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Abstract: We wish to find the smallest non-negative integer, B, for which y=g* where, y, p £ GF(p) (if such an
B exists). This is the Discrete Logarithm Problem (DLP). A number of strategies have been proposed to solve
the DLP, among them, Shanks Baby-Step Giant-Step algorithm, the Pollard Rho algorithm, the Pohlig-Hellman
algorithm and the Index-Calculus method. We show that, given certain assumptions about the smoothness of
the integers, the index calculus will, in general, out-perform the other three methods, substantially increasing
the range of problems which are feasible to solve and thereby threatening the security of the DLP-based crypto-
algorithms like, DH key exchange protocol, ElGamal cryptosystem, DSA and many others. In this paper we
describe basic principle and implementation procedure to these DLP-crypto algorithms. We will also discuss
the general methods of attacking DLP cryptosystems and how secure they are agamst these general attacks.
The mathematical challenge here lies n computing discrete logarithms n finite fields of type Z,, which consist

of the integers modulo a large prime p.
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INTRODUCTION

Discrete logs have a long history in number theory.
Imtially, they were used prunarily i computations mn finite
fields (where they typically appeared in the closely related
form of Zech’s logarithm). However, they were rather
obscure, just like Integer Factorization Problem (IFP).
Unlike the latter, they could not even invoke any famous
quotes of Gauss!! about their fundamental importance in
mathematics. The status of discrete logs started to grow
in the 20th century, as more computations were done and
as more thought went nto algorithmic questions. It
appears that they started to play an important role in
cryptography already in the 1950s, long before public key
systems appeared on the scene, as cryptosystems based
on shiftregister sequences displaced those on rotor
machines'™. Discrete logs cccur naturally in the context as
tools for finding where in a shift register sequence a
particular block occurs. The main impetus for the
mtensive current interest in discrete logs, though, came
from the invention of the Diffie-Hellman method™.

The most important tool necessary for the
mnplementation of public-key cryptosystems 1s the
Discrete Log Problem (DLP). Many popular modern
crypto-algorithms base their security on the DLP!.
Based on the difficulty of this problem, Diffie-Hellman™*
proposed the well-known Diffie-Hellman key agreement
scheme mn 1976. Since then, munerous other cryptographic

protocols whose security depends on the DLP have been
proposed, including: the
signature scheme'™, the US government Digital Signature
Algorithm (DSAY*? is perhaps the best known example of
a DLP system, the Schnorr signature scheme'™ and the
Nyberg-Reuppel signature scheme"'4. Due to interest in
these applications, the DLP has been extensively studied
by mathematicians for the past 20 years. The mathematical
challenge here lies in computing discrete logarithms in
fimte fields of type Z, which consist of the mntegers
modulo a large prime p. Although this problem can be
considered difficult, there are known sub-exponential time
algorithms for solving it, such as the, index calculus™® and
Number Field Sieve (NFS)'. In practical terms, sub-
exponential time means that a determined hacker with
enough processing power can break the system m a few
months.

ElGamal encryption and

THE MECHANICS OF
DISCRETE LOG PROBLEM

In an (abelian) group G* (multiplicatively written) we
can consider the equation y=x", x,y € G,ne Z. If x and y
are known real numbers and it 1s also known that x 1s some
power (say, n) of y, then logarithms can be used to find
n{"=log,y") in an efficient manner (here n is known as the
index of y € G). However, if x and y are given such that:
y=x"=x X ... x (n-times), then in general it 1s techmically
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much harder and hence the determination of n cannot be
carried out m a reasonable amount of time. This 1s
equivalent to the well-known real logarithm; we call n the
discrete logarithm of y related to the base x"0. The
operation exponentiation x-y:=x" can be implemented as
a quick, efficient algorithm. As an example, the
exponentiation computation of 5% can be performed pretty
efficiently by using binary expansion of the exponent e,
for example, for e = 4369,, = 1000100010001 ,, we have:

24

54369 _ ((524)5)24 51 15

The DLP can also be implemented in modular
arithmetic form and can be defined as follows: given a
prime p, a generator g of 7, and a non-zero element y € 7,
find the wumque mteger k, O<k<p-2, such that
v = gfmod p. The integer k is called the discrete logarithm
of ytothebase g (which we can write smartly as
follows: b® = r(mod p); b° =r and finally e = log,r, where,
b 1s the base, e 1sthe exponent and r 1s the residual
mod p). Here, 7, denctes the set of integers {0, 1, 2,---,
p-1}%, where, addition and multiplication are performed
modulo p. Tt is well-known that there exists a non-zero
element g £ Z, such that each non-zero elements in 7, can
be written as a power of g; such an element g is called a
generator of Z,.

Similarly, we can perform a modular exponentiation
easily, for example, the computation of 5° mod p, can be
carried out efficiently: after each squaring or after each
multiplication by 5 reduced modulo p and then continue.
That is, if p = 53779, then, 5° mod p = 4720.

On a similar note, we can easily solve,
5% = 2437 (mod 5779), which 1s equivalent to determimng;
e = log,; 2437 in Z.r, and there 18 no known method with
a similar low complexity. That is, it is easy to take
logarithm but not a modular/discrete logarithm. This 1s
the backbone of the crypto-algorithm based discrete
logarithm problem!!.

As an example, let’s solve: b™ = 2437(mod 5779). To
solve our DLP, we note that p = 5779 is indeed a prime
number, so that by Fermat little theorem: a"~" = 1(mod p)
for a e (ZmZ), we have: b = I(med 5779). It
follows that, if we raise both sides of our equationto
the power of 529 (ie, the multiplicative inverse:
e~ '(mod p-1) = (4369)” 'mod 3778 = 529), we find the
solution of our DLP: b = r'"(med p) = 2437°” (mod
5779). = 2249,

In general, if the modulus of DLP 1s replaced with a
product of two primes, then finding the solution becomes
naturally infeasible for large moduli, simply because the
factorization of large integer number is infeasible. This is

the backbone on which the security of public key like
RSA cryptosystems™*. In RSA public key cryptosystem,
for example, Bob’s public key is (e, n) and his private
key 1s (dn) where, n 15 the product of two prime
mumbers p and g (ie, n(=p-q)) such that:
ed = 1(mod(p-1)(g-1)). The product, n, 1s the modulus,
e is the public exponent and d is the secret exponent.
To encrypt a plaintext message M for Bob, Alice has to
compute ciphertext: C =M% mod n). Bob can decrypt C by
computing: (C)' = (M"* = M{mod n) = M. No one except
Bob can decrypt C since d is only known to Bob. The
RSA crypto-algorithm can be broken by factoring n into
p and q. If n is factored then (p-1)(g-1) can be found and
from this d can be computed. Hence, any adversary that
factors n can find the private-key d = e~ (mod (p-1){qg-1))
and with it decrypt any encrypted message'™'?. Therefore,
the algorithm is secure only if the factorization of the
carefully chosen sufficiently large two prime numbers
requires a super-polynomial amount of time with respect
to the size of the number. The key question 1s, therefore,
how large is sufficiently large to make this recovery
virtually impossible? In the 1980s it was generally held
that prime numbers of a fifty odd digits (i.e., 10™) would
suffice. Currently, you need a 1024-bit number to get the
same security you got from a 512-bit number in the early
1980s'¥. If you want your keys to remain secure for 20
years, 1024 bits is probably too short (Fig. 1),
Techmcal advantages between DLP-based crypto-
algorithms and RSA is such that in many cases where
algorithms of comparable functionality exist, say one over
the finite field of integers modulo a prime p and another
using composite integer n of the same size, breaking the
discrete log modulo p appears to be somewhat harder
than factoring the integer n. For purposes of lkey
generation, many people prefer DH algorithm over RSA,
since the session key it generates 15 evanescent. In the
simplest application of RSA to key generation, as seen
above, Alice creates a session key and transmits it to Bob
using Bob’s public key. An eavesdropper who can coerce
Bob, via clever social engmeering, nto revealing his
private key can recover the full text of the communication
exchanged between Alice and Bob. On the other hand, if
Alice and Bob use DH key exchange protocol to generate
the session key, destroy it after the session ends and do
not store their communication, then neither coercion nor
cryptanalysis will enable the eavesdropper to recover
what information was exchanged. Tt is widely believed that
the DSA 1s based on the discrete logs because it 13 harder
to use it for encryption than if it were based on RSA (and
thus on Integer Factorization Problem, IFP).
Standard DLP cryptosystems are
multiplicative groups with the mamm operation of
exponentiation. The corresponding problem in additive

based on
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Fig. 1: Proposed the minimum key sizes (in bits) to be
regarded as safe for RSA and ECC

(i.e., abelian) groups is: given P and kP = Q (P added to
itself k times), find the integer k (i.e., find k = log, Q). This
1s much more difficult! There 1s no one-step operation like
taking logarithms that we can use to get the solution. So
we may know P and kP and yet not be able to findk in a
reasonable amount of time. This is called the Discrete Log
Problem for abelian groups. We could always repeatedly
subtract P from kP till we get 0. But if k 13 large, this will
take us a very long time! Several important cryptosystems
are based on the difficulty of solving the DLP over finite
abelian groups. The solution i1s even tougher if the
underlymg group anses from an elliptic curve over a fimte
field"®,

