On Multi-valued Semantics for Logic Programs

Victor Felea

Faculty of Computer Science, University "AL.I.Cuza" Iasi, General Berthelot 16, Iasi, 6600, Romania

Abstract: For a general program P, multi-valued interpretations and models are defined, considering a set of truth logic values and an undefined value. The program P may contain constant propositions, which are defined for each truth logic value. Two orderings between the set of all multi-valued interpretations are considered: one is Fitting ordering and the other is standard ordering. The semantics of type well-founded and of type stable for a program P are introduced. This study showed that the well-founded model is the least stable model with respect to Fitting ordering.

Key words: Fixed points, stable models, well-founded models

INTRODUCTION

The well-founded semantics has been introduced by Van Gelder *et al.*^[1]. It is a 3-valued semantics. They use as truth values "true", "false" and "L" (an unknown truth value). They have shown that if a logic program P has a 2-valued well-founded model, then this model is the unique stable model of P.

The stable model semantics has been introduced by Gelfond and Lifschitz^[2] and by Bidoit and Froidevaux^[3].

Przymusinski^[4] has introduced 3-valued stable models as a generalization of 2-valued stable models. He also found that the well-founded model of any program P coincides with the smallest 3-valued stable model of P.

Luong^[5] has defined a new semantics for Datalog programs, which includes the well-founded models and all stable models.

Fitting [6] has studied the structure of the family of all stable models for a logic program using two orderings; one is called the knowledge ordering based on degree of definedness, the other is called truth ordering based on degree of truth. In the first ordering every logic program has a smallest stable model, which coincides with the well-founded model.

Przymusinski^[7] has introduced the stable model semantics for disjunctive logic programs and deductive databases. For normal programs, the partial disjunctive stable semantics coincides with the well-founded semantics.

Loyer and Umberto^[8] proposed a well-founded semantics for deductive databases with uncertainty frameworks.

Malfon^[9] gives a new characterization of Fitting model and of the well-founded model.

Lallouet^[10] has defined a semantics for normal logic programs based on the property of composition. This

semantics extends well-founded semantics and Fitting semantics.

This study defines a semantics of type well-founded and a stable semantics for the case multi-valued interpretations and points out a relationship between them.

Interpretations and models: Let P be a general logic program in sense Gelder^[1]. Let H be the Herbrand base associated to P. We consider a total ordered set of truth values $L_n = (0, v_1, ..., v_{n-1}, 1)$, where, value 0 corresponds to false, value 1 is for true and the values v_k , $1 \le k \le n-1$ are intermediate between false and true. For every truth value v from L_n , we used a constant proposition denoted by c_v and defined by $c_v(A) = v$ for every ground atom A from H. The undefined value will be denoted by u and corresponding constant by c_v , where, $c_v(A) = u$ for every $A \in H$. Let us denote 0 by v_0 and 1 by v_1 . The constant propositions c_v , as well c_v may appear in the bodies of rules from P.

Definition 1: By a multi-valued Herbrand partial interpretation I we mean a partial function from H into L_n . For an interpretation I, let us denote by V_I the vector of sets from H:

$$V_1 = (S_0, S_1, ..., S_n)$$

where, $S_i = \{A/A \in H \text{ and } I(A) = v_i\}, 0 \le j \le n.$

We denote by S_u the set of all remaining atoms from H - $\stackrel{n}{\underset{j=0}{U}}S_j$. If V = (S0, S1,...,Sn) where, Sj are disjoint sets of

 $_{j=0}^{I}$ $_{j}^{I}$. If $V = (S_0, S_1,...,S_n)$ where, S_j are disjoint sets of I, $0 \le j \le n$, then there is an interpretation I, such that $V_I = V$. In the case S_u is empty, then I is called total interpretation.

Assume that L_n admits a negation, denoted l, which satisfies the following properties: l0 = 1, l1 = 0 and $v_i < v_j$ implies $lv_j < lv_i$, for every i,j, $0 \le i,j \le n$. Moreover, we consider lu = u.

For an atom A, such that $A \in S_u$, we write I(A) = u and $I(A) \neq u$, otherwise.

For a ground instantiated rule r of P, having the form: $r \equiv A - L_1,..., L_m$ let us denote by \hat{I} (body (r)) = min $\{\hat{I}(L_i), \hat{I}(L_i) \neq u, 1 \leq i \leq m\}$. We consider min \emptyset =1, where \emptyset is empty set.

