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Bayesian Regression with Prior Non-sample Information on Mash Yield
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Abstract: To increase the precision of estimated effect of a yield character “pod length™ on mashbean grains
vield, Bayesian regression technique with sample and prior non-sample information about pod length was
applied on simple linear relation between mash grain yield and pod length. With the use of prior inequality

mformation about regression coefficient on pod length, a reduction was observed n the estimated value of
regression coefficient and its standard error. It was observed that prior inequality information about regression
parameter is helpful to increase the precision of the regression estimates. Simulation procedure was developed
to generate random residuals from Exponential (1) and Uniform (0, 1) distributions, to test the results. The
results were compared with those based on original data set.
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INTRODUCTION

The effect of a fixed variable on response variable
can be determined with the help of ordinary regression
analysis. Sometimes, by introducing prior non-sample
mformation about regression coefficient in regression
analysis is very helpful to increase the precision of the
estimated coefficients. In present study, prior inequality
non-sample mnformation about regression coefficient
in simple linear relation between mash pod length
(fixed variable) and mash grain yield (response variable),
were introduced and checked the precision of estimated
coefficient.

Faqir et al!"! developed different prediction models
for predicting mash grain yield and separated the traits
that contributed positively and negatively towards the
mash grain yield Tt was observed that the effect of pod
length 18 positively significant towards mash grain yield
among other mash plant traits, such as plant height, days
to flowering, days to first pod maturity, days to 50%
maturity, branches per plant, pods per plant, seeds per
pod, 100-seed weight, biological yield per plant. Gewelke'®
and Criffith™ discussed bayesian regression appreach on
consumption expenditure and income with both no prior
mformation and prior non-sample mequality nformation
about regression parameter with the assumption of known
standard deviation and checked the influence of prior
information on estimate and its standard error.

MATERIALS AND METHODS

Mash data was obtained form plant genetic resource
institute at national agricultural research center Islamabad.
The experimental material lasted for two years consisted
of 37 mash genotypes arranged in Randomized Complete
Block Design (RCBD) with three replications. Mash plant
traits, such as plant height (X)), days to flowering (),
days to first pod maturity (X;), days to 90% maturity (X,),
branches per plant (X.), pods per plant (3;), pod length
(X5), seeds per pod (X;), 100-seed weight (X,), biological
yield per plant (X)) and grain yield per plant (Y) were
measured. The study was initiated to increase the
precision of the estimated effect of ped length on mash
grain yield with the help of Bayesian regression technique
including prior non-sample mformation. The simple linear
regression model of mash grain yield (Y) on pod length
(X,) 1s given as:

v = Borbi X e

Before considering the prior inequality information about
regression coefficient 1.e. ¢<P <d,

1
b, ~N{p,,0 ———

! { ! E (Xi _;i)z } (1)
Tt is useful to obtain the post-sample density function for
B, with complete prior uncertainty under the assumption
of known error variance o°. Also before a sample is taken,
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the estimator of regression coefficient “b” has the
probability density function:

To find the probability density for B,, instead of
treating b, as a random variable and B, as fixed, we treated
b, as fixed and B, as random variable. The expression of
uncertainty about [, after b, has been observed, can be
obtained from equation (1) as:

)

Ex

Where, b, and multiple of Z are constant and Z ~ N (0, 1),
s0 P, is normally distributed with mean and variance as
52

given below:
U (- }

Also the probability distribution for P, that will express
uncertamty about P, after the sample has been observed
[Z (X1 7)2)2
2

o

The notation £ (B,| v) is used rather than just £ (B,) to
denote that y is given. So, f (B,] ¥) 18 an expression of
uncertainty about [, after the sample information has been
observed and range of density f (B,| ¥) will remain same as

F(Bo.

Pi=b, -Zx

[51~N{b @

X, XY
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(P, 1y) = (P, -b,)*
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Including priorinformation about regression coefficient:
The prior inequality information on regression coefficient
is of the form c<P,<d, Where, “¢” and “d” are the limits
that are specified by the expert prior to sample. This prior
inequality information can be expressed in term of prior
density function. As it is only an idea from prior
inequality information that B, lies within “¢” and “d”, but
we have no idea where within interval (c, d), B, might lie.
Then in such case a probability density function that
suggests that all values between ¢ and d are equally likely
1s only the uniform probability distribution, given as:

|

The next question 1s how prior density function like
(4) changes the post sample density function for 3,. As
our prior density function f (p,) attaches zero probability
to the value of B, outside the range (c, d). So the post
sample density function includes this information and the
additional information provided by the sample, must also

1 c<pd

£(p) @

0 otherwise
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attach zero probability to the value outside the range
(c, d), which is given same as in equation (3).