In 1985, Victor Miller (IBM!'7) and Neal Koblitz
(University of Washington)"'®, independently realized that
the DLP-additive group associated with elliptic curve can
be used for similar classical Diffie-Hellman (DH) public-
key exchange method. In the same year Scott Vanstone
and co-researchers, realized that the invention by Miller
and Koblitz was not just a mathematical generalization of
the original DH idea, but that some aspect of it could lead
to a very promising alternative public key cryptosystems
that could be put into real practical application-this lead
to the formation of what is today, Certicom™”. In Elliptic
Curve Cryptography (ECC)'?, the multiplicative group is
replaced by the additive group of elliptic curve points and
exponentiation operation by scalar multiplication of a
point (ie. calculation of g = gg..g (k-times) for a
generator g of a multiplicative group is replaced by
calculation of [k]P = P+P+....+P (k-times) for a generator
point P of an additive group of elliptic curve points).
Thus, the computational performance of cryptographic
protocols based on elliptic curves strongly depends on
efficiency of the scalar multiplication. Further, Elliptic
curve cryptosystems (ECC) appear to offer the possibility
of using much smaller key sizes than would be required by

RSA-type crypto-algorithms of comparable security
(Fig. 1). Formore detail on the implementation of ECC!'**,

Time complexity of DLP: Suppose G = Z, with p a 200-bit
prime. Using 2" computers, each one running at 400 MHz
and assuming that one exponentiation (b° mod p) takes
only one machine cycle! Then 400-2° = 2” exponentiation
can be made per second per computer. As there are
around 2” sec in a vyear, it would take about
20(2.280E = 21 vears to find the desired discrete
logarithm, on average, by trial and error method.

The presumed mtractability of the DLP, for
appropriate choices of G, in contrast to the relative
efficiency of calculating the discrete exponentiation, has
made the DLP a basic bulding block of many
cryptographic  applications,  mcluding  public-key
encryption algorithms, digital signature schemes and key

agreement protocols® !¢,

DIFFIE-HELLMANMULTIUSER CRYPTOSYSTEM

Prior to 1970, symmetric key cryptosystems had been
the crypto-mode n existence. In a symmetric key crypto-
protocols, a common key (the master shared secrete key)
are used by both communicating parties to encrypt and
decrypt messages. These symmetric key crypto-protocols
provide-high speed key and commumnication throughput
but have the drawback that a common (or session) key
must be established before communication between
parties can be begin. The process of exchanging the
crypto-keys 1s referred to as key distribution and can be
very difficult™)

Tt was Merkle who first introduced the basic concept
of public key cryptosystems with a view to overcome the
key distribution problem!™*!. However, it was W. Diffie
and Hellman"™* who were the first to introduce practical
public-key cryptography which eliminated the need for
key distribution encountered with the private-key
cryptosystems and 1t 1s widely used today. The system
was discovered mdependently by GCHQ (Brtish
Intelligence) a few vears before Diffie-Hellman found it,
but couldn’t tell anyone about their work;, perhaps it was
discovered by others before. That this system was
discovered independently more than once shouldn’t
surprise you, given how simple it is! The encoding
function here is a trapdoor function-one whose inverse is
impractical to implement, unless some extra information 1s
available. This extra information (called the decrypting-
key) is not required for encrypting the message, vet is
essential for decrypting it in reasonable time. The beauty
of such a system 1s that the encrypting process need not
be kept secret. Each user has his own or a personal
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encrypting-function, which is  public information
(hence the name public-key) and a decoding key,

which he keeps secret.

The basic concept of public-key crypto-algorithm: Ina
public-key cryptosystems each user places in a public-
key server an encryption procedure E. That 1s, the
public-key server 1s a directory giving the encryption
procedure of each user. The user keeps secret the details
of his corresponding decryption procedure D. These
procedures have the following properties:

a. Decrypting the encrypted form of plaintext message
C=E(T) yields T, i.e.

D(C) = D(E(T)) = T

Both E and D are easy to compute.

¢. By publicly revealing E the user does not reveal an
easy way to compute D. This means that in practice
only he can decrypt messages encrypted with E, or
compute D efficiently.

d. If a message T is first deciphered and enciphered,
T 1s the result, 1.e.:

ED(T) =T

An encryption (or decryption) procedure typically
consist of a general method and an encryption lkey. The
general method, under control of the key, encrypts a
plaintext message T to obtain the form of the message or
ciphertext C. Everyone can use the same general method,
the security of a given message will rest on the security of
the key. Revealing an encryption algorithm then means
revealing the key.

When the user reveals E, he reveals a very inefficient
method of computing D(C): testing all possible messages
T until one finds E(T) = C. If property (c) is satisfied the
number of such messages to test will be so large that this
approach 1s impractical.

A function E satisfying (a)-(¢) is a trap-door one-way
function; if it also satisfies (d) it is a trap-door one-way
permutation. In 1974 the first detailed description of
such a one-way function was published™. That is, a
one-to-one function f: X-Y is one-way if it is easy to
compute a polynomial function f(x) for any x £ X but hard
to compute £7'(y) for most randomly chosen y in the
range f. Diffie-Hellman™ were the first to introduce the
concept of trap-door one-way functions into crypto-
algorithm. These functions are called one-way because
they are easy to compute i one direction but (apparently)
very difficult to compute in the other direction. They

are called trap-doors functions since the inverse functions
are in fact easy to compute once certain private trap-door
information 1s known A trap-door one-way function that
also satisfies (d) must be a permutation: every message 1s
the ciphertext for some other message and every
ciphertext is itself a permissible message. (The mapping
1s one-to-one and onto). Property (d) is needed to
implement digital signatures scheme™¥. Public key
cryptosystems, however, tend to be more computation
intensive than symmetric one, many of which are fully
executed in hardware alone™, but their algebraic
foundations provide robust proofs of secunty that few
symmetric crypto-schemes can match®™,
The mechanics of Diffie-Hellman algorithm: The
Diffie-Hellman procedure depends on rather magical
properties of whole numbers. In the nineteenth century
Gauss established an elaborate body of theorems based
on the idea of arithmetical remainders. He adopted a
notation that 1s widely used by mathematicians today,
y = x(mod n), what this means is that if you divide y by n
you get a remainder x (c¢f. 15 =2 mod 13). The symbol =
{or =) 18 called a congruence relation and simply
means equivalent to, while mod 1s short for modulus, or
modulo, we will use both symbols interchangeably. If you
multiply two numbers in this system you also still geta
number between 1 and 13. For example, 4x6 mod 13 = 24
mod 13 =11 mod 13. This then 1s just a notation.

Diffie-Hellman technique makes wuse of the
apparent difficulty of computing logarithms over a finite
field F, with p number of elements. The systems
parameters, therefore, consist of a large prime number p
and a generator g of the multiplicative group 7', whose
powers modulo p generate a large number of elements.
Let:

v = g¥(med p) forlex<p-1 (1)

where, g i8 a fixed primitive element of F,, then x is
arranged to as the logarithm of y to base g, modulo p:

x =log,y(medp) forl<yzpl (2)

Calculation of y from x 18 easy, taking at most,
2-log, p, multiplications®™. For example, x = 34:

y=g"=(»") g"

Computing x from y, on the other hand can be much
more difficult and, for certain carefully chosen values
of p, requires an O(\/E) , using the best known
algorithm™. Security of DH, therefore, depends
crucially on the security of computing logarithm moedulo
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p and if an algorithm whose complexity grew as, log, p,
were to be found then DH crypto-security can be
broken!"!.

CLASSICAL DIFFIE-HELLAM KEY
EXCHANGE PROTOCOL

Let us consider our usual commumicating partners,
Alice and Bob and don’t forget the benevolent cracker
Eve. Alice must communicate vital information to Bob that
must reach him securely. Their communications are
monitored by Eve, who must not discover the message. If
Alice and Bob could agree on a secret encoding key, they
could encrypt their message. Fortunately, Alice knows
Diffie-Hellman algorithm.

Now let’s apply this mathematical procedure to
Diffie-Hellman algorithm. The method works as follows:
(1) Both the active participants (say Bob and Alice) must
first agree on two randomly generated prime numbers,
p and g. Numbers p and q can be publicly known.
Parameter p is a prime number and parameter g (usually
called a generator) is an integer less than p, which is
capable of generating every element from 1 to p-1 when
multiplied by itself a certain number of times, modulo the
prime p. (i) Each participant must next choose another
randomly generated number, perform a mathematical
operation that involves p, q and the chosen number; and
then transmit the result to the other participant.

