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Understanding the Anisotropy

Yadan Mao
Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, 430074, Hubei, China

Abstract: The relation between the particle displacement and the strain field is introduced. Then, stress field
1s related to the particle velocity by the equation of motion. Based on that, Hooke’s law provides a way to link
stress and strain fields through elastic parameters characterizing the medium. Fmally, Christoffel equation 1s
obtained and T is presented by Thomsen. Tts plane wave solutions for solid of transverse isotropy of vertical
symmetry axis (TTV). Since the transverse isotropy or hexagonal symmetry is the simplest anisotropy case of
widespread geophysical applicability, the author then describes transverse isotropy (TIV) by five elastic
parameters, using the main notations mtroduced by Thomsen in 1986. For ray tracing purposes, the difference
between the phase and group velocities is clarified in order to numerically derive the change in ray velocity due

to anisotropy.
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INTRODUCTION

Seismic anisotropy 1s the variation of velocity as a
fimction of the signal propagation direction. Winterstein!!
restates the definition of anisotropy as variation of one or
more properties of a material with direction. The important
features of wave propegation in anisotropic solids are
1) the vanation of wave velocities with direction 11) the
three-dimensional (3-D) displacement of the particle which
leads to shear-wave splitting and iii) the propagation of
energy deviated both mn velocity and direction from phase
propagation.

The variation of properties for purely elastic solids,
such as crystals, solid containing aligned cracks or one
made up of periodic thin-layers, can be simulated by
anisotropic elastic constants and fully described by
four-order tensors of anisotropic constants. There are
eight anisotropic systems or crystalline symmetry
(including 1sotropic symmetry) and two subsystems,
which can be specified by patterns of elastic constants.

Dealing with wave phenomena in anisotropic media,
one must distinguish between group velocity and phase
velocity. Group velocity 1s the speed at which wave
energy travels radially outward from a pomt source in a
homogeneous elastic anisotropic medium™. Phase
velocity is the wvelocity in the direction of the phase
propegation vector, normal to the surface of constant
phase™. Field measurements of traveltime and distance
often vield group velocity, which could be performed in
laboratory setting™. In anisotropic media, group and

phase velocities can coincide along particular trajectories.
For instance, for vertical and horizontal propagation in
transversely 1sotropic material with a vertical symmetry
axis (TIV), group velocity equals phase velocity.

Measurements of seismic velocity anisotropy from
traveltimes of P-, Vs-and SH-waves®™ have shown that
many sedimentary rocks are amsotropic. Seismic
amsotropy can provide important quantitative mformation
about structure and Lithology of the sedimentary rocks™”
and provide more geological information and better
understanding of the earth!".

Since seismic particle motion is vector polarization,
the potential value of shear-wave propagation lies in the
fact that each shear-wave component carries three-
dimensional information about the symmetry structure
along the raypath and contains much more information
about the nature of the raypath than is possible with the
polarizations of P-waves. Different shear waves have
different behavior at mterface and at internal structures
along the raypath, which splits the shear wave into
several arrivals with different polarizations and different
velocities.

The simplest anisotropy case of widespread
geophysical applicability is called traverse isotropy or
hexagonal symmetry.

Anisotropy and shear-wave splitting: The presence of
anisotropy in the earth, which manifests itself most
diagnostically in terms of shear-wave splitting in
multicomponent seismic data, can lead to substantial
complication m the processing and mterpretation of both
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Fig. 1: Dafferential particle displacement m a deformed
medium

surface seismic and VSP shear-wave data. However,
analysis of amisotropic wave-propagation phenomena,
such as shear-wave spliting, could lead to more
information, such as strike direction and density of
vertical particle within reservoir'**? which helps in the
understanding of the earth Transverse isotropy with
vertical symmetry axis (TIV) serves as a good mtroduction
to anisotropy for geophysicist and helps to define the
basic terminology and methodology for anisotropy
studies!'.

Particle displacement and strain field: When the particles
of a medium are displaced from their equilibrium positions
mternal restoring forces arise which lead to oscillatory
motion of the medium. Each particle 1s assigned an
equilibrium position vector X(X, = XX, TY.X; = 2Z)
and the displacement position vector (Xt}

The displacement of the particle located at X in the
equilibrium state 1s defined by Fig. 1.

WD =1 -% )

However, since the particle displacement field U is non-
zero for rigid motions, it does not itself provide a
satisfactory measure of material deformation. A more
convenient quantity 1s:

- [T ] ] @

which measures the difference between the distance
of two neighboring particles m the equilibrium state
and deformed state. Tn Fig. 1 two displaced particle
positions at fixed time are shown for two neighboring
particles separated by dx in the equilibrium state.