Let M_A be the set of all ground instantiated rule of P, having A as its head. Let $v^I_{j,A}$ be the truth value from L_n defined by: $v^I_{j,A} = max\{\hat{I}(body(r))/r \in M_A\}$.

The interpretation I is extended to ground literals denoted \hat{I} by : $\hat{I}(A)$ = I(A) and $\hat{I}(\sim A)$ = I(A) for every ground atom $A \in H$.

In the following we define the notion of model for P.

Definition 2: An interpretation I satisfies the ground instantiated rule of P having the form $A - L_1,...,L_m$ if one of the following relations holds:

- a. there is j, $1 \le j \le m$, such that $\hat{I}(L_i) = 0$ or
- b. $\hat{I}(A) \neq u$ and min $\{\hat{I}(L_i), \hat{I}(L_i) \neq u, 1 \leq i \leq m\} \leq \hat{I}(A)$ or
- c. $\hat{I}(A) = u \rightarrow [(\hat{I}(body(r)) = v^I_{j,A}) \rightarrow (\exists i, 1 \le i \le m, \text{ such that } \hat{I}(L_i) = u)].$

An interpretation I is a model for P if I satisfies every ground instantiated rule of P.

In the following we need to specify two ordering between interpretations. The first one denoted \leq_F is of type Fitting and the second one denoted \leq_s is of type standard^[4].

Definition 3: Let I and J be two interpretations, such that $V_I = (S_0,..., S_n)$ and $V_J = (T_0,..., T_n)$. We say that $I \le_{\mathbb{P}} J$ if $S_j \subseteq T_j$, for every j, $0 \le j \le n$.

We say that $I\leq_s J$ if $T_0\subseteq S_0,\ S_n\subseteq T_n$ and $S_j\subseteq T_j\cup...\cup T_{n\cdot 1}$ for every $j,\ 1\leq j\leq n\cdot 1$.

Remark 1: In the case n = 1, the ordering \leq_F is the Fitting ordering and \leq_S is the standard ordering. These orderings were used by Przymusinski^[4] to study the well-founded semantics and three-valued stable semantics.

Stable semantics: Study defines here multi-valued stable models. Firstly, define an operator between the set of all interpretations of the program P. This operator will be denoted by S_P.

Definition 4: Let P be a logic program and I be an interpretation of P. We define the interpretation $S_P(I)$ in the following manner: if $V_{S_{p(I)}} = (T_0, T_1, \dots, T_n)$ then:

- i. For a ground atom $A, A \in T_0$ if for every ground instantiated rule of P, having the form $A L_1,..., L_m$, there exists $i, 1 \le i \le m$, such that $\hat{I}(L_i) = 0$.
- ii. For each h, 1 ≤h < n, a ground atom A is considered in T_b if a) and b) hold:
- a. for every ground instantiated rule of P having the form: $A L_1,..., L_m$ we have: min $\{\hat{I}(L_j), \hat{I}(L_j) \neq u, 1 \leq j \leq m \} \leq v_k$.
- b. there is a ground instantiated rule of P of the form: $A \vdash V_1, ..., \, V_m \text{ such that: min } \{\hat{I}(V_j), \, \hat{I}(V_j) \neq \, u, \, 1 \leq j \leq m \}$ $= v_h.$
- iii. For a ground atom A, A is considered in T_n , if there is a ground instantiated rule of P having the form $A C_1, ..., C_n$, such that $\hat{I}(C_i) = 1$ for every $j, 1 \le j \le q$.

Proposition 2: Let P be a positive program. The operator S_p as it is defined in the definition 4 is monotonic with respect to the standard ordering \leq_s .

The proof results from the definition of the operator S_P and the standard ordering \leq_s .

The existence of the least model with respect to \leq , for a positive program P is emphasized by the following theorem:

Theorem 1: For a positive program P, there is the least fixed point of the operator S_p with respect to the ordering \leq_s , denoted L_p . Moreover, L_p is the least model of P with respect to the ordering \leq_s .

Proof: Consider $\bot = (H, \emptyset, ..., \emptyset)$ the least interpretation with respect the ordering \le_s . The model L_p is obtained applying the operator S_p ω times: \bot , $S_p(\bot), ..., S^{\omega}_p$, (\bot) where, ω is the first ordinal.