Generation of shared key using DH key exchange
protocol: The systems parameters consist of a large
prime number p and a generator g of the multiplicative
group 7', whose powers modulo p generate a large
number of elements. Alice and Bob agree on a prime
number p and an integer g that has order p-1 modulo
p(Se g =1 (mod p)), but g* =1(modp} for any
positive s,<p-1.) Alice chooses a random number s,<< p
and Bob chooses a random number sg;<p. Alice sends
k,=g* (mod p)to Bob and Bob sends k, = g™ (mod p)
Alice.
Alice (A) can now compute the secret-key:

k,p= (g™ ) =g™™ (modp)
Likewise, Bob (B) computes the secret-key:

kg, = (g7 ) =g (modp)
One may notice that: k=k,,=k,, =g™% =g*(modp), is the
session or shared master secret key between Alice and

Bob for future secure commumcation. The session-keys
are the same (since s = s,8; =s8,); hence Alice and Bob

now have a shared master secret-key k. Future
communications occur using the session key k. Thus, the
session-key, k can be used with a private-key crypto-
algonthms such as Data Encryption Standard (DES), 3DES
or AES, for encryption purposes.

Now Alice uses the master secret key k to send Bob
an encrypted version of her critical message. Bob, who
also knows k, 1s able to decode the message. Meanwhile,
hacker (Eve) see both, g™ (modp) and g® (modp), but
she aren’t able to use this information to deduce eithers,,
sg or g° (mod p) quickly enough to stop Bob from
thwarting her plan. This 18 the backbone of the DLP
crypto-security.

The only information that Eve knows is group
G g g*andg® If Eve can recover g° from this data
then Eve 1s said to solve Diffie-Hellman Problem
(DHP). More specifically, we can define DHP as follows:
Given a finite cyclic group G, with generator g £ G
and elements &, P € G. The DHP asks for v € G such that:
y=g @B PE%D 1t s easy to see that if Hve can find
discrete logarithms in G (residue group modulo p) then
she can solve DHP. Tt is believed for most groups in use
in cryptography that DHP and the Discrete Log Problem
(DLP) are equivalent in complexity-theoretic sense, there
is a polynomial time reduction of one problem to the other
and vice versa®***!. In any case, if one wishes to use the
DHP in particular group as the basis of a cryptosystem,
it 1s necessary that the DLP be hard in that group!
Although there are many groups that have been proposed
for which DHP may be hard and used securely-however,
in practice there are only two that are most often used:
One in multiplicative group (F,)" of finite field of order q
and which is employed in this study. Tts slight
modification 1s employed in Digital Signature Algorithm
(DSA)!,

However, it turns out that if the numbers are all
sufficiently large, it is very hard to calculate the discrete
logarithm in a reasonable time. The security of the Diffie-
Hellman algorithm depends on this fact. Altematively, the
eavesdropper can have access to p, g, 5, and Sy but
neither k, nor ky. As a result, the eavesdropper cannot
calculate k.

If p 13 a prime slightly less than 2° then all
quantities are representable as n-bit numbers.
Exponentiation then takes at most 2n multiplications, mod
p, while by hypothesis taking logs require, g = 2",
operations. The cryptanalytic
exponentially relative to the computational efforts. If
n = 200, then at most 400 multiplications are
required to compute k, from s,, or k from k, and s, yet
taking logs, mod p, requires 2" or approximately 10 *
operations.

effort therefore grows
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TImplementation of DH key exchange protocol: Tn practice
the systems parameters consist of a large prime number p
and a generator g of the multiplicative group Z', whose
powers modulo p generate a large number of elements. For
practical application and security reasons the crypto-keys
must be of 1024-bit or greater 13 recommended (Fig. 1).
However, here we consider an overly simple numbers to
help us understand the basic implementation of DH
procedure.

Systems parameters: The two communicating entities,
Alice (A) and Bob (B), both selects the prime
p = 12884901893(a 30-bit or 10 decimal digits) and a
generator g = 12 of order p-1 = 12884901892; where, g, k,,
kpeZ,

Alice (A):

¢ Select arandom integers, = 2" as her secret-key.
+  Compute and sends to Bob:

k, =g% mod p=12"" (modp) = 3505577916

Bob (B):

*  Chooses a random integer s; = 2" <p as his secret
key
+  Compute and sends to Alice:

k, =g modp=12""" (modp)= 9663562615
Each entity compute shared master secret-key:

Alice:  k,;=k=(k,)™ = 11093904324 (mod p)
where shared session; s = 88, = 8,8, = 33554432,

Bob: kg, =k=(k,)™ = 11093904324 (modp)

Hence the session master secret key:
k=), = k.s = g°= 11093504324 (mod p)

Indeed:
8 = 8,8p = log,y = log, 11093904324 = 33554432

The DH method is used for communication between
two people and makes use of three keys: two secret-keys
(one for each person) and a session key determimned by
the two people during the course of the conversation. In
other words, the conversation starts with the two people
using their own keys; they exchange mformation to
determine a session key which 1s then used for all future

messages. It is important to note that Diffie-Hellman
algorithm 1s an excellent tool for key distribution, but
cannot be used effectively to encrypt and decrypt
messages on the fly independent of the person one
commumnicates with (cf. email communication).

THE ELGAMAL ALGORITHM

The algorithm that we will use here is the ElGamal
encryption algorithm. Taher ElGamal was the first
mathematician to propose a public-key cryptosystem
based on the Discrete Logarithm Problem (DLP)Y.
He in fact proposed two distinct cryptosystems:
One for encryption and the other for digital signature
scheme 1n 1984. Since then, many variations have been
made digital signature system to offer
improved  efficiency over the original system. The
ElGamal public-key encryption scheme can be viewed as
Diffie-Hellman key agreement protocol m key transfer
mode. Tts security is based on the intractability of the
discrete logarithm problem (DLP) and the Diffie-Hellman
Preblem (DHP )4,

ElGamal encryption algorithm is very similar to the
RSA encryption algorithm in the sense that it is a public
key algorithm, which utilizes modular arithmetic on large

on the

numbers”. However, the mathematics involved is slightly
more complicated. Let us start by examiming what values
constitute to both the public and private keys and how to
generate them.

The systems parameters consist of a large prime
number p and a generator g of the multiplicative group 7',
whose powers modulo p generate a large number of
elements, as m Diffie-Hellman method. Let’s assume the
two entities Alice (A) and Bob (B) wants to communicate.
Alice (A) generates a secrete (private-key) from a
randomly chosen large integer number a such that
1 <a<p-2 and computes her public-key A:

A =g*(modp) 3

Alice’s authentic public-key set 13 (p, g, A) and
private-key (a, p). Note that g must be less than p and
relative prime to p. This is essential to the algorithm
because if a and p are not relatively prime, then we will
have trouble using our mod operation.

Encryption: Bob (B) encrypts a message M for Alice (A),
which A decrypts.

Suppose Bob wishes to send a plaintext
message M to Alice, where, M 1s an mteger mn the range

[0, p-11:
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+ Bob first obtaing A’s authentic public-key ring:
(p, 2, A) placed in the public key server.

*  (Qenerates a large random mteger b such that
l<bep-2

+  Computes his public-key: B=¢g" (modp)

*  He uses DH key exchange protocol which they had
agreed a prior to compute the shared masters secrete
key: S.: = (A) modp = g®* (mod p)

¢ Encrypts the plaintext message M: § = M-S, (mod p)

¢ Sends the ciphertext C = {B, 8} to Alice.

Decryption: Upon receiving the ciphertext C, Alice uses
her private-key a to compute:

8, ,=B"""modp
(notthat: §”',. = B* ' =B =g™®)

and recovers plaintext message M by computing: (B™),
& mod p which can easily be proved as follows:

B8 = g Mg* = M(mod p)

Implementation of ElGamal encryption with artificially
small parameters

Key generation: Entity A selects the prime
p = 12884901893 and a generator g = 12 in 7', with order
p-1 = 12884901892,

*  Alice (A) chooses the private-key: a=2" = 1024 <p.
*  Computes: A=g*moedp=12""(mod p) =3505577916
*  A’s public key ring 1s:

(P, g, A) = (12884901893, 12, 3505577916).

Encryption (Bob): To encrypt a plaintext message
M =352247.

+  Bob (B) selects private key, a random integer:
b=2"=32768<p.

*  Computes his public key as:
B=g"=12"" mod p = 9663562615.

*  He computes the shared master secrete key using DH
key exchange protocol as:

(AY = (g% = (35055779167 (mod p) = 11093904324
¢ He encrypts ciphertext as:

& = M-S, (mod p) = 553247.11093004324 (mod p) =
9930699416

«  Bsends C=(B, ) = (9663562615, 9930699416) to A.

Decryption (Alice): To recover the message M, Alice (A)
does the following procedure:

»  Recewves ciphertext:
C = (B, 8) = (9663562615, 593069941 6)

»  Computes master shared secret key:

87, =g *modp=3314334791

ABT
¢ Recovers M by computing:
M=8" . -8(modp)=352247

where, we note that: §™,;-6=8",.-M-5,,=M

Common system-wide parameters: All entities may select
to use the same prime p and generator g, in which case p
and g need not be published as part of the public-key.
This results in public-keys of smaller sizes. An additional
advantage of having a fixed base g 1s that exponentiation
can be expedited wvia precomputation. A potential
disadvantage of common system-wide parameters is that
larger modulo p may be warranted For practical
application and security reasons the crypto-keys must of
1024-bit or greater is recommended (Fig. 1).

