
random variables Y, where, Y, =1 if 7, = k.

Typically one models the marginal cumulative
probabilities of response, v, = Pr (Z;< k) for k = 1,
2 JK-1. The marginal probabilities are denoted by
M =Pr (Z,=k) =Pr (Y =1)=E (Yy) = vy - Vi, and will
comprise the T(K-1)x1 vector m,. The vectors Y, and m;
require only T(K-1) elements mstead of TK elements

because le;Y,tk = Zlilﬂ,ﬂ( =L fori=1,2,....
t=1,2,........ ,T. Let X, be the p x 1 covariate vector for the
tth subumit of the ith cluster.

The cumulative marginal response probabilities will
be related to the covariates via ling function g, the kth
intercept A, and the px 1 marginal parameter vector
B g (V) = ht X0

The intercept are in increasing order:
Ay<h,< . <he,. For an ordinal response, the function
g may be any link function such as the logit function,
probit functien (¢~"), or the elementary log-log function.
Lipsitz"! suggest that one estimates B with the following
set of generalized estimating equations:

il
- ZD;\]:_I (Yl -Tl:1) - 0’
=1

where, D, =D, (B) = dr, (P)dP, Vi= Vi(B, &) = var (Y)) is a
working covariance matrix of Y"? and ¢z is a g x 1 vector
of comrelation parameters. The parameters ¢ are associated
with the correlation between the elements of the vectors
Y,and Y,

KAPPA-LIKE STATISTIC

We used a kappa-like statistic to assess model fit for
GEE categorical response models. Historically, the kappa
coefficient has been used to determine the agreement of
binary™!! and categorical®® outcomes between raters.
Kappa corrects the percentage of agreement between
raters by taking into account the proportion of agreement
expected by chance. Kappa has been used as a measure
of reproducibility in many epidemiclogic settings, such as
studies involving twin similarity " and control-informant
agreement collected from case-control studies. The
general expression for the kappa statistic is:

,PEI 7P&
1-P,

where, P, 13 the observed proportion of agreement and Pe
is the proportion of agreement expected by chance
alone™. A value of 0 for k indicates no agreement beyond
chance and a value of 1 indicates perfect agreement,
ameng many of ks desirable properties™. Thus, larger

values of k indicate greater agreement between the
outcomes.

Here we use k as a measure of agreement between the
predicted and observed categorical responses to assess
the fit of the GEE model. We estimate k in a second set of
estimating equations, similar to LipsitZ™), Klar"'? and
Williamson™. With Lipsitz’s!"” method, we estimate the
probability of the response fallmg in each of the K
categories. Denote this estimated probability for the kth
category, tth subunit, of the ith cluster as 7, . We donot
have a straightforward predicted response as with linear
regression. However, 1f we did have a predicted response
for the tth subunit of the ith cluster, denoted th , 1t 18
natural to assume that th would equal k (k =1,2,--K) with
probability ft,, . Let Py, denote the probability that the
predicted response from the model 15 equal to the
observed response, i.e., 2 = 7Zit. A natural estimate of Py,
is obtained by using %,Z,, the estimated probability from
the fitted model that the response falls into the observed
category for the #th subumnit of the ith cluster. We define
k; as the agreement between the predicted and observed
responses for the #th subunit of the ith cluster as follows:

_P,-P

it e

fo1-p

where, Py, is defined above and P, is the probability of
correct prediction expected by chance alone.

As an estimate of P,, we fit an intercept-only model.
Cox!"  and Nagelkerke™ proposed using an intercept-
only model as a baseline model when generalizing the
coefficient of determination for assessing the fit of a
logistic regression model. Thus, we will fit a model with
just the intercepts, the A, parameters for k = 1,2, - K-1,
and no covariates. This baseline model will provide a
good starting point from which to compare the proposed
model. The estimated category probabilities from the
intercept-only model will be the same for all clusters and
subunits and will be denoted:

il k})/NT = Ei\qm

t=1 i=1 t=1

Mz

/NT =n, /NT

i

where, 1, 1s the sum of observations in category k, 1e.,

T
E 1tkf0rk—1

t=1

Mz

. ,K. All n, observations with

i

response category k will each be correctly predicted with
probability Px ; accordingly, the estimate of P, 1s:

p, = pk—EZZI(Z =7, =k)/NT

=1 t=1

K K
= kznkf)k /NT = kEISf;
=1 =1
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The agreement between two raters for assessing a
categorical outcome with K categories can be depicted in
a K x K contingency table!™. The row and cclumn total
probabilities for the kth outcome category are p, and p,,
the marginal probabilities that the two raters assess the
outcome 1n the kth category. The estimate of the
probability expected by chance is calculated assuming
mdependence between the rows and columns in the