The rest of the proof is classical, therefore it is skipped.

Now, we need to introduce an operator Γ^* defined on the set of all interpretations, which extends the operator Γ defined by Przymusinski^[4].

Definition 5: Let P be a general logic program and I an interpretation. We denote by P|I the positive program, which is obtained from P by replacing in every ground instantiated clause of P, all negative literals of the form \sim A by c_v if $I(A) \neq u$ and by u otherwise, where v = I(A). The program P|I is positive, hence applying the Theorem 1, it results that P|I admits a unique least model J with respect ordering \leq_s . The operator Γ^* is defined by: $\Gamma^*(I) = J$.

Proposition 3: Let M be a fixed point of the operator Γ^* from the definition 5. Then M is a minimal model of P with respect to ordering \leq_s .

Proof: Let M be a fixed point of Γ^* , hence M is the least model of P|M with respect to \leq_s -ordering. Firstly, we show that M is a model for P. Let r be an arbitrary ground instantiated clause from P of the form:

$$r = A - B_1, ..., B_p \sim D_1, ..., \sim D_q$$
 (1)

The corresponding clause r' from P|M has the form:

$$r' = A \leftarrow B_1, ..., B_p, c_{v_1}, ..., c_{v_q}$$
 (2)

where, $v_i = M(D_i)$ if $M(D_i) \neq u$ and u otherwise.

It results that $M(\sim\!\!D_j)$ = $M(D_j)$ = c_{v_j} , therefore M satisfies r' iff M satisfies r.

Secondly, it must show that M is a minimal model for P with respect to \leq_s -ordering. Let M_1 be a model for P, such that $M_1 \leq_s M$. It is sufficient to show that M_1 is also a model for P|M. Since M is the least model of P|M with respect to \leq_s -ordering, we obtain that $M_1 \leq_s M$, hence $M_1 = M$.

For the ground instantiated clause r having the form (1), let us denote by r'' the corresponding clause to r from $P|M_1$:

$$r'' = A - B_1, ..., B_p, c_{w_1}, ..., c_{w_q}$$
 (3)

where, $w_j = \int M_1(D_j)$, for every j, $1 \le j \le q$.

As before, since M_1 is a model for P, it obtains that M_1 is a model for P|M, hence M satisfies r''.

Since $M_1 \leq_s M$ and using the definition of v_j and w_j , the following statements are satisfied:

- i. if $w_i = 0$ then $v_i = 0$, for every j, $1 \le j \le q$.
- ii. if $v_i = 1$ then $w_i = 1, 1 \le j \le q$.
- iii. if $w_j \equiv 1$ then we have: $v_j \le w_j$ whenever $v_j \ne u$, $1 \le j \le q$.
- iv. If $0 \le w_i \le 1$, then we have $(v_i \ne u \text{ and } v_i \le w_i, 1 \le j \le q)$.

These statements imply the inequality:

$$\min \{ M_1(B_i), M_1(B_i) \neq u, 1 \leq i \leq p, c_{v_i}, v_j \neq u, 1 \leq j \leq q \} \leq$$

$$\leq \min \{ M_1(B_i), M_1(B_i) \neq u, 1 \leq i \leq p, c_{w_i}, w_j \neq u, 1 \leq j \leq q \}. \eqno(4)$$

The relation (4) and the fact that M_1 is a model for r'' involve that M_1 is a model for r', hence for P|M.

A multi-valued stable model for P is defined as a fixed point of the operator Γ^* .

Definition 6: A multi-valued interpretation M for a program P is called a multi-valued stable model for P if M is a fixed point of Γ^* .

Well-founded models: For definition of well-founded models we need to introduce an operator, denoted W, defined on the set of all multi-valued interpretations.

For an interpretation I, if J=W(I) and $V_J=(S_0,\,S_1,...,\,S_n)$, we define the sets $S_i,\,0\le j\le n$.