DIGITAL SIGNATURE AND AUTHENTICATION

Authentication 18 important  than
encryption®™ Most people's security intuition says
exactly the opposite, but it's true. Imagine a situation
where Alice and Bob are using a secure commumnications
channel to exchange data. Consider how much damage an
eavesdropper (Eve) could do if she could read all the
traffic. Then think about how much damage Eve could do
if she could modify the data being exchanged. Tn most
situations, modifying data is a devastating attack and
does far more damage than merely reading it.

more

One way to address the authentication problem
encountered in public-key cryptography 15 to attach
digital signature to the end of each message that can be
used to verify the sender of the message"™. The
significance of a digital signature 15 comparable to the
signmficance of a handwritten signature.
situations, a digital signature may be as legally binding as
a handwritten signature. Once you have signed some
data, it is difficult to deny doing so later-assuming that
the private-key has not been compromised or out of the
owner's control. This quality of digital signatures
provides a high degree of nonrepudiation - i.e., digital

In some

signatures make 1t difficult for the signer to deny having
signed the data™ . This quality is stronger than mere
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authentication (where the recipient can verify that the
message came from the sender), the recipient can
convince a judge that the signer sent the message. To do
80, he must convince the judge he did not forge the
signed message himself! In authentication problem the
recipient does not worry about this possibility, since he
only wants to satisfy himself that the message came from
the sender.

In short, an signature
message-dependent, as well as signer-dependent.
Otherwise the recipient could modify the message before
showing the message-signature pair to the judge. Or he
could attach the signature to any message whatsoever,

electronic must be a

since 1t 18 not possible to detect electronic cutting and
pasting. To 1implement signatures the public-key
cryptosystem must be mnplemented with trap-door
one-way permutations i.e., have the property (d), since
the decryption algorithm will be applied to unenciphered
messages*'0,

ElGamal was the first cryptographer to introduce the
basic concept of digital signature scheme. The ElGamal
signature scheme is similar to the encryption algorithm in
that the public-key and private-key have the same form;
however, encryption is not the same as signature
verification, nor is decryption the same as signature
creation as in RSA. The DSA 1s based m part on the
ElGamal signature algorithm!™.

For a long period of time (1985-1996) after the birth of
the ElGamal signature scheme and the family of such
signatures (e.g., Schnorr and DSS), it was widely believed
that the difficulty of factoring such a signature should
somehow be related to the discrete logarithm in a large
subgroup of a finite field®"™®. However, no formal
evidence (formal proof) was ever established until 1996.
Poincheval and Stern succeeded in demonstrating
affirmative evidence for relating the difficulty of signature
forgery under a signature scheme in the ElGamal-family
signatures to that of computing discrete logarithm!.
They do so by making use of a powerful tool: The
Random Oracle Model (ROM) for proof of security. The
ROM-based techmque of Pontcheval and Stern 1s an
msightful instantiation of the general ROM-based
security proof technique to proving security for the
ElGamal-family sighatures.

Digital Signature Algorithm: The Digital Signature
Algorithm (DSA) was proposed in August 1991 by the
US. National Institute of Standards and Technology
(NTST) for use in their Digital Signature Standard (DSS)
and was later specified m a US Government Federal
Information Processing Standards (FIPS 1865 called

the Digital Signature Standard (DSS). Tt was designed at
the NSA as part of the Federal Government's attempt to
control high security mvolving cryptography. Part of that
policy included prohibition (with
penalties) of the export of ligh quality encryption
algorithms. The DSS was mtended to provide a way to
use high security digital signatures across borders 1 a

severe criminal

way which did not allow encryption. Those signatures
required high security asymmetric lkey encryption
algorithms, but the DSA (the algorithm at the heart of the
DSS) was intended to allow one use of those algorithms,
but not the other. Tt didn't work. DSA was discovered,
shortly after its release, to be capable of encryption
{(prohibited lugh quality encryption, at that), however, it
1s so slow when used for encryption as to be even more
than usually inpractical.

The US government based their Digital Signature
Algorithm (DSA) on much of ElGamal’s work!” and is the
best known example of a large system where the Discrete
Logarithm (DL) algorithm is used. Tts security is based on
the intractability of the Discrete Logarithm Problem (DLP)
in prime-order subgroup of Z',. As with the RSA
algorithm, these transformations raise the computational
complexity of the problem. The discrete logarithm system
relies on the discrete logarithm problem modulo p for
security and the speed of calculating the modular
exponentiation for efficiency. In terms of computational
difficulty, the discrete logarithm problem seems to be on
a par with factoring™®.

The Mechanics of Digital Signature Algorithm (DSA):
The Signature-Creation Data consists of the public
parameter an integer y computed as: y = g°mod p, as per
the DLP above. Note that p and q are large prime

B When computing a signature of a message M,

numbers
no padding of the hashcode is necessary. However, the
hashcode must be converted to an integer by applying
the method described in Appendix 2.25%,

The basic idea of DSA 18 for the signer of message
M - that 1s, the possessor of the value x behind the
publicly known, g mod p- to append a pair of numbers r
and s obtained by secretly picking another number
k between 1 and g, computing, r = (g mod p),
(ie., computing g mod p) and then taking the
remainder of that number mod p) and s = k™
{SHA(M)+xr) mod g where, k™' is the multiplicative
inverse of, k (mod ) and SHA is the Secure Hash
Algorithm!™. He then sends (M, r, s) to the
communicating partner. Anocther NIST standard, SHA
{official acronym 1s SHA-1) reduces a character string of
any length to a 160-bit string of gibberish. In the
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implementation of DSA, qis a 160-bit prime divisor of
p-1 and g is an element of order qin F7,,.

The receiver of (M, r, 8) from person g* computes,
u=s" SHA(M) mod q and v = s ' r mod g and then
checks that ((g")(g")’ mod q), equals r. If it doesn’t, thern,
by elementary number theory, something definitely went
wrong. If it does, then, according to NIST, you can safely
assume that the message M came from the presumably
unique individual who knows the discrete logarithm of g*.
Table 1 shows the sequence of DSA scheme.

Table 1: Digital Signature Algorithm (DSA)
Digital Signature Algorithm (DSA)
Key generation:

. Choose an L-bit prime p, where, 512<1.<1024 and is divisible by 61
. Choose a 160-bit prime q, such that, p-1 = qz where, z is any natural

number
. Choose, h where 1<h<p-1 such that g =h* mod p>1
. Choose x by some random method, where, 0<x<q

. Cormpute ¥y = g* mod p
. Public key is (p, q, g, ¥). Private key is x

Nate that (p, g, g) can be shared between different users of the system, if
desired

Signing:

. Choose a random per message value k (called a nonce), where, 1<k<q

. Compute r= (g mod p) mod q

. Compute s = k™' (H(m)+xr) mod q, where, H(m) is the SHA-1 hash
function applied to the message m

. Signature is (m, 1, 8)

Nonce means ‘for the present time’ or “for a single occasion or purpose’
Verifying:

. Compute: w =5 (mod q)

. Compute: ul = xH (m){mod q)

. Compute: u2 =wr (mod q)

. Compute: v = (g"*y** mod p) mod q
. Signature valid if v=r

DSA is similar to ElGamal discrete logarithm cryptosystem signatures®.

Implementation of Digital Signature Algorithm (DSA)

Here we will use an overly small prime and integer numbers to show how
DS A can be implemented in real applications. In real practice, the DSA has
the advantage that signatures are fairly short, consisting of two numbers of
160 bit (the magnitude of p). By comparison, the RSA signature is about
three times long!®.

Key generation:

. Choose a prime number:
p = 12884901893, which, gives q=3221225473 and z =4.
. Choose h = 246, such that g =h"mod p = 246* mod p = 3662186256
. Choose x = 323 and compute:
¥ =g mod p = 3662186256" mod p = 1727826790
+  Public key is: (p, q g y) = 128840018903, 3221225473,
3662186254, 1727826790, Private key is: x =323,

Signing:
. Choose a random per message value k = 4822 (called a nonce), where,
1<k<q

. Compute r = (g* mod p) mod q = 3564107243 (mod q) = 342881770

. Choose m = H{m) = 434136 and compute s = k= (H(m)+xr) mod
q =3180062802

. Signature is (m, r, 8) = (434136, 342881770, 3180062802)

Nonce means “for the present time’ or ‘for a single occasion or purpose’
Verifying:

. Compute: ul =5~ H(m) (mod q) = 738418804

. Compute: u2 =5 r(mod q) = 1144589831

. Compute v = (g" *vy*> mod p) mod q = 342881770
. Rignature valid, since: v=r = 342881770.

The security of DSA 1s based on the assumption that
the only attacks are either those that work in the
multiplicative subgroup of order q without exploiting any
special properties of this group, or else by methods such
as index-calculus ones, which work with group modulo p.
There 1s no proof that some algebraic relations could not
be exploited to find an improved algorithm.

To-date digital signature algorithm remains seemingly
secure, until the methods of Shanks and Pollard’s rurming
times can be improved substantially or a more effective
algorithm with better runming time, to threaten its security.
Such an alternative algorithm would not require a
subexponential technique to break the DSA. A method
that runs in time q"* (group Q = <> of prime order) would
destroy it. Thus, the DSA seemed to have afttained both
a high level of security and low signature storage and
implementation time. This lack of progress in developing
better algorithm capable of breaking DSA has provided a
subjective feeling of comfort to crypto-designers and led
them to choose a crypto-security parameter close to the
edge of what is feasible. However, recently the DSA has
been superseded by the ECDSA, which 1s a similar system
based on the group of an elliptic curve rather than a finite
field"?.