Point estimation of B;: To choose a single point estimate
for B, so as to minimize the losses that occur from over
and underestimation, the function that describes the
losses happen in regression coefficient B, is called loss
function and is denoted by L (B, b;). In other words we
can say that loss function L. (B,, b)) is the function of error
{(B,-b,), which may be positive or negative. Symmetric
quadratic loss function 1s considered here for point
estimation.

L{b,p) = o(B;-b)*

Where, ¢ 1s a constant. This function 1s symmetrical
in the sense that losses {rom overestimation are 1dentical
to the losses from underestimation and is quadratic
because quadratic in estimation error | p,—b,|. The point
estimate for B, can be obtained by minimizing the average
loss function. The expression of average loss 1s given as:

E [L(By.b)] = E [eB, ~b)?] = [e(B, -by)? f(B,|y)dp,

Here B, is as random variable and f (| y) as its
probability density function. When the loss function is
quadratic, the point estimate for an unknown parameter
would be the mean of the post sample density function,
which mimimizes the expected loss.

d
EN (B1) - jB]f (B]‘Y) d B1

Which 1s weighted average of all values of P, with
probabilities as weights.

Simulation procedure: To test the reliability of
recommended results, following simulation procedure was
adopted.

500 samples of random vectors of residuals each
consists of 37 observations from normal distribution
with mean zero and unit variance were generated.
With the assumption of known variance ¢’. The
random residuals are converted so that we obtain
£~N (0, ¢%).

The random mash grain yield was obtained by
adding fitted mash yield based on original data and
random residuals with zero mean and ¢” variance.

RESULTS AND DISCUSSION

Faqir et alll estimated regression coefficients of the
relationship of fixed mash plant traits (X‘s) on mash grain
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vield (Y) so that best prediction model for predicting mash
yield can be developed. It was observed that only the trait
pod length (3{) contributed positively and more
effectively towards the mash grain yield (Y). Now we will
discuss how the estimated regression coefficient of pod
length and standard error changes with the
mtroduction of prior non-sample mequality information
about regression coefficient of pod length by Bayesian

its

approach.

Prior non-sample inequality information about
regression parameter i.e. 0<P<4.5.1s based on previous
data. Tt was assumed that ¢° is known and value of

=1.20, 13 obtained by pooling mean square error from
previous data. The residuals were tested and found
normally distributed and all other regression assumptions
such as autocorrelation, multicollinearity  and

hetroscedasticity were tested and found desirable.

Summary of estimates based on sampling theory
procedure: The estimated simple linear regression model
of grain yield (Y) on pod length (%) 1s given as:

§--12+3.17 X,
S.E. (4.471) (1 069)
Here b, 15 the estimate of the regression

coefficient of pod length (X)) with standard error of
estimate 1.e. SE (b,) =1.069. A 95% confidence intervals
for regression coefficient is given as:

0.97<p <5.37

The interval suggests that the effect of pod length
(3{;) on grain vield (Y) lies between 0.97 and 5.37. But
according to the prior inequality information that effect of
pod length (X;) ongrain yield (Y) should lies between 0
and 4.5. A little difference between calculated confidence
mterval and prior inequality nformation could be ignored
because of having same width for both intervals.

Expressing uncertainty aboutregression parameter with
no prior information: Before considering the prior
mequality information 0<P,<4.5, from equation (2) it
follows that P, is normally distributed with mean and
variance given as:

B, ~ N(3.17,1.120)

So the post sample density function for 3, with no
prior mequality information about regression coefficient
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B,, after the sample has been observed is given according
to the equation (3).

N

1 17y

2(1.120)

(6 ly)= B -3

! exp{—
J2(1.120)m

Including prior information about regression coefficient
Pi: The pricr inequality information O<[3,<4.5 can be
expressed in term of prior uniform density function as in
equation (4) is given as:

0<p <45

1
FBy) = 0

elsewhere

As prior density function f (B,) attaches zero
probability to the value B, of outside the range (0, 4.5).
Then the post sample density function that ncludes this
information and the information provided by the sample,
must also attach zero probability to the value of B, outside
the range (0. 4.5) and 15 given as:

1

ST 1200%

{ 73.17)2}
2(1.120) 120)

<P <

fu(Byly) =

(3

Here “N™ is used as a subscript of f(p,|v) to refer to
the normal distribution that express our uncertainty about
B, after sample has been observed. But from equation (2),
the probability of B, lying outside the range (0, 4.5) 1s
given as:

