Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com




Tomal of Applied Sciences 5 (10): 1739-1743, 2005
ISSN 1812-5654
© 2005 Asian Network for Scintific Information

Sensor Vectors Modeling for Small Satellite Attitude Determination

S. Chouraqui, M. Benyettou and A. Si Mohammed
Department of Data Processing, Industrial Optimization and Modelisation Laboratory,
University of Sciences and Technology of Oran, USTO, BP1505, EL. M’ Noouar, Oran, Algeria

Abstract: The orientation (Roll, Pitch, Yaw) of the spacecraft on its orbit 1s defined with respect to the velucle’s
reference frame. The attitude of spacecraft can be determined from one or a combination of the following
SeNsSOrs: gyroscope, sun sensor, star sensor, horizon sensor and magnetometer. Tn this study we are going to

give a mathematical model of the earth horizon sensor to obtain the horizon vector pairs which are used by a

vector state filter to estimate the satellite attitude
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INTRODUCTION

For spacecraft viewing the earth, we require
knowledge and control of the orientation and position of
the spacecraft with respect to position on the earth’s
surface. This 18 particularly important for earth remote
sensing missions, where, knowledge of the precise
location of a sensed datum is critical. Typically pointing
accuracies are required from 0.05° to better than a minute
of arc. For a spacecraft in low earth orbit, the earth covers
up to about 40% of the sky and is an extended object, to
a good approximation, as point sources.

Horizon scanners on the spacecraft are the principle
means for directly determiming the orientation of the
spacecraft with respect to the earth. The scanners uses an
infrared sensor to detect the temperature difference
between the earth and space.

The horizon scanner consists of a mechanism for
scanning a cone centered on the mnstrument’s bore sight,
associated optics, a radiance detector (thermistor) and
signal processing electronics. The scanner scans the
earth looking for horizon crossings (1.e., the edges of the
warm earth against the cold background of space).

The important task in the horizon sensor model is to
know the shape of the earth disk as observed by the
spacecraft, for then we can compute the reference vector
(the nominal pomnting direction) and compare with the
sensor observation to obtain the attitude (e.g., roll and
pitch). For precise work, correction for oblateness must
applied, the earth’s oblateness has two effects on the
shape of the earth. Fust, the earth appears somewhat
oblate rather than round and second, the centre of the
visible oblate earth is displaced from the true geometric
centre of the earth.

EARTH OBLATENESS AND THE SHAPE
OF THE HORIZON FROM SPACE

The shape of the earth is not quite spherical and for
attitude determination it require a more accurate model.
The basic model represents the earth as an ellipsoid or
oblate spheroid. Higher order approximations based on
spherical harmonic expansions are used where necessary.
In the ellipsoidal model, the ellipsoid is defined by the
equatorial radius of the earth R, = 6378.140, the polar
radius of the earth R, and the [lattening, (1"l

f= R;?P m0.00335281m%98 )
The shape of the earth, as defined by the horizon, as
seen by an earth sensor should be known. The horizon is
defined as the point where the observer’s line of sight is
tangent to the earth’s surface, or perpendicular to the
surface normal.
Using the ellipsoidal model, we may find the radius of
the earth at latitude A by using:

R=R, (1-f sin? A+k Sin/l) +h (2)

Where, f is the flattening and for infrared sensor which
trigger on the atmosphere, k represents seasonal and
latitudinal variations in the height of the atmosphere and
h represents the trigger height of the atmosphere for the
Sensor.
The ellipsoidal shape 1s described by:

iyt . 72

=1
az 02 (3)

or in terms of the flattering f by:
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Where, a 1s the equatorial radius and ¢ 1s the polar radius.
The normal to this surface is given by the gradient and so
the normal unit vector is:

N= V[x2+y2+(l_zf)2
1
|2
N= {xﬁ+y§f+ (1; z z} {x2+y2+—(1_2f)4} ©)

Fig. 1: Geometry of the Horizon vector, H and surface
Normal, N for an oblate earth

Inkig. 1P, represents the location of the observer
and R, , represents a point on the horizon. The vector
from the observer to the horizon, known as the horizon
vector 1y 1s given by:

g = (%) X+ {yv)Y +{zw)Z (6)

Since R 13 a horizon point, then r, must be perpendicular
to N:

N-gp =0
(7
Le.
zZ(zw)
x(xu)ry(yv)+ (rp ®)
To reveal the geometry of the situation we rearrange
terms:

Bl

£y @

6

Which, on comparison with the equation for the earth
ellipsoid, can be seen to be the equation of another

ellipsoid, scaled and displaced from the earth.

z
Horizon ellipsoid
\ Observer
) Pﬁl.v,')
— Y
Horizon plan

Earth ellipsoid

Fig. 2: Meridian cross section of the earth showing the
horizon spheroid and the horizon plane

In Fig. 2 the horizon ellipseid 15 the locus of all
possible horizon points, for all different planetary sizes for
a given observer position. The mtersection of the two
surfaces 1s the locus of the observer’s planetary horizon,
which 1s elliptical. The horizon ellipse lies on a plane
known as the horizon plane and we obtain the equation of
this plane by solving Eq. 4 and 9 simultaneously and we
obtain:

uxtvy+ vz a

(1Y’ (10)