DISCRETE LOGARITHM RELATED PROBLEM

Let G be a cyclic group and let g be generator of G
such that: G = {g", g'....., g"'}, where, n = |G| of G. The
discrete log function Dlog,: G-Z takes mput a group
element v and returns the unique ¢ € 7, such that: y = g%
There are several computational problems related to this
function that are used in primitive. In all cases, we are
considering an attacker that knows the group G and the
generator g, that 15, given g” find a(DLP). Alternatively,
given g* and g®, find g®(DHP).

Methods for solving DLP: Recall communicating partners,
Alice and Bob. We assume that they have decided in
advance touse DH protocol, to form shared master secret
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key that they can wse for secure communication,
which is givenby:  k =g™* (modp)where, g €7, and

s = 8,5p In range [1, n-1], where, n 18 the order of the
group. Clearly, the key exchange systems, 1s broken as
soon Bve, the benevolent eavesdropper, can determine s,
from the known k, (or sy from kg). This 1s the motivation
for us to look at various techmques to solve:

g’ = r(modp) (4

where, g, r and p are known and s need to be determined.
While the eavesdropper who happens to have overhead
the exchange and thus knows g, g™ and g% , will
hopefully not be able compute g°® The problem of
how to solve, g° = r (mod p), 1s called the discrete
logarithm problem (DLP) (ie., log, r = s)™L If the
discrete log problem for the group G = <g>, order of group
1s easy, an eavesdropper can compute either s, or s and
can find out what g° 1s. It 13 an mmportant open question
whether determining g’ knowing just g g* andg® is as
hard as the discrete log problem in general™
it is important to note that, a fast discrete log algorithm
would definitely destroy the crypto-security and utility of
the widely used Diffie-Hellman crypto-protocol. The same
threat also affects other crypto-security based on DLP

! However,

such as ElGamal cryptosystems and digital signature
algorithm (DSA). This factor has generated huge research
opportunity cn the complexity of the discrete logs ™.
Forreal time practical application when mmplementing
DLP-based crypto-algorithm like DH and the likes (where
the certificate and signed hash have been added to
prevent man-in-the-middle attack), the area of most
concern focuses upon the fact that the specifications for
generation of shared master secret key and certificate for
authentication purposes, fixes the values of p and g.
However,
conditions, the discrete log is easy to compute and, for

one must be careful since under some

this reasons the value of p must be chosen carefully. For
example, it 1s easy to compute the discrete logarithm when
p-1 has only small prime factors, thereby susceptible to
Pohlig-Hellman attack, which has time complexity
bounded by the largest prime factor of the group.
Therefore, for safe prime, p 1s usually chosen so that
(p-1)/2 is itself prime, say q. Likewise, some care must be
given to the choice of g so that the subgroup generated
by g is relatively large, but this is usually an easier choice
to male than the choice of p. The time complexity is thus
same for both methods {one where the generator creates
the whole group and the other where the generator
generates only the subgroup with q)*”.

The best known generalized algorithms for solving
discrete logarithms are still quite slow, but the majority of
time 1s usually consumed m easily parallizable
precomputations about the group (choice of p and g) in
general. Once the precomputation 1s fimshed, then any
discrete logarithm in that group is easily found. In that
aspect and m most applications implementing secure
network connections-it is known that most connections
will be created using the only key exchange algorithm
defined in the specification. Hence, the time and expense
required to break the majority of secure connections is,
therefore, only slightly greater than the time and expense
required to perform the aforementioned precomputations
for the group specified in that standard. One time-honored
rule for security design 1s that the value of the data being
protected should be less than the expense required to
break the crypto-security systems.

GENERAL ATTACKS ON DISCRETE
LOGARITHM PROBLEM

There are many ways Eve could implement to acquire
the shared master secret key: one option is she could
exploit the weakest link in the crypto-security systems.
This could be via many available options, e.g., breaking
the underlyng crypto-algorithm and which in most cases
15 harder option to be attempted only as a last resort.
Instead the eavesdropper might opt to exploit other
weaknesses such as: recovering a key by observing the
power consumption or electromagnetic radiation of the
crypto-devices; finding vulnerabilities m the crypto-
security protocols or simply revert to stealing the key:
Through clever mteractive social engineering with those
trusted to safeguard the keys. In most cases, however, the
crypto-algorithms are always the most important core tool
in crypto-security applications.

If we assume that Eve’s has no any other alternative
available and so must resort to brute-force attack of the
core crypto-algorithm, which m this case requires her to
solve the underlying DLP, ie.,

g® =1 (modp) (orloggr: s).

In applying brute-force approach to find, s, from g°, she
would have to try: s =0, 1, 2, ... until a solution is found
or, alternatively, to put: g, g', g% ...
for r. Either way, the complexity is p. If p consists of t bits,
we can say that the complexity is given by 2%, so the
complexity grows exponentially in t. There are much better
methods that she can resort to, which balance the time

in a table and look

complexity with available memory, such as 1s the case with
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Shank’s Baby-Step Giant Step (BSGS) method. Other
methods are Pollard’s tho, Silver-Pohlig-Hellman and
index calculus, which we all discuss in this paper. Of all
this methods, the methed, a

subexponential-time algorithm, offer better performance in

mdex  calculus
cracking DLP based crypto-schemes. In case of the prime
fields, there 1s more advanced version of the mdex-
calculus known as the Number Field Sieve (NFS), to solve
the DLP with expected time!*:

O(exp(1.93 + o()(Ing)"* (Inlng)**)

If g = 2", there is a vanation of the index-calculus known
as Coppersmith’s algorithm, to solve the DLP with

expected time™:

Ofexp(e+ o{D¥In M dnlng)??)

for some ¢<1.587. Note that the DLP 1s still considered
hard in these groups because the runtimes of these
algorithms are not bounded by any polynomial m, g.
However, the existence of these subexponential-time
algorithms means that one must use larger key sizes than
if only exponential-time attacks were known. For example,
for practical security reasons it is recommended that prime
fields, p should have at least 1024 bats (Fig. 1).

Shank’s Baby-Step Giant-Step (BSGS): Suppose that
one has enough memory available to store m elements of
Z,. Then the Shanks algorithm gives us an efficient
method to balance the time complexity with the available
memory to solve the discrete log: g° =r(modp). The
method require one to compute go,gl,gz,...,gm_l, sort
this element in a list to allow for easy look-up table, where
mcase of the baby steps (BS) the exponents mcrease by
1. Next check if the r 15 in the table, if not, then one checks
if /g™ is in the table, if not check for r/g*" and continue,
Giant Steps (GS). When r/g™ 1s in the table, say it equals
gk ,0=<k=m-1  one has found the unknown exponent
s = un+k. The time complexity of the baby-step method 1s
p/m, so the product of memory requirement and time
complexity is still p~ 2" .

Shank’s Baby-Step Giant-Step (BSGS):
requirement: one has enough memory available to store
m elements of 7

System

Tnput: A finite group G = <g> of ordernand g, y € G.

Output: The discrete logarithm of y to the base g.

Procedure:

¢ Compute the ceiling of square root n:m= (\/H W

»  Construct a table T of (1, g'™) pairs, 1 <i<m and sort
by the second component in the pair.

»  Compute y.g, starting at ] = 0. ((y.g") might be equal
to g*! for some x and j).

¢+ Compare y-g with g"" entries in T. If a match is found
then g™ = g™ and thus x = im-j, is the desired
discrete log. If there is no such match, then try
another value of j, with j<m

Time complexity: O(\/H ) and Space complexity O(JH ).

As an example, let G= 2;39. Then g =2 is the
generator of G with order of n = p-1 = 138. We look for the
discrete logarithm of y = 43 to the base g.

Implementing BSGS: First let’s compute
m:(\/w_ﬂ:u
(1, g'™) pairs, for 1 21<12

i 1 2 3 4 5 &6 7 8 9 10 11 12
2% mod 139 65 55 100 106 79 131 36 116 34 125 63 o4

which we use to construct table T of

Sorting T by the second entry:
i 9 7 2 11 12 1 5 3 4 8 10 6
2% (mod 139) 34 36 55 63 64 65 79 100 106116 125131

Computingy-g forj=0,1,2,....
j 0 1 2 3 4 5

1
43.2 (mod 139) 43 86 33 66 132 125

Comparing the two table entries, we can observe that we
have a match in the entries for i = 10 and j = 5, which
gives: glz'(w) = g5+x, i.e., the discrete logarithm of 43 to
thebase 2in 7', is x = 120-5 = 115. Hence,

log,, y =log, 43=115. Indeed: 2113 _ 43(mod139).