Definition 7: Let I be an interpretation. We define the sets S_i , $0 \le j \le n$ in the following manner:

- a. for every j, $1 \le j \le n$, a ground atom A is included in S. iff
- a1. for every ground instantiated rule r of P of the form: $r \equiv A L_1, ..., L_m, \text{ we have : min } \{\hat{I}(L_j), \hat{I}(L_j) \neq u, 1 \leq j \leq m\}$ $\leq v_i \text{ and }$
- a2. there exists a ground instantiated rule r_i of P with the form: $r_i = A Q_1, ..., Q_h$, such that: $\hat{I}(Q_i) \neq u$, for every $i, 1 \leq i \leq h$ and min $\{\hat{I}(Q_i), 1 \leq i \leq h\} = v_i$.
- b. A set of atoms V from H is called unfounded set of P with respect to I if every atom A from V satisfies the following property:
 for each ground instantiated rule r of P, having the form: r ≡ A L₁,..., Lm, one of the following
- b1. there is i, $1 \le i \le m$, such that $\hat{I}(L_i) = 0$ or

statements holds:

- b2. there is i, $1 \le i \le m$, such that L_i is an atom and L_i \in V.
- We consider S₀ as the union of all unfounded sets of P with respect to I.

Remark 2: If V_1 and V_2 are unfounded sets of P with respect to I, then their union $V_1 \cup V_2$ is also an unfounded set with respect to I.

Proposition 4: The operator W is monotonic with respect to Fitting ordering \leq_F .

Proof. Let I and J be two interpretations, such that $I \leq_F J$. Let $V_1 = (S_0, S_1,...,S_n)$ and $V_J = (T_0, T_1,..., T_n)$.

We have $S_j \subseteq T_j$ for every j, $0 \le j \le n$. That means: if $\hat{I}(L_i) \ne u$ then $\hat{J}(L_i) \ne u$ and $\hat{J}(L_i) = \hat{I}(L_i)$, for every literal L_i .

$$\begin{array}{l} \text{If } V_{w(I)} \equiv (S_0',\ S_1',....,\ S_n') \text{ and } V_{w(J)} \equiv (T_\theta'\ T_\rho',....,\ T_n') \\ \text{then it obtains that } S_j' \subseteq T_j', \text{ for every } j,\ 1 \leq j \leq n. \end{array} \tag{1}$$

The relations $S_0 \subseteq T_0$ and $S_n \subseteq T_n$ imply the following statement: every unfounded set of P with respect to I is an unfounded set of P with respect to J.

We obtain $S_0' \subseteq T_0'$. This relation and those from (1) involve $W(I) \leq_F W(J)$.

Now, we define a sequence of interpretations using the operator W defined above.

Definition 8: Let α range over countable ordinals. We define recursively the interpretations I_{α} and I^{∞} as follows:

1. For ordinal 0, $I_0 = (\emptyset, ..., \emptyset)$, where \emptyset is the empty set;

2. For the limit ordinal $\alpha: I_{\alpha} = \bigcup_{\beta < \alpha} I_{\beta}$;

3. For successor ordinal $\alpha = \gamma + 1$: $I_{\alpha} = W(I_{\nu})$;

4. $I^{\infty} = U I_{\alpha}$

Remark 3

- The interpretation I[∞] is the least fixed point of W with respect to the Fitting ordering ≤_F.
- ii. There exists a countable ordinal α , such that $I^{\infty} = I_{\alpha}$.

Let us denote the interpretation I^{∞} by I_{P}

Theorem 2: The sequence of interpretation I_{α} as defined in the Definition 8 is a monotonic sequence of interpretations with respect to \leq_F -ordering and moreover it is a sequence of models for P.

Proof: The monotony of the sequence of interpretations results from the Proposition 4.

By the Definition 2, I_0 is a model for P. Since the operator W is monotonic with respect to ordering \leq_F , it results by induction on ordinals α the following statement:

for every ground literal L and
$$\gamma < \alpha$$
, if $I_{\gamma}(L) \neq u$ then $I_{\alpha}(L) \neq u$ and $I_{\gamma}(L) = I_{\alpha}(L)$ (1)

Assume that I_{γ} is a model for P. Let us show that $I_{\gamma+1}$ is also a model for P, where γ is an arbitrary ordinal. Let $r \equiv A - L_1,..., L_m$ be a ground instantiated rule of P. If $I_{\gamma+1}(A) = u$, then $I_{\gamma+1}$ satisfies r.

In the case $I_{\gamma+1}$ $(A) \neq u$, let $V_{I_{\gamma+1}} = (S_0, S_1, ..., S_n)$. There exists j, $0 \leq j \leq n$, such that $A \in S_j$. We have $I_{\gamma+1}(A) = v_j$. Using the Definition 7 and the relation (1), we obtain that $I_{\gamma+1}$ satisfies r.