The deformation measure A’ is calculated from

U(X, t) by using relations:

dI (&) = d5 + diE 1) = dx + d% (3)
where, Js for continuous medium, 18 the 3x3 matrix made
from the derivatives of 4 withrespectto x. Thus

A =[ar ] -[ax]

= [d% + 1,.d%] -[d& ]
=dxT[ T, A1) AT R

=2dx".8.dx = 22 2 S, (X tdx,dx, (4

i=1j=1

where, the matrix elements S, (Xt) are termed as

components of the strain field.

,JCt)_* 1]=123 (5)

N, N,
ax] &S IFI&S

e

The strain field determines the deformation A’ in terms
of the particle displacement (X t) and reduces it to
zero for all rigid motions.

Solids differ widely in their deformabilities. For rigid
materials, the displacement gradient must be kept below
unity if permanent deformation i1s to be avoided. For
displacement derivatives much smaller than unity, the
quadratic terms in equation (5) are negligible and this
allows using the linearized strain field:

du
S.EtE —| —+—[1j=1,23 (6)
! 2| Ox. Ox

1

Since the stram field is symmetric, one subscript
rather than two can specify each component. Following
Voigt notation, we can obtain:

3, ESﬁ ESS
Sy Sy Sy 1
5= Slz Szz Sza = Esﬁ Sz 584 (7
SIE st S:sa
28 080 s
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The strain field may also be written as a six-element
column matrix rather than a nine-element square matrix,
such as follows:

T

S = (S1 S, 08,08, S, Sﬁ) (®

and 1t can also be decomposed m more sumple form by
introducing the S, operator:

du, 3

I g 0 0

du

! 0 9 0
dy dy
& 0 i « uX
_ dz _ oz _s

duy du, |, @Y
dz  dy gz dy " 4
Ju, ou d 9

4z — 0 —

dz  Ox dz ox
B&Jrau_y i i 0
dy  dx dy dx

Traction forces and stress field-equation of motion: A
method of exciting vibrations in a material body 15 to
apply external forces at its surface. In this case the applied
excitation does not act directly on particles within the
body but is transmitted to them by means of the Hook
forces acting between neighboring particles. To specify
these forces, three force components are required for each
face of the particle; the traction force acting on the area
element facing 1 direction 1s vector:

(T

I

T

2

T

3

)3

T, ij=1, 2.3,

T (10)

The components of these forces
are called stress components; T, (%t) i1s the ith component
of force acting on the +j face of an infinitesimal volume
element at position %,

The abbreviated subscript notation introduced for
the stram field can also be used to describe the stress
components:

T‘ll T‘IZ T13 T‘l Tﬁ TS
T: 'I‘IZ TZZ T23 - Tﬁ TZ T4 (1 1)
'I‘IS T23 T33 T5 T4 T3

In this case the convention is to omit the factor % that
appeared in equation (7) and the stress can now be
written as a six-element column matrix;

209

= T
Tn:(Tl Tz T3 T:t Ts Tﬁ) (]2)

The forces associated with the vibration of material
particle are the traction forces applied to its surface by the
neighboring particles:

T oTq (13
where, i 1is the normal vector to the surface.

Green’s formula applied on the integrated surface
acting on the particle gives:

with ¥T being the divergence of the stress matrix
aTXX +aTXY +aTXZ £+a£+ﬂ

dx  dy 9z gx  dy 9z
VT - aTMaTMaTW :aiJraijLaL
ax  dy Jz dx dy 0z

aT,, N dT,, N aT, aT, N aT, . aT,

gx  dy oz gx dy 0z

T T

95 00 9 20 1

ax aZ 8y Tz T2

T T

zoioioi 3:Tv3(15)

ay dz dx T, T,

oo @ 20 |t

dz dy dx T T

[ [

The equation of motion is obtained using Newton’s
law:

[9TdV = [p 28 TAv-TAVIT(RD) = p 22 (R,1)
5 ESRRFT: e

IOEL)

DE - is

p 18 the density of the medium and
the particle velocity.

Hooke’s law: For small deformations it is experimentally
observed that the strain in a deformed body 1s linearly
proportional to the applied stress, 1.e.

c 3

=y

e

T = I=1,2, 3,4 56 an

I

1

where, ¢ are the elastic stiffness constants.
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In the full index notation ¢ is a tensor of order 4 and
there are 3° = 81 elastic stiffness constants. These are not
i~ S S Cine
(because S and T are symmetric matrices), the number of
independent constants is reduced to (34+2+1)* = 36.
Some remarks about energy give ¢y, ~Cy; , thus only
6+5+4+3+2+1 = 21 mdependent constants left. This 1s the
maximum number of elastic constants for any medum. For
an isotropic medium, there are only two independent
A= Crazs B~ Cpan called the

all independent, however, since

constants Lame’s

parameters.