In Shanks” algorithm, the checking for matching from
the two sorted lists of m entries each can be done in linear
time (assuming that the representations of elements are
compact enough). Hence, the rmning time of the
algorithm is dominated by the arithmetic required to
compute the two (lists) tables and the time to sort them.
Further, Shanks’ algorithm is
deterministic. Therefore, if one is willing to give up on

also known to be

determinism, one can replace sorting by hashing, thereby
speeding up the process. On the other hand, there is no
easy way to reduce space requirements (other than by
increasing the running time), which are order m: |<g>[""4*1,
There are other general algorithms for discrete log
problem that run in time Q(j<g>""|) and very little space,
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both methods are randomized and are due to Pollard!',

which we discuss next.

Pollard’s Rho (p) method for solving DLP: Basics Idea-
Pollard’s Rho algorithm is based on the birthday
paradox™**. If we randomly choose elements (with
replacement) from a set of N numbered elements, we only
need to choose about Jﬁ elements until we get one
element twice (called a collision). This can be applied
to find discrete logarithms as follows. By choosing
a, b €; [0, N-1], one obtains a random group g*h®. Such
group elements are randomly selected until we get a group
element twice. If g% 1% and g h% represent the same
group element then a; +bjx =a; + bx (modN), whence:
x=(aj—a;)b; 7bj)_1m0dN for b; = b; (modN) (5)

The Pollard’s tho method has an expected storage
requirement given by E(T)= ,/nN/Z, where, T 1s the
random variable describing the number of group elements
chosen untl the first collision occurs. The mam thrust of
Pollard’s tho method, is then how to detect collision
without the need to store  fnN/2 group elements. The
collision in this method is done by means of a random
function: f.G —» G For actual implementations, f is
chosen such that it approximates a random function as
closely as possible.

The originally suggested function by Pollard
(for Z',) can be generalized towards arbitrary cyclic
groups given by:

(hx,a,b+1) ifxef

f(x,a,b)=1(x*2a,2b) ifxes, (6)
(gx,a+1lb) ifxed;

where, 5, 5; and S; are three sets of roughly the same size
which form a partition of G. However, Teske™*" has
shown that the Pollard’s function f 1s not random enough
and gives alternative and better function as:

forse{l, 2,....r; and r =20
(7a)

where, again M, are roughly of the same size and form a
partition of G, which this time is partitioned into more than
three subsets. For both functions, it i1s of course

flx)=x-gMh%, if xeMs

necessary that determining the subset M, and S,
respectively, to which a group element belongs 1s very
efficient.

By starting at a random point g™h® and
iteratively applying a random function, random points

gaihb1 are generated. Because the group is finite, we
eventually ammve at a pomt for the second time (1.e., a
collision occurs), which happens after expectation E(T),
thereby, the sequence of subsequent points then cycle
forever. With very little time and space overhead, it is
possible to detect such a cycle with Floyd’s cycle-finding
algorithm (or with an improved variant by Brent™).

The Mechanics of Pollard’s Rho (p) method
Input: A finite group G = <g> of ordernand g, y € G.

Qutput: The discrete logarithm of v to the base g.
Procedure:

»  Break the set G into three approximately equal-sized
sets S, 5, and S..
»  Define a sequence of elements over G: xy, X, Xg,.... 88!
X =1
y-x; ifx; e

X =f(x)=4x7  ifx;€8,,i20

(7b)

g-x; ifx;e8;

¢ This sequence, in turn, defines two other integers

sequences a, b, such that x; =g% -ybi, for iz 0

a,=b;=0
a; ifx;e8;
a,=+28; ifxe8,,iz0 (8)
a;+1 ifx;e8;
bi +1 iin = Sl
bi+1: 2b1 iinESZ, i=0 (9)
bi iin 683

»  Cycle-finding calculation: The next step 1s to find a
pair (x;,%4;) with x; = x4;.

In this case:
b 2 2b, 2a — b, —2b
ga'l . y — g a; y — g a4 —a = y ! !
_ _ 2a; —a;
—log, g% % =log, v 2 = 1o == _Tlmodn
2 & 2o Y 2o Y b

As long as bi;_ébzimodn, the discrete log can be
calculated as above. In the rare case that a collision x; = x,,
is not found, or that b; =by;modn, the procedure can
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be repeated by selecting random ag, by €[1L,n—1] and

restarting with x, = g™ .yb.

Time-complexity: O(yn) Space-complexity: O(1)
Implementing Pollard’s Rho for solving DLP: As an
example, let H = Z',;;. Then g = 2 is a generator of the
subgroup G of Z*,;, of order n = 191. Suppose y = 228.
Partitioning G nto three sets according to the rule:

x e S ifx=1mod 3; x € § it x=0mod3andx e 5,
ifx = 2 mod 3 and setting x, = 0; a, = 0 and b, = 0, results:

i X 8 a by i X Ay b
1 228 0 0 1 2 279 0 2
2 279 0 0 2 4 184 1 4
3 92 2 0 4 6 14 1 6
4 184 1 1 4 8 256 2 7
5 205 1 1 5 10 304 3 8
6 14 2 1 6 12 121 6 18
7 28 1 2 6 14 144 12 38
8 256 1 2 7 16 235 48 152
9 152 2 2 8 18 72 48 154
10 304 1 3 8 20 14 96 118
11 372 0 3 9 22 256 97 119
12 121 1 6 18 24 304 98 120
13 12 0 6 19 26 121 5 51
14 144 0 12 38 28 144 10 104

The calculations show that: x,, = x,, = 144
Computing:

Aa=2a,5 —a;,(moedn)=(10-12)meod191=189
Ab=byy — 2byg{modn) = (38-104)mod191 =125

Results:

X= logg y=log, 228 = (Ab)flAa(modn) =
(125)"1(189)mod191=110

Indeed:

210 _ 228(mod 383)

Pollard’s Lambda (A) method: Pollard’s lambda method is
known as Method for catching Kangaroos.

Input: A fimte group G = <g> of order n; g, y € G
and value w standing for the size of an interval in

which the discrete logarithm lies, e.g.,

A<log, y<B,w=B-A.

Qutput: The discrete logarithm of y to the base g.

Procedure:

»  Compute two sequences T and W (called Kangaroo
trails). The T sequence is  {¥q. ¥1.--- ¥}, where:

fiy)
Vi =yi-g' 0 i 0

Actually, this will occur if W’s trail hits any point
v, 0<i<N. s

T’s trail begins at Yo=g (medn) and proceeds till
v Note that

Vi = vi -2/ (modn) = vy = v - g™ (modn)

where, d; = Z;Bf (y;) 1s the distance from
yo tll yi.

W’s trail begins at Yo=Y=g". The search ends
when yy =yyn  for vy, in W’s trail, at which point
the discrete logarithm is calculated as:

S v _gZi’U‘f(y;)

YM=YN > Yo'g

x+dy B+dy

= ygh=g"g% = ¢ =

x=(B+dy-d,)modn

=8

+ Ifnocollision(ie,yy =¥y ) occurs (the probability
of which can be controlled) before d,, exceeds
B+d-A = w+d,, then the limit 1s terminated (failure).
W has traveled beyond the trap. Subsequent
iterations of the above sequences can be run as
required.

Time-complexity: O(fw) and Space-complexity:
O(log w). The Shanks method and the Pollard’s kangaroo
method can be used to compute the discrete log of v in
about +fm steps when this discrete log is known to lie in
an mterval of length at most m. Hence, crypto-designers
have to be careful not to limit the range in which discrete
logs lie.

To-date the runmng times of Pollard and Shanks
algorithms have not been improved to any substantial.
This has since led to the assumption that in the absence
of other structure in a cyclic group G = <g> of prime order,

it will require on the order of |G|"*

operations to compute
a discrete log in G. Many of the modemn asymmetric key
cryptosystems based on DLPs, such as DSAP*?, rely on
Schnorr method™, which reduces the computational

burden nommally imposed by having to work ina large
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finite field by working within a large multiplicative
subgroup Q = <g> of prime order. With an assumption
that the discrete log in Q cannot be solved much faster
than \E steps. For g of order 2'™, as in DSA, this is
about 10* group operations. Since group operations are
typically considerably more intensive than the basic
instruction of crdinary computers (%9 for the case of ECC),
it is reasonable to estimate that 10** group operations
might require at least 10* ordinary computer instructions.
A mips-year (MY) is equivalent to about 3-10"
mstructions, so breaking DSA, say, with Shanks or
Pollard algorithms would require over 10" MY, which
appears to be adequate for a while at least. Several crypto-
researcher, including Richard Crandall and Len Adleman,
have observed that all the instructions executed by digital
computers m listory are on the order of Avogadro’s
number, about 6:10%. The largest factoring projects so far
have used 107 operations and other large number
distributed projects have accumulated on the order of 10”
operations (Table 2).