Now, let A be a limit ordinal. Assume that I_{β} for every $\beta < \alpha$ are models for P. Let us show that I_{α} is model.

Let
$$V_{I_{\beta}} = (S_0^{\beta}, \dots S_n^{\beta})$$
. We have $V_{I_{\alpha}} = \begin{pmatrix} U & S_0^{\beta}, \dots, U & S_n^{\beta} \\ S_0^{\beta}, \dots, S_n^{\beta} & S_n^{\beta} \end{pmatrix}$

Let r be defined as above. If I_{α} (A) = u, then I_{α} satisfies r. In the case $I_{\alpha}\left(A\right)\neq u,$ there is h, $0\!<\!h\!<\!n,$ such

that
$$A\in \underset{\beta<\alpha}{U}S_h^\beta$$
 . The sequence of sets $S_h^\beta,\ \beta{<}\alpha$ is

ascending monotonic with respect to the inclusion. Let β_i

be the first ordinal such that $\ A \in S_h^{\beta_l}.$ We have $I_{\beta l}(A) \!\! = v_h$

and I_{pl} is a model for r. Since $\beta_1 < \alpha$ and using the relation (1), it results that I_{α} satisfies r.

Stable Semantics versus well-founded semantics: In this section we point out a relation between the stable semantics and the well-founded semantics, namely the well-founded model of P is the least stable model of P with respect to \leq_F -ordering.

Theorem 3: Let P be a normal logic program. Then P admits \leq_F -least stable model. Moreover, this model coincides with the well-founded model of P.

Proof: Let I_P be the well-founded model for P and λ be the minimum ordinal such that $I_{\lambda} = I_{\lambda+1}$ (from the Definition 8).

Firstly, we show that I_p is a stable model for P. Let P' be P/I_p and M_1 be an arbitrary model for P', such that $M_1 \! \leq_s \! I_p.$ It must show that $M_1 = I_p.$ Let V_{M_1} be the vector $(T_0,...,T_n)$ and $V_{I_\lambda} = (S_0^{\lambda},...,S_n^{\lambda}).$

The relation $M_1 \leq_s I_P$ is equivalent with:

- i. $S_0^{\lambda} \subseteq T_0$ and
- ii. $T_n \subseteq S_n^{\lambda}$ and
- iii. $T_h \subseteq S_h^{\lambda} \cup ... \cup S_{n-1}^{\lambda}$ for every $h, 1 \le h \le n-1$.

Assume that $M_1 \neq I_p$. Then, we have one of the following assertions:

- a. $S_n^{\lambda} \otimes T_n$ or
- b. $S_0^{\lambda} \subset T_0$ or
- e. there is h, $1 \le h \le n-1$ such that $S_h^{\lambda} \otimes T_h^{-} \cup \ldots \cup T_{n-1}^{-}$.

The sign " \subset " denotes the strict inclusion and " \varnothing " means "not included".

In the case a) let us consider α the least ordinal such

that
$$S_n^{\,a+1} \otimes T_n$$
 . Where, $V_{1_\alpha} = (S_0^{\,\alpha}, \ldots, S_n^{\,\alpha})$ and I_a is specified

in the Definition 8, for every ordinal α . It results that $S_n^{\alpha} \subseteq T_n$ and there exists a ground atom A, such that

 $A\in S_n^{a+1} \text{ and } A\notin T_n. \text{ By the definition of } S_n^{\alpha+1}, \text{ there is a ground instantiated rule } r \text{ of } P, \text{ having the form:} \\ r_1 \equiv A-B_1...B_m \sim D_1...\sim D_p,$

where, B_j , $1 \le j \le m$ and D_b , $1 \le l \le p$ are ground atoms with the properties:

 $\hat{I}_\alpha(B_j)=1 \text{ for every } j,\ 1\le j\le m \text{ and } \hat{I}_\alpha(D_l)=0 \text{ for every } l, \\ 1\le l\le p.$

Let r'_1 be the rule from P' corresponding to r_1 . Then $r'_1 \equiv A \vdash B_1, ..., B_m$, $c_{v_1}, ..., c_{v_p}$, where, $v_j = l\hat{l}_{\lambda}(D_j)$ for every j, $1 \le j \le p$. Since $S^{\alpha}_{\ n} \sqsubseteq T_n$, we obtain that $M_1(B_j) = 1$, $j = \overline{1,m}$. Since $I_{\alpha} \le_F I_{\lambda}$, it results $I_{\lambda}(D_j) = 0$, $j = \overline{1,p}$, hence $v_j = 1$, for every j, $1 \le j \le p$. We have: M_1 is a model for r'_1 . This implies $M_1(A) = 1$, hence $A \in T_n$, which is impossible. Therefore, we have $T_n = S_n^{\ \lambda}$.