Christoffel equation
By equation (16), we have

—aT 9%
Vv patz

18
5 (18)

and using equations (15), (17) and (9), the following can
be obtained

:pyu
o’

3
éTle KL VLY

6 6 -
P i=1,2,3.

=1 1=1

(19)

=

Equation (19) 138 a wave equation for general
homogeneous media for which a plane wave analysis can
be performed. A uniform plane wave U(X,t) propagating
along the direction /(L=l. L=l is

I

ei(mt-kf )

proportional to > where, Hl Hzl and k 1s the
wavenumber, | is the velocity of the advance of
wavefront and is called the phase velocity.

Operators T, and S; act on a plane wave like

i 00

01 0

L0001 1 !

. 7 00

TV:-1k01y01201X,SV:-1k0 ) (20)

001 1 L0

=oE Lo 1

i1 0

After replacing the relevant parts in equation (19) with
U = =+ and equation (20), the following dispersion
relation can be derived

2D
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where, I 18 a 3*3 matrix called the Christoffel matrix,
whose elements are functions only of the plane wave
propagation direction !
¢ of the medium.

The dispersion relation (21)

and of the stiffness constants
is  an eigenvalues

2
[
problem ((E] are the eigenvalues). It has the unique

solution V=0 (e no propagation in the medium!), if
the determinant of the system is non-zero; since this 1s
not physically attainable, the determinant should be zero.

;|

There are 3 possible solutions for the phase velocity

w

2
" J i :| =0, I identity matrix.  (22)

* 1in equation (22), only waves with one of these phase
velocities can propagate in the medium.

Associated with each eigenvalue, there
eigenvector corresponding to the polarization of the wave
propagating with the phase velocity. Mathematically the
three eigenvectors are mutually orthogonal, which
suggests that physically the three polarizations are in the
direction of propagation: one of these 1s the quasi-
longitudinal wave and is simply denoted as P. Another
eigenvector is orthogonal to the first one but not to the
direction of propagation: thus is the quasi-traverse shear
wave and 18 denoted SV. The last eigenvector is
orthogonal to the direction of propagation and also to the
other eigenvectors: this is the exactly traverse shear wave
and is denoted SH.

i an

Hexagonal symmetry and vertical axis: Up to now, the
hexagonal system has been the anisotropic symmetry
most frequently used This system is of rotational
symmetry, which means that the tensoer ¢y does not
change with rotation around the axis of symmetry. In
other words, in the plane perpendicular to this axis, the
tensor behaves isotropically. Therefore, the symmetry is
also sometimes called transverse sotropy, especially in
case when the axis of rotational symmetry coincides with
x,--—-the axis of the coordinate system. With regard to
hexagonally symmetric material with a vertical axis of

symmetry, matrix °« can be expressed as:
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¢, ¢, ¢, 0 0 0

¢, ¢, 0 0 O

c, 0 0 O

Cop™ c,0 0
¢, 0

€, C,

2

The hexagonal symmetry 1s described by five independent elastic parameters. The coordinate system n which the
matrix S« is given should be described as (X,.X,.X,). In the above case, the axis x, coincides with the axis of rotational

symmetry, while x,, x, are both located in the isotropic plane.
In the case of the hexagonal symmetry, the Christoffel equation (22) can be expressed as:

C1113+Cﬁal;+c44lz2 (Cll_céé)lxly (C13+C44 )lxlz v v,
k* (Cll_cﬁé )lxly Caﬁl§+c11ly2+c44lz2 (C13+C44 )lylz L pw2 v, (23)
k)

(013+C44 )lxlz ( 13T Cu )lylz Sy lx2+l; )+033122 Us

Thus, there are only five mdependent elastic constants for describing a crystal with hexagonal symmetry: ¢, ¢;3, Cs,

Cy45 Cgs-
The propagation vector [ could be written as:

(24)

1(1,=sin0, 1,=0, 1, =cos0)

where, 0 is the angle between the propagation direction and the vertical axis

co] {9] (9] )= (v,,0,,,U,, ) satisfying

Solving the zero-determinant equation (22) yields the solutions ( { Kk

¢, 8in‘Q + ¢, co8’@ +¢, + J[(% -¢, )sin’@ + (¢, - 033)00329] +{c,, +c,)’sin’28

v(0)=
- (0) »

coa2 2 P d 2 2l
c,sin'B +c,cos’8 +c,, - \/I:(Cll - ¢, sin‘é +{c,, -c,, )cos 9] +(c, + ¢, sin*28