The normal to this plane is given by the direction u,
v, w/(1-f7, or in terms of geocentric latitude A and
longitude ¢ of the observer’s position:

cosAcosg, cosAsing, Sir%l-f )2 an

The plane normal given by Eg. 11 is not in general
coincident with the nadir line of the observer. For an
observer at a distance d from the centre of the earth, the
possible horizon planes are parallel for a given angular
position and they intersect the nadir line at D from the
earth’s centre given by:

D=- (12)

Where, R 1s the distance from the earth’s centre to the sub
satellite point on the surface. R 18 given by:

a(l-f)

R:
1-(2-f )feos® A (13)
To establish the shape of the earth as seen by
the spacecraft sensor, we solve Egq. 4 and 10 in
the local co ordinate system defined by N, E and Z
through P.
The angular radius of the earth i3 given by:
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Where, A is the geocentric latitude of the spacecraft
position and d and R are the distance from centre of earth
to the spacecraft and the point on the earth’s surface
below the satellite, respectively. The angle 't is the
azimuth angle of the Horizon vector H, in local tangent
co-ordinate and p is the angle between the nadir vector
and the horizon vector.

SENSOR MEASUREMENTS

The determination of a spacecraft’s attitude is
equivalent to determining the rotation between the
Satellite Body Fixed Frame (SBFF) and some known
reference frame, such as the Earth Centered Inertial (ECT)
frame. The earth sensors are responsible for delivering the
nadir pointing vector to the Aftitude Determination
System (ADS) expressed in the SBFF frame®",

Figure 3 illustrates the various coordinates frames
defines above, the ECT frame is denoted by the axes X, Y,
Z, The Satellite Reference Frame (SRF), denoted X, Y_ Z,
is based in a coordinate fransformation from the ECI frame
and is updated continuously throughout each orbit. The
SBFF shown az X, Y,, 7, represents the true attitude of
the satellite.

Satellite
Referense Fiame i o,
4 5

1@

Satellite Body
& Fixed Frame

-t d

Fig. 3:Inertial, satellite reference and zatellite body-fixed
coordinates frames for sensor measurements

An attitude determination algorithm iz then used to
find a rotation matrix from the SBFF to ECI frame, denoted
as R" guch that:

ny, =R%n (15)

The attitide determination analyst needs fto
understand how various sensors measure the body-frame
components, how mathematical models are used to
determine the inertial-frame components and how
standard attitude determination algorithms are used to
estimate R™

ORBIT MODEL

The attitude motion is approximately decoupled from
orbital motion, so that the two subjects are typically
treated separately. More precisely, the orbital motion does
have a significant effect on the attitude motion, but the
attitude motion has a less significant on the orbital
motion. For this reason orbital dynamics iz normally
covered first and is a prerequisite topic for attitude
dynamics. In this study, the satellite position in Earth
Centered Inertial (ECI) coordinates is predicted using a
Standard General Perturbation (SGP4) type model
described by Hoots".

A graphical User Interface {(GUI) was created using
MATLAB to predict the orbit position, the algorithm uses
the SGP4 model and takes the claszical orbit parameters
and the time as input, as shown in Fig. 4 and 5™,
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Fig. 5: Configuration GUI window

The mathematical model analysis: Attitude determination
uses a combinafion of sensors and mathematical models
to collect vector components in the body and inertial
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1-
reference frames. These components are used in one of 0.87
several different algorithms to determine the attitude, g'i_
typically m the form of a quatermon, Euler angles, or a 0°2_
rotation matrix™?. & o-
The horizon vectors modelled as shown in = 02+
Fig. 6 -17 were obtained from a -X and Y looking pair -0.4-
of sensors. The oblateness model of the earth was used -0.67
to compute the true horizon angle below the XY 'O‘T-
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Fig. 9: X vector component for satellite Y-axis horizon
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Fig. 6: X vector component for satellite -axis horizon 0 r r r r r . r r r .
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0.081 Fig. 10: Y vector component for satellite Y-axis horizon
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Fig. 11: Z vector component for satellite Y-axis horizon
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Fig. 8: Z vector component for satellite X-axis horizon  Fig. 12: X vector component for satellite X-axis horizon
sensor in body frame sensor in orbit frame
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Fig. 13: Y vector component for satellite X-axis horizon
sensor in orbit frame
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Fig. 14: Z vector component for satellite X-axis horizon
sensor m orbit frame
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Fig. 15: Z vector component for satellite X-axis horizon
sensor in orbit frame
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Fig. 16: X vector component for satellite Y-axis horizon
sensor in orbit frame
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Fig. 17: Z vector component for satellite Y-axis horizon
sensor in orbit frame

CONCLUSIONS

There are two basic classes of attitude sensors. The
first class malkes absolute measurements, whereas, the
second class makes relative measurements. Absolute
measurement sensors are based on the fact that knowing
the position of a spacecraft in its orbit makes it possible
to compute the vector directions, with respect to an
inertial frame, of certain astronomical objects and of the
force lines of the earth's magnetic field.

Absolute measwrement sensors measure these
directions with respect to a spacecraft or body fixed
reference frame and by comparing the measurements with
the known reference directions in an mertial reference
frame, are able to determine (at least approximately) the
relative orientation of the body frame with respect to the
inertial frame.

The attitude determination problem inveolves using
two or more sensors to measure the components of
distinct reference vectors m the body frame and using
mathematical models to calculate the components of the
same reference vectors in an inertial frame. These vectors
are then used in an algorithm to estimate the attitude
representations, usually a rotation matrix, a set of Euler
Angles, or a quaternion.
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