It results:
$$S_h^{\alpha} \otimes T_h \cup ... \cup T_{n-1}$$
 (2)

Using the relation (1), we obtain: there is A, such that $A \in S_h^{\alpha+1}$ and $A \notin T_h \cup ... \cup T_{n-1}$ (3)

 $A \in S_h^{\alpha+1} \text{ implies: for every } r \in M_{A}, r \equiv A - L_1, ..., L_m,$ we have $\hat{I}_w(body(r)) \le v_h$ (4)

and there is $r_1 \in M_{\mathbb{A}}$, $r_1 \equiv A - Z_1,...,Z_p$, such that $\hat{I}_{\alpha}(Z_j) \neq u$, for every $j, 1 \le j \le p$ and min $\{\hat{I}_{\alpha}(Z_j)\} = v_h$. (5)

Let r_1 from (5) be expressed as follows: $r_1 \equiv A - B_1 ... \, B_m \sim D_1 ... \sim D_{\text{q}}$

 $\begin{array}{lll} We \ have: \ \hat{I}_{\alpha}(B_i) \neq u, \ i=\overline{1,m} \quad and \quad \hat{I}_{\alpha}(\sim D_j) \neq u, \\ i=\overline{1,q}, \ which \ imply: \ \hat{I}_{\alpha}(B_i) \geq v_h \ and \ \hat{I}_{\alpha}(\sim D_j) \geq v_h \ i=\overline{1,q}. \end{array}$

Let r'_1 be the clause from P/I_p corresponding to r_1 : $r'_1 \equiv A - B_1, ..., B_m, c_{v_1}, ..., c_{v_q}$ where, $v_j = \hat{I}_p(D_j)$, $j = \overline{1,q}$. Since $I_\alpha \leq_F I_P$, we have $\hat{I}_p(\sim D_j) = \hat{I}_\alpha(\sim D_j)$, for every $j, j = \overline{1,q}$, hence $v_i \geq v_h$ for $j = \overline{1,q}$. (7)

We have $I_{\alpha}(B_i) \!\!>\!\! 0$, $i=\overline{1,m}.$ If $I_{\alpha}(B_i)=1$, then $I_{\lambda}(B_i)=1$ and using $T_n=S_n^{\lambda}$, it obtains that $M_{\epsilon}(B_i)=1$. If $I_{\alpha}(B_i) \!\!<\!\! 1$, then using (2) it results: $B_j \!\!\in T_h \cup ... \cup T_{n-1}$, hence $M_1(B_i) \!\!\geq\!\! v_h$. Since M_1 satisfies r'_1 , we have $M_1(A) \!\!\geq\!\! v_h$. We show that $M_1(A) \neq 1$. Assume the contrary: $M_{\epsilon}(A) = 1$. Using $T_n=S_n^{\lambda}$, we obtain $A \in S_n^{\lambda}$. (8)

From
$$A \in S_h^{\alpha+1}$$
, it results $A \in S_h^{\lambda}$, with $h < n$. (9)

But $S_n^{\,\lambda}\cap S_n^{\,\lambda}=\emptyset$ for h<n. The relations (8) and (9) constitute a contradiction.

 $\begin{array}{l} From \ M_l(A){\geq} v_h \ and \ M_l(A){<}1 \ we \ obtain \ A \in T_h \cup ... \cup \\ T_{n\cdot 1} \ which \ contradicts \ the \ relation \ (3). \\ In \ conclusion \ for \ the \ case \ c), \ we \ have: \\ S_h^{\lambda}{\subseteq} T_h \cup ... \cup \ T_{n\cdot l} \ for \ every \qquad h = \overline{1,n-1}. \\ Using \ (iii), \ it \ results \quad S_h^{\lambda} = T_h, \ h = \overline{1,n-1}. \end{array}$

In the case b), namely $S_0^{\lambda} \subset T_0$, we show that $T_0 \subseteq S_0^{\lambda}$, which will be a contradiction.