U5, (8) = 2

¢,sin’0 +¢,,co8’0
(25)

v, (0)=
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Thomsen’s notations: As introduced by Thomsen!”, it is
useful to recast equations (25) using notations involving
only two elastic moduli (e.g. vertical P and S velocities)
plus three measures of amsotropy. In order to simplify
equations (25), these three anisotropy coefficients should
be nondimensional and efficient combinations of elastic
moduli (¢, .Cgs). Furthermore, they should reduce to
zero in case of isotropy. One suitable combinations the

author derived 1s:

1
) :F[z(cla +C44)2 - (033 'C44)(C11 Oy - 2C44):| (26)
33

Since the vertical P and S velocities are:

C C
o, = v, (0)= —= aﬁu = v, (0) = vy, (0) = —-
P U P @7

equation (25) can be rewritten as:

V,(8) = o1 + & sin’d + 1X8) = ot,2,(6)

o
v, (8)= Bu\jl + B—nze sin’@ -

1]

gnj D(6) = B,a,,(6)

1]

(28)

VSH(B) = ﬁ[l Ul + 2,1/ Sinzg = ﬁUaSH (9)

where, D(B) is given by:

Do) = %qu +48 sin’0 + 4 sin*@[e(qte) - 8] - % (29)

with

(30)

g, 0 and y are called Thomsen’s parameters and are
convenient variables to support calculus.
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Phase velocity and group velocity: In a general
homogeneous elastic medium, where the velocity s
constant in any given direction, it is obvious that a
particle moves along a straight line; the energy
propagates along this line with group velocity, while
group angle ¢ 1s formed between the direction of
propagation and the vertical axis.

However, due to anisotropy, the wavefront is non
spherical. The wave vector 17 locally
perpendicular to the wavefront and the phase angle 6

1s

with the vertical axis. The phase velocity that suggests
the speed of advance of the wavefront along the direction
1s given by the Thomsen’s formula (28).

Figure 2 shows that a pomt on the wavetfront can be
reached either by energy traveling with group velocity
V(@) and group angle ¢ in the direction of energy
propagation or by phase traveling with phase velocity
V(0) and phase angle 8 in the direction perpendicular to
the wavefront. Note that the phase velocity direction does
not start from the source point.

Thus, in a homogeneous medium, wavefronts are
defined by:

:\/X2+22 :‘\/X2+22

1(x,2) = Constant  (31)
) Vip)
From
N (32)
t(x,z) = =
Vie) V(arctan (E))
z
We derive:
t(Ax,Az) = At{x,z) . VA0 (33)

which suggests that the traveltime along the ray is a
linear function of the source-wavefrontdistance. Also,
along a ray of energy propagation, the direction of vector

normal to the wavefront 1s constant %ok

Thus, 6 is irrelevant to time and is constant when ¢ is
fixed.

The phase velocity is defined as the projection of the
group velocity on the vector normal to the wavefront
(Fig. 2). Thus, the group velocity is given in terms of the
phase velocity as:
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Fig. 2: Phase (wavefront) angle 8 at two consecutive times and group (ray) angle ¢

avY 1 (dvY
V@) =v' @+ | — | =V|e@)|=ud),1+——— (34)
[9(®)] =v*(6) (dgj (6] (),/ 02(9)(«;]
and with the general form of equation (28) we have
Vig®)] = vou@ i1 ] ~u0) A
v}(0)! 6o (35)
The general relation between group angle ¢ and phase angle 8 is (Fig. 2).
dv tané + 1dv
_ _de _ v df (36)
tan[(p - 9)] wWe) = tang N fan0 dv
v do

In anisotropic media, wavefronts traveling outward
from a point source are not, in general, spherical as a
result of dependence of velocity upeon direction of
propagation. Shown in Fig. 2 are two wave fronts in space
separated by unit time. The group velocity, V(d), denotes
the velocity with which energy travels from the source,
while the phase velocity, v(), is the velocity with which
a wavefront propagates at a local point. Here, the group
angle ¢ specifies the direction of the ray from the source
point to the point of interest, while the phase angle
(also called wavefront-normal angle) specifies the
direction of the vector that is normal to the wavefront. In
general, they are different at any pomnt of propagation,
except at certain singular pomts.

CONCLUSIONS

This study has presented amsotropy m detail. In
particular, Transverse isotropy (TTV) is described by five
elastic parameters. This has been achieved by using
sunplifications of notations introduced by Thomsen, 1986.

213

Furthermore, the group velocity 1s derived as a function
of the group angle from the phase velocity that varies
with the phase angle.
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