K
contingency table and 1s P = Zpk Py, which 1s similar to
=1
the estimate above. We will estimate an overall k to
ascertain the fitof the model (k=%k, fori =1,.. . N and
t=1,...,T) By noting that P, = P+k(1.0-P,), we use a
second set of estimating equations as follows. Let Py
and U, denote the Tx1 vectors [Pun, --------- =PU1T] and
(2 FioZr]. The second set of estimating
equations are, thus:

= icjw;‘ {u
1=1

where, G :dP-/dk:[ -P. ,17P} and
W, = Var(Ui) is the T =T working covariance matrix of ;.

To compute B k) one can use a Fisher-sconng-type
algorithm such as:

i
e - ) [ DVIDJ {ZDIVII{Y,“
1=1

g[S
{iérwi-‘{v(éw)Pm(ﬁ(mw}}

i=1

Mz

O’

m denotes the iteration. We use Liang'’s
empirically comrected variance estimate of G and
Prentice’s"” empirically corrected variance estimate of
i - The second set of estimating equations can be solved
non-iteratively if we choose the T * T identity matrix for

where,

W
21 3 lnltz INT - P,
l—P
The term 21 12“ it ,t/NT*f)E 18 the average

predicted probability corresponding to the observed
responses. If the fitted model predicts the categorical
response perfectly, ie.,, f,z, =1.0, then k=10 If the
fitted model predicts the responses no better than an
intercept-only model, then k=00 This kappa-like
classification statistic should be mterpreted as the
average probability of predicting the observed responses
above and beyond the prediction by the mtercept-only
model.

DATA AND VARTABLES

In present study the diabetes mellitus data was used
to carry out the analysis. Here the follow up data on
528 patients registered at BIRDEM (Bangladesh Institute
of Research and Rehabilitation in Diabetes, Endocrine and
Metabolic disorders) in 1984-94 are used to identify the
risk factors responsible for the transitions from controlled
diabetic to confirmed diabetic state as well as confirm
diabetic to controlled stage of diabetes. The response
variable is defined in terms of the observed glucose level
two hours of 75 g glucose load for each follow-up visit.
The cut-off point for the blood glucose level is
11.1 mM L' If the observed response is less than 11.1,
then the patient is defined as non diabetic (categorized
as 0) if the response 1s greater than or equal to 11.1 then
the patient is said to be diabetic (categorized as 1)
according to WHO (1985) criteria. We include six
independent variables, age, sex, education level, area of
residence, family history of father and mother and time in
our study. Out of these variables, age represents the age
of the respondents at each visit. Time represents the
length of time of the consecutive visits. These two
variables are continuous variables and used directly in the
analysis. Other variables are dichotomous variable.

RESULTS AND DISCUSSION

The kappa-like statistic tales on a value of 0.0 for the
intercept-only model and a value of 1.0 for the saturated
model. An advantage of the statistic is that no decisions
need be made when calculating it, unlike methods based
on covariate partitioning (where to partition, how many
partitioned  categories), Hosmer and Lemeshow’s
approach, rank correlation methods and classification
tables. Interpretation of the kappa statistic 18 not always
straightforward; see Fleiss“z] and Landis™ for details.
‘I labeling of kappa values,
I'suggest interpreting the values of kappa for
this classification index as follows:

Similar to Landis’s!
Williamson!*!