Table 2: Computing power available for integer factorization (in MY)

Year Covert attack Open project
2004 10 2-10°
2014 10010 104-104

The Pohlig-Hellman Algorithm: Here we present the
Pohlig-Hellman algorithm for computing discrete
logarithms™”. If G is not simple, it will reduce a DLP in G to
several DLPs in smaller groups. Tt thus restricts the
possible choices of groups in which the DLP 18 maximally
hard. The idea is to take advantage of many-to-one
homomorphic images in which the DLP is easier to solve.
This will be important in the sequel
generalizations suggest that, even if one considers
structures other than groups of the DLP, one should
consider using simple structures. Specifically, using

because

simple structure 13 the most reliable to avoid similar
attacks>"™*,

The mechanics of Pohlig-Hellman Algorithm
Input: A fimte group G = <g> of ordern; g, vy € G.
Output: The discrete logarithm of y to the base g.
Procedure:

1. Let the factorization of nbe n= Hirzlpf‘ ,8 =0
2. Fori=0tor compute the decomposition

Xp=hg+hy-p;+...+he_ -pie‘_1 where, x; = x(modp;*)

3. Set y=Lh,=0andg=gh.
4. Compute h; forj = Otoe-1 do
compute

h. - 1 _ _ 1
y=y-g" " and § =y

compute hj=loggy
(e.g., using Pollard’s tho method)
S8t x;=hg + hyp; + hy - pf +oothe 'Piel_l

5. Use the CRT to compute the discrete logx with
O<x<n-land x=x;modp;’, with1<icr.
6. Output x.

Note that there are several well-known algorithms for
performing step 5 in polynomial time. The idea is that in
step 1 one can find 2, one can find x; =log, y(modpf ).
This is further reduced by finding the base-p expansion of
x; one digit at a time. Observe that each time step 4 1s
reached, g has order p;. Thus, one need only compute
discrete logarithm in subgroups of order p;. Unless there
1s some trivial way to solve the DLP in G, this 18 more
efficient than computing one discrete logarithm in the full
group with order n. It 1s thus desirable that one should
choose G with prime order so this algorithm yields no
recction at all.

In general, we observe that if G 1s not sunple, then
there exist groups G; and homomorphisms of the form,

f;: G — G; with trivial kernels. One may then solve the
corresponding DLP in each homomorphic image.
Furthermore, if there exist such G, such that:

£:G =G x---xGy
g — (fi(g),--. fi. (g))

is a monomorphism, then solving the DLP in each G,
solves the DLP in G up to an application of the Chinese
remainder theorem.

Time complexity: O(Zleei (logn+ \/E)), provided the
factorization of nis given.

Space complexity: O(1) if used in conjunction with
Pollard’s rho method, for example.

Implementing Pohlig-Hellman Algorithm: Let G=Z",,,
g = 43 a generator of Z',;, of order n = 270. Let y = 210.

The discrete logarithm is computed as follows:

»  The prime factorization of n = 270 = 2:3%5,
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¢+ (Compute x;=xmod2),
Compute g = g“fz modp = gzm/z mod271 =270
and 7 =y"2modp = y*"¥?mod271= 270
Then x;=1logy7y270=1

+  (Compute X;z=xmod5),
Compute g = g“fs modp = gzm/s mod271= 244
and g =g"  modp = g?"%* mod271= 244
Then x;=1logy 187=2

] Compute Xy = Xm0d33 = hO + hl '3+h2 '32,

compute: g= gn/3 modp = g270f3 mod271= 28
compute:

y=1land y=(y-v > modp=

(y v H?27% mod 271 = 242,

Then h, is found as: hy =log,242=2

compute: Y=Y -g2 mod271=223 and
7=y v " modp = (y-y Y% mod271= 242,

Thenh, is found as:  hy =log,g242=2

compute:
y=v-g**mod271=223-43°mod 271 = 68

and

= (y-y ¥ modp = (y-y H?? mod 271 =1,

Then h, is found as:  hy =logag1=3

Hence:

X,=hg+h;-3+h,-37=24+2.3+3.37 =35

¢ Solving the triple of congruences:

x=1(mod2) x=2(mod5) x=35(mod27)

we use CRT, which gives us the x=197(mod 270),
such that x=log,;210=197
Indeed: 437 = 210(mod 271)

INDEX-CALCULUS METHOD

Over finite fields where the DLP 1s defined, there is
another additional structure beyond the multiplicative
structure. The mndex-calculus methods take advantage of
this extra structure!™**!,

The index calculus method is sub-exponential algorithm
for solving the DLP over a finite group G, i.e., given
g, yEG, g a generator, we seek to find a value
B € Z/(|G)Z satisfying y = g". We say that B =log, y or p
=ind, y, for the index of y in g.

The basic idea, which goes back to Kraitchil™”,
15 that 1f:

m

[[xi=11y; (1)

i=1 =1

for some elements of GF(qg)*, then:

m n
2 log, xi =2 log, y;imodq -1) (12)
i=1 1

If we collect many equations of the above form
(with at least one of them involving an element z such as
g, for which log, z1s known)and they do involve many
%, and y, then the system can be solved. This is similar
to the situation IFP®1 Progress in index calculus
algorithms has come from better ways of producing
relations that lead to equations such as Eq. (11).

Index Calculus method involve forming relations in
what is called a factor basis, F = {p,, ps, ..., i}, Which is
formed by choosing a list of the first v primes from the
order n of the finite group G. How many we choose 1s
critical. The factor basis, F consists of all integers whose
prime factors are all less than or equal to the largest prime
on our list.

Once the number of relations found equals the
number of prime factors of the elements in the factor basis
we can solve the system of equations to recover the
discrete logs of these primes. From these logs we can
then, with more computation, recover the discrete log of
any chosen element.

In determining the discrete logs of the elements, we
start by looking at the exponentiations of the generator:
g, g, g, ..., mapping these values to the integers if the
field happens to be I, instead of Z,, which we can write in
product form:

gk — Hi\’:lpiei )

where, p; € F random integer k is such that 1<k<p-1.
Compute: g* ¢ G. If any value of g" is in F, we record it and
following relations. We can derive from g"s factorization
into powers of their first 1 primes and the fact that 7, has
order p-1.
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v
kEZei-loggpi(modpfl) (13)

i=1
where, p, is the 1" prime from our factor base and e;is its
corresponding exponent in the factorization of gt We
continue computing powers of the generator until we
obtam v  independent relations. We solve these
equations (which are typically sparse) to get the discrete
log of each of the v primes. Now, to find the discrete log
of y € F, we compute the quantities y, y.g, y.g°, .... and lift
these as well to Z if needed. We continue the computation
until we find an element, y.gP, that factors completely

using our factor basis such that:
k
y-gP =TT, p.
and taking logs on both sides, gives:

r
B+log, y= 2> e -log, pimodp—1) (14
i=1

where, e, is its corresponding exponent to the i* prime. We
already know the discrete log of each of the v primes, so
we can just solve this equivalence for, log, y. Here, we get
a runtime that 1s subexponential in p provided we make a
good choice for | oylogp P9,

How can we subvert this attack? We can use really
large keys as previously discussed, but this has
significant drawbacks. The system becomes even slower
with larger keys making it undesirable. Additionally, large
keys require more computation space so such a
cryptosystems cannot fit on small form, constrained
environment wireless devices that also need to utilize
encryption e.g., smartcards. Since larger keys do not seem
to offer much of a fix, we need to consider other
alternative cryptosystems like ECC which make use of
ECDLP mstead of the classical DLP, for more detail on

ECTIplE,

The mechanics of index-calculus
Input: A fimte G = <g>of ordernand g, y € G

Qutput: The discrete logarithm of y to base g

Procedure:

¢+ (Factor Base) find asubsetF = {p, p, = p.} of G
such that a significant fraction of all elements in
G can be efficiently expressed as a product of

elements from F.

s (Linear Relations)
¢+ Select a random integer k, O<k<n-1 and
compute gk.

»  Try to write g" as a product of elements from F:

g =TI pf. &>0 (15)

» If Eq. 15 18 successful, then taking the discrete
log of both sides of Eq. 15 results in the linear
relations:

k:ZiV:lei -log, pymodn (16)

s Collect (ttc) linear relations like Eq. 16, by
choosing other random k’s

¢ (Discrete Logs of elements F) working modulo n,
solve the linear system of (v+c) equations in v
unknowns and obtain the value of the discrete
logarithms of the factor base: log, p,, 1 <i<v.

¢ (Actual computation of the discrete log) select a
random 1, O<r=<n-1 and compute y.g".

»  Try to write y.g" as a product of elements of F:

v (<]
y-g =[1;,pj. ¢;>0 a7

not repsentable as (17) then choose
another 1 and retty the factorization (17).
Otherwise, taking discrete logs of both sides of (3)
results:

o If yg 1s

loggy = X8 loggp; —1r=x (18)
Time-complexity:

. Lp(%,1.923) for G = Z', using NFS-variant of index
calculus.
o Lam(3.0) for G=GF(2") and c<1.587

Implementation of index-calculus method: To help us
under the power of cracking DLP based cryptosystems,
we will use Index Calculus to recover the master shared
secret key we found using DH key exchange crypto-
protocol. Recall too, that Alice and Bob used the same
key to exchange secure data using ElGamal crypto-
algorithm. Suppose Eve at her non-descriptive hideout
seeks to recover the key, so she needs to solve:

g° =11093904324 (mod p)
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where, s(= ,8;) is the shared key, g = 12 is the generator
and p = 12884901893 is the prime integer.