Let A be from T_0 , hence $M_i(A) = 0$. Let r be a ground instantiated rule from P, having the form: $r \equiv A - B_1 ... B_m \sim D_1 ... \sim D_p$

The clause corresponding to r from P/I_p is r':

$$r' \equiv A - B_1, \dots, B_m \quad c_{v_1}, \dots c_{v_q} \text{ where, } v_j = \hat{\mathbb{I}}_{\lambda}(D_j), \ j = \overline{1, p}.$$

Since M_i is a model for r', it follows that there exists i, $1 \le i \le m$ such that $M_i(B_i) = 0$ or there is j, $1 \le j \le p$, such that $c_{v_i} = 0$

For every
$$c_{v_i} = 0$$
 we have $\hat{I}_{\lambda}(\sim D_i) = 0$. (10)

If $c_{v_j} > 0$ for all j, $1 \le j \le p$, then there is i, $1 \le i \le m$, such that M_i $(B_i) = 0$,

hence
$$B_i \in T_0$$
. (11)

The assertions (10) and (11) say that T_0 is an unfounded set with respect to I_{λ} .

If
$$V_{w(I_1)} = (T_0', ..., T_n')$$
, then $T_0 \subseteq T_0'$.

But $W(I_{\lambda}) = I_{\lambda}$, hence we have $T'_{0} = S^{\lambda}_{0}$, which implies $T_{0} \subseteq S^{\lambda}_{0}$ therefore a contradiction.

Thus, we have $S^{\lambda}_{\ 0}=T_0$, hence $M_{_1}=I_p$ and $I_{\lambda}=I_p$ is a stable model for P.

Secondly, we show that I_P is \leq_F -least stable model for P.

Let $M_{\scriptscriptstyle I}$ be a stable model for P. Let $V_{\scriptscriptstyle M1}$ be defined as follows:

$$V_{M1} = (T_0, T_1, ..., T_n).$$

The model M_1 is the least model of P/M_1 with respect to the ordering \leq_s . Let I_a be the interpretations as in the

Definition 8. Let
$$V_{I_{\alpha}} = (S_0^{\alpha}, ..., S_n^{\alpha})$$
.

We show by induction on α the following relations: $S^{\alpha} \subseteq T_{k}$, for every k, $0 \le k \le n$. (12)

Since $I_0 = (\emptyset,...,\emptyset)$, we have that (12) are true for k = 0. Assume that (12) is true for every ordinal $\alpha, \alpha < \beta$.

If β is limit ordinal, then (12) is true for β .

Now let β be a successor ordinal, $\beta = \alpha + 1$.

It must show that $S_k^{a+1} \subseteq T_k$, $k = \overline{0, n}$. (13) Let us distinguish two cases:

1)
$$k \ge 1$$
, 2) $k = 0$.

In case 1) let A be from $S^{\alpha+1}_k$. We have: for every $r \in M_A$, having the form: $r \equiv A - Z_1 \dots Z_q$, $\min \{\hat{I}_\alpha(Z_j), \hat{I}_\alpha(Z_j) \neq u\} \le v_k$ and there is $r_1 \equiv A - S_1 \dots S_p$, such that $\hat{I}_\alpha(S_j) \ne u$, for every $j, 1 \le j \le p$ and $\min \{\hat{I}_\alpha(S_j), 1 \le j \le p\} = v_k$. From (12) it results:

$$\hat{I}_{\alpha}(L) = M_1(L)$$
 for every ground literal L.

(14)

Since M_1 is also a model for P, we have $M_1(A) \neq u$ and moreover $M_1(A) \geq v_k$. Let us denote $M_1(A) = v_h$.

If we assume that $v_h > v_k$, then we define an interpretation M_1 as follows:

$$M_1'(B) = M_1(B)$$
 if $B \neq A$ and v_k otherwise.

It results that M_1' is a model for P/M_1 , $M_1' \leq_s M_1$ and $M_1' \neq M_1$, which contradicts the fact M_1 is the least model for P/M_1 with respect to the ordering \leq_S . Hence, we have $v_h = v_k$, i.e. $A \in T_k$.