4.5-3.17
1.058

s
P(p,>4.5) =P = =0.1056
O,

Which cannot be ignored and need to truncate the
post-sample density function with prior inequality
information included about B, given in equation (3.1). So
in such situation it is necessary to modify the density fy
"(By| ) so that P (f »4.5) = 0. Then such modified post
sample density function 1s called truncated post sample
density function for B,. Here truncation means shifting the
probability (area) greater than “4.5” proportionally over
the remainder of the density function, then the resulting
distribution is called truncated post sample density
function. Truncated post sample normal density function
18 obtained by dividing the density f; (p|v)to
value (1-0.1056) and denoted by f,, (B,|¥).

EB Y
0.8954
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fiy (B, ¥

frop By [ W) =m

Fmally the tumcated post-sample normal density function
is given as:

_ (0.8954)!

JZ1.1200m

1
exp {——2(1.120) ([51—3.17)2}

0<p <45

(B 1Y)

Point estimation of P: As indicated in the section
material and methods that the mean of the post-sample
density function (which is now truncated post sample
density function) is the parameter estimate that also
mimmizes expected loss. The point estimate of B, is as
follows:

ETN(B1) = £B1er(B1‘Y)d[B1

Tt is very difficult to solve this integral, so we
generated 5,000 observations from post sample density
function f,, (B,|y), by using B~N (3.17,1.20). Observations
greater than 4.5 were discarded to obtain a random sample
from truncated post-sample density function fo; (P,|y).
The sample mean of remaining observations is an estimate
of the mean of f; (B,y). The summery of artificially
generated random sample is given in Table 1

Now to obtain point estimate of B, we simply take
the mean of retained observations from the sample of
5,000 observations, which is given as under

Epp [B,] = 2.9505

This estimate of P, is lower than the estimate 3.17
obtained from approach that does not take into account
the prior information The sample variance from the
retained observations on B, is an estimate of the variance
of £y (By|y) and given as:

Var,; [B,] = 0.8052

Table 3: Summery of results from randomly generated data

Tablel: Observations and Estimated Probabilities from artificially generated

sample
Number of observations

Total 5000
Greater than 4.5 538
(Discarded observations)
Observation from truncated density 4462
Estimated probability P (3,>4.5) 0.1076
True probability P (3,>4.5) 0.1056

Table 2: Mean and standard deviation of post sample density function
Uncertain prior Inequality prior information

Statistics information 0<f<4.5
Mean 317 2.9505
Standard deviation 1.058 0.89737

The standard deviation of the truncated distribution,
0.89737, 18 less than that of 1.069 obtained from regression
approach that does not take mto account the prior
information, reflecting the reduction n dispersion when
prior information are used (Table 2).

Simulation results: The results obtained by using
original data is verified by generating random samples
from exponential (1) and uniform (0, 1) distribution. In
Table 3, it is clear that estimated effect of pod length from
randomly generated data from Uniform (0, 1) distribution
tends to very close to the original estimated effect as
compared to the normal (0, 1) and exponential (1). Also
standard error of the estimate of effect and truncated
probability for random sample from umform (0.1)
decreased as compared to the other two distributions.

CONCLUSION

The study was imitiated to test the effect of mncluding
prior non-sample inequality mformation about regression
parameter on estimated effect and its standard error. Tt
was observed that when 0<B,<4.5 introduced as prior
non-sample mformation, the estimated effect of pod
length on grain vield and its standard error was
decreased. A simulation procedure was also adopted to
test the reliability of the results by generating random
samples from normal (0,1) exponential (1) and uniform
(0, 1) distributions and it was concluded that the
estimated effect for pod length for uniform (0,1)

Data generated from

Data generated from
exponential (1) distribution

Data generated from
uniform (0, 1) distribution

Statistics normal distribution
Estimate of 3, and standard 2.9505 (0.89737)
error including prior information.

Total generated observations 5,000
Observation from truncated density 4462

Discarded observations 538

Estimated probability P (3,>4.5) 0.1076

3.0516 (0.8289) 3.13 (0.3079)

5,000 5,000
4836 4960
164 40

0.0328 0.008
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distribution tends to very close to original results as 2. Geweke, I, 1986, Exact inference in the inequality

compared to other two distributions. constrained normal linear regression model. T. Applied
Econometrics, 1: 127-141.
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Development of various prediction models for mash
yield with comparison. (Submaitted).
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