We start with a precomputation of the right-hand
side, 1.e., 11093904324, We consider our factor base which
consist of the first 15 prime numbers:

F = {pi. Posos Dist
=142,3,57,11,13,17,19, 23,29, 31,37, 41, 43, 47}

and try to solve the logarithm problem for the all elements
in the factor base. In other words, we want to solve:

g = 2(modp), g =3(modp), ---, g% = 47 (modp)

Now select a random exponent integer s and compute
12° (mod p) and check if the residue can be factored
completely by means of the factor base. For example:

12 = 12084561537 = 3-17-23-10302269 (mod p)

where, we observe that 10302269 cannot be factored
further over our factor base F. We also recall that the
larger the factor base, the easier we find the residue that
do completely factor with respect to the factor base, but
the price we pay is having the more unknowns I
completely factor with respect to our factor base, we end
up with linear relation between the inknown k;’s, e.g.;

127085 = 451 6675 =5%7-23-31-37 (mod p)
gives the relation:
9102048310 = 2-k e, thtl ket tk, (mod p-1)
where, each ks 1s given by, k = log, p; (med p).

Next we collect enough relations to enable us solve
the unknown Ig’s, e.g.,:

129102048310

= 78540 = 2%3:5:11:17 (mod p)

127382258392 —

254646 = 2-3°-7-43-47 mod p)

1212298253855

26455 = 5-11-13-37 (mod p)

124835947410 —

119510 = 2-5-17-19-37 (mod p)

1 26525201043

4238785 = 5-23-29-31-41 (mod p)

where, we get the following linear relations:

9102048310 = 2k +k,+k,+k,+k,+k, (mod p-1)
7382258392 = k+2k,+k, ks (mod p-1)
12298253855~  ko+kok+k,, (mod p-1)
4835947410 =k kg tk ko, (mod p-1)
6525201043 = ktkytk,+k, +k,, (mod p-1)

The solutions are given as follows:

k,=log,2 = 420700703
k,=log,3 = 4470896487
k,=log,5 =3803513117
k,=log,7 =2365150781
k, = log,, 11 = 3116054641
k, = log,, 13 = 3492178431
k, = log,, 17 = 12702231662
k, = log,, 19 = 8006496046
k, = log,, 23 = 1050306206
ko = log,, 29 = 127183706
k,, = log,, 31 = 9601764817
k,, = log,, 37 = 1886507666
k,; = log,, 41 = 4827335089
k,, = log,, 43 = 7844296260
k,; = log,, 47 = 9793819458

where, all ks are computed modulo p-1.

Finally, we are ready to solve our original problem:
12°=11093904324 (mod p). Pick a random exponent s and
combining with y and then check if, yg° (mod p),
completely factors over our factor base. After a few tries
we get lucky, such that:

v.g® =110993904324-1 2% (mod p) =
19050076 =2%-3%11%31-47

log, y+s = 2k +3k itk Kk ; (mod p-1)
leg, y = 2k 3k +2k,+k, +k;; -s (mod p-1) =
(2:4207002703+3-4470896487+9601 7648457+
9793819456-8766128312 =33554432 (mod p-1)
= log,y = log,; 110930904324 = 33554432
Indeed: 127542 = 11093904324 (mod p)
Time complexity of the Index Calculus 1s given by,

exp (1.923t" (in )**)". The memory requirement typically
equals the square root of this the time complexity. This
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Table 3: The camplexity of different methods to take discrete logarithms for

p=2
Algorithms Time Memory
Exhaustive key search 2t 1
Raby-step giant-step 2Ym m
Pollard 212 1

19230 (ln 1y L9237 () /2

Index calculus

makes the index calculus algorithm and variants, the only
method for taking discrete logarithms with subexponential
complexity, Table 3.

THE FUTURE STATE OF THE ART IN IFP AND
DISCRETE LOGARITHM COMPUTATION

The basic question at the onset for implementer of
the DLP-based crypto-algorithms is how large discrete log
problems that can be handled by current available state of
the art computational tools? For a conservative estunate,
1t 18 appropriate to wam that to obtam a proper estimate of
discrete log problems it is better to consider what has
been accomplished in Integer Factorization Problem (IFP).
Much more effort has been devoted to IFP than to
discrete logs and most of the leading algorithms are
similar. Thus, although discrete logs in prime fields do
appear harder than factoring integers of the same size, it
15 prudent to disregard this difference when choosing
crypto-secunty inplementation. Number Field Sieve (INFS)
is currently at the cutting-edge of research into integer
factoring algorithm capable of factoring large composite
numbers over 100 digits™. The current record in factoring
a generally hard integer is that of the 200 decimal digits
challenge integer from RSA Data Security, Inc., RSA-200,
which was accomplished with general number field sieve
(GNFS) was factored on May 9, 2005 by Bahr, Boehm,
Franke and Kleinjung®”. Among the Cunningham
integers, the record is the factorization of 248 decimal digit
integer by Special Number Field Sieve (SNFS) was
factored by Aocki, Kida, Shimoyama, Sonoda and Ueda
(CRYPTREC) on April 04, 200487,

Computing power is measured in MIPS-years: a
million-instructions-per-second computer running for one
year or about 3x10" instructions. A 100-MHz Pentium I11
1s about a 50-MIPS machine; a 1600-node Intel Paragon 1s
about 50,000 MIPS. Tn 1983, a Cray X-MP supercomputer
factored a 71-digit number in 0.1 MIPS-years, using 9.5
CPU hours. That's expensive. Factoring the 129-digit
number in 1994 required 5000 MIPS-years and used the
idle time on 1600 computers around the world over an
eight-month period. Although it took longer, it was

21000 -

18000
RSA/DI/P/IFP

15000 1

12000 1

Key size (bits)

9000

6000 Current acceptable
security level

3000

ECC/ECDLP
A s ———=A

1.LE+04 1.E+08 1.E+12 1.E+20 1.E+36 1.E+78
Time to break cryptosystems (MIPS Year)

Fig. 2: Comparison of security levels of ECC and
RSA/MDSA

essentially free. These two computations used what's
called the quadratic sieve , but a newer, more powerful
algorithm has arrived. The general number field sieve 1s
faster than the quadratic sieve for numbers well below 116
digits and can factor a 512-bit number over 10 times faster-
1t would take less than a year to run on an 1800-node Intel
Paragon. Figure 2 for cumrent security level mvolving
MIPS-years estimation featuring public keys.

Odlyzkol in paper™ argues that, given the record of
improvements in the index calculus algorithms, it seems
imprudent to assume that the current version of GNFS 15
the best that will be available for a long time. At the least,
it seems a reasonable precaution to assume that future
algorithms will be as efficient as today’s SNFS, in which
even 1024 bit RSA moduli might be insecure for anything
but short-term protection.

Therefore, the baseline and trade-off, is the size of n
should be chosen such that the time and cost for
performing the factorization exceeds the value of the
secured/encrypted information. But even then, great care
must still be taken in the overall crypto-design, as current
development in mteger factorization have gone much
faster then foreseen and it i1s a precarious matter to
field.
Moreover, one should realize that it always remains
possible that a new computational method could be
which makes
factoring easy (e.g., quantum computing, if an operative

venture upon quantitative forecasts 1 this

invented from unsuspecting quarter,

quantum computer were to be realized in the not-so
distance future)-fortunately or unfortunately depending
on which side you are on-no one knows how to build one
yet!
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Shor®™* showed that if such machine could be built,
mteger factorization and discrete logs (mcluding elliptic
curve discrete logs) could be computed in polynomial
time. This result has stimulated an explosion in research
on quantum computers®’. The one comforting factor is
that all experts agree that even if quantum computers are
eventually built, it will take many years to do so (at least
for machines on a scale that will threaten modern public
key cryptosystems) and so there will be advance warning
about the need to develop and deploy alternative crypto-
algorithms.

CONCLUSIONS

We have discussed a method for implementing a
public-key cryptosystem whose security rests in part on
the difficulty of solving discrete logs. If the crypto-
security designs and methods are appropriately
imnplemented, 1t permits secure commumnications to be
established without the use of courier to carry keys and
1t also permits one to sign digitized documents.

In general, the strength of encryption is related to
the difficulty of discovering the key, which in tum
depends on both the cipher used and the length of the
key. No matter which technique you choose, you must
keep in mind that a desperate cryptanalyst can always
decipher the message. Hence, you should always take
all the mnecessary precautions to protect your data.
Those precautions range from proper
cryptographic  keys
assets and yourself.

In overall the baseline and trade-off, is the size of n

choice of
to physically protecting your

and/or prime p should be chosen such that the time and
cost for cracking the crypto-systems exceeds the value of
the secured/encrypted information. But even then, great
care must still be taken in the overall crypto-design, as
current development in integer factorization and
equivalently solving DLP, have gone much faster than
foreseen and it is a precarious matter for one to venture
upon quantitative forecasts in this field. Moreover, one
should realize that it always remains possible that a new
computational method could be
unsuspecting quarter, which makes factoring ‘easy’
(e.g., quantum computing). Today, the wise crypto-

mvented from

ultraconservative  when choosing key

a public key cryptosystems. He must

designer 1s
lengths  for

consider the mtended security, the key's expected

lifetime and the cwrent state of art in factoring or
equivalently solving DLP.
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