In the case 2) let A be form $S_0^{\alpha+1}$.

In this case, for every $r \in M_A$, of the form: $r = A - L_1...$ L_m , there is i such that $\hat{I}_{\alpha}(L_i) = 0$, or there is i, such that L_i is atom and $L_i \in S_0^{\alpha+1}$. (15)

Using the hypothesis of induction (12), we obtain: $\hat{I}_{\alpha}(L_i) = 0$ implies M_i (I_{α}) =0.

$$\begin{split} \text{Let } r \in M_{\mathtt{A}} \text{ be of the form } r &\equiv A \vdash B_1 ... \ B_q \sim D_1 ... \sim D_p \\ \text{The clause corresponding to } r \text{ from } P/M_1 \text{ is } r' : \\ r' &\equiv A \vdash B_1, ..., B_q, \ c_{v_1}, \cdots c_{v_p} \quad \text{where } v_j = M_1(D_j), \quad j = \overline{1,p} \,. \\ \text{If } M_1(A) \neq u \text{ and } M_1(A) = 0, \text{ then } A \in T_0. \end{split}$$

If $M_i(A) \neq u$ and $M(A) = v_k$ with $v \geq 0$, then we consider a model $M_i{'}$ defined by following:

$$T'_{0} = T_{0} \cup S_{0}^{\alpha+1}, T'_{j} = T_{j} - S_{0}^{\alpha+1}j = \overline{1, n}$$

and
$$V_{M'_1} = (T'_0, \dots, T'_n)$$

Since S_0^{x+1} is an unfounded set with respect to M_1 , we have M_1' is a model for P/M_1 .

Moreover, since $M_1' \leq_s M_1$ and $M_1' \neq M_1$, it results a contradiction.

If $M_i(A) = u$, we consider the same interpretation M_i' as it was described above, which implies a contradiction. It results the statement (13). Taking in (13) $\alpha = \lambda$, it obtains that $I_p \leq_F M_i$, therefore I_p is the \leq_F -least stable model for P.

CONCLUSION

This study introduced new semantics for general logic programs considering a set of n+1-truth logic values and an undefined value. One of semantics is of type well-founded and the other is of type stable. We have studied a relationship between the two semantics. For n=1 and u=1/2, the results of Przymusinski^[4] are obtained.

REFERENCES

- Van Gelder, A., K.A. Ross and J.S. Schlipf, 1991. The well-founded semantics for general logic programs. JACM., 38: 620-650.
- Gelfond, M. and V. Lipschitz, 1988. The stable model semantics for logic programming. In: Kowalski, R. and K. Bowen, (Eds.), Proceedings of the Fifth Logic programming Symposium, MIT Press, Cambridge, MA., pp. 1070-1080.
- Bidoit, N. and C. Froidevaux, 2001. General Logical Databases and Programs: Default Logic Semantics and Stratification, John Wiley and Sons.
- Przymusinski, T., 1990. Well-founded semantics coincides with three-valued stable semantics. Fundamenta Informaticae, 13: 445-463.
- Luong, V.P., 1999. Between well-founded semantics and stable model semantics, 1999. International Database Engineering and Applications Symposium. Aug., 02-04, pp: 270. www.computer.org/proceedings/ideas/0265/ 02650270abs.htm.
- Fitting, M.C., 1991. Well-founded semantics, generalized. In: Saraswat, V. and K. Ueda, (Eds.), Logic programming. Proceedings of the 1991 International Symposium, MIT Press, Cambridge, M.A., pp: 71-84.
- Przymusinski, T., 1990. Extended stable semantics for normal and disjunctive programs. In: Warren, D.H.D. and P. Szeredi, (Eds.), Proc. Seventh Int. Conf. Logic Programming, MIT Press, Cambridge, MA., pp: 459-477.
- Loyer, Y. and S. Umberto. The well-founded semantics in normal logic programs with uncertainty. http://faure.iei.pi.cnr.it/~straccia/download/papers/ FLOPS02/FLOPS02.pdf
- Malfon, B., 1994. Characterization of some semantics for logic programs with negation and application to program validation. In Maurice, B., (Ed.), Intl. Logic Programming Symp., MIT Press, pp. 91-105.
- Lallouet, A., 1996. Une notion de composant logiciel en programation logique. JFPLC'96, pp. 83-94.