Kappa statistic Fit of model
0.00-0.20 Poor
0.21-0.40 Fair
0.41-0.60 Good
0.61-1.00 Excellent

First we fit a GEE logistic regression model with main
effects terms only. We then examined various interaction
and quadratic variables for entry into the regression
model at the significance level of 0.05. The quadratic terms
for age and time were significant and entered into the final
model. The kappa-like classification index for this final
model increased indicating a better fit. With the inclusion
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Table 1: GEE logistic regression models without quadratic terms assuming the various correlation structures for diabetic mellitus study

Exchangeable Autoregressive Pairwise
Covariates Estimate Wald statistic p-value Estimate ‘Wald statistic p-value Estimate Wald statistic p-value
Intercept 0.3093 0.9891 0.322614 0.3396 1.0466 0.295284 0.2859 0.8421 0.399732
Age 0.0005 0.0942 0.924950 0.0003 0.0669 0.946661 0.0002 0.0538 0.957095
Sex -0.0860 -0.7189 0472203 -0.0756 -0.6101 0.541796 -0.0642 -0.5178 0.604598
Edlv -0.3659 -2.7769 0.005488 -0.3579 -2.6161 0.0088%4 -0.3359 -2.4352 0.014884
Area -0.3289 -2.5381 0.011146 -0.3282 -2.4367 0.014814 -0.3025 -2.2071 0.027307
FHFM 0.2071 1.7272 0.084132 0.2006 1.7143 0.086474 0.2011 1.1144 0.265108
Time 0.0705 3.0385 0.002378 0.0795 3.2906 0.000999 0.07001 3.0034 0.002669
Likelihood statistic 179.166 193.368 172.561
Kappa-like statistic(k) 0.38 0.47 0.18
Table 2: GEE logistic regression models with quadratic terms assuming the various correlation structures for diabetic mellitus study

Exchangeable Autoregressive Pairwise
Covariates Estimate  Wald statistic p-value Estimate Wald statistic p-value Estimate Wald statistic p-value
Intercept -6.4615 -0.8831 0.377182 -6.8573 -0.8959 0.370306 -5.1436 -0.7614 0.446418
Age 0.0004 0.0842 0.932897 0.0006 0.0956 0.923838 0.0003 0.0669 0.946661
Sex -0.1358 -0.8328 0.404958 -0.1556 -0.8713 0.383590 -0.1137 -0.6923 0.488749
Edlv -0.2561 -1.9776 0.047974 -0.2739 -2.0016 0.045328 -0.2156 -1.7564 0.079020
Area -0.2872 -2.1751 0.029623 -0.3158 -2.4315 0.015037 -0.2541 -2.0827 0.037279
FHFM 0.1639 1.3392 0.180506 0.1842 1.3027 0.192677 0.1445 1.0415 0.297643
Time 0.0675 2.6138 0.008954 0.0713 2.6732 0.007513 0.0512 2.1497 0.031579
(Agey 0.0093 2.0954 0.036136 0.0097 2.1305 0.03313 0.0078 2.0002 0.045479
(Time)* 0.4647 3.1867 0.001439 0.4831 3.2717 0.001069 0.3931 3.0026 0.002677
Likelihood statistic 186.647 195.872 173.369
Kappa-like statistic(k) 0.54 0.58 0.46

of the two quadratic terms, the model fit the data quite
well according to Barnhart’s™ test.

From Table 1, it can be seen that the kappa-like
statistic is a fair predictor for the GEE model of
exchangeable correlation structure, a good predictor for
the autoregressive correlation structure and poor
predictor for pairwise correlation structure. Though the
likelihood ratio test shows significant effect of covariates
in the model but this test does not indicate how well the
model predicts the observed responses.

Table 2 shows that when we include the two
quadratic terms the kappa-like statistic is good for GEE
model of exchangeable correlation structure, a excellent
predictor for the autoregressive correlation structure and
fair predictor for pairwise correlation structure.

CONCLUSIONS

The kappa-like classification statistic 1s a more
appropriate indicator of how well the model predicts the
observed responses at the cluster level (eg., an
mndividual) as opposed to how well the model fits the data
at the group level (e.g., treatment category). Often a model
can fit the data well in terms of predicting the proportion
of positive responses for a group of individuals, but is not
necessarily useful for predicting a particular individual’s
response. The kappa-like classification mdex 18 an
intuitive measure for assessing model fit in that it
estimates the probability of an observation being

correctly predicted by the fitted model. Then, this
probability 1s corrected for chance by comparing it to the
probability that an intercept-only model would have
correctly predicted the observation. For the diabetes
mellitus study, we would recommend that the kappa value
for the GEE model with quadratic terms indicated better
prediction than the GEE models without quadratic terms.
That is, the GEE models with quadratic terms are fitter
well.
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