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Abstract: The Tsallis entropy 1s shown to be a pseudo-additive entropy of degree-q that information seientists

have been using for almost forty years. Neither is it a unique solution to the nonadditive functional equation
from which random entropies are derived. Notions of additivity, extensivity and homogeneity are clarified. The

relation between mean code lengths in coding theory and various expressions for average entropies is

discussed.
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THE ‘TSALLIS’ ENTROPY

In 1988 Tsallis"! published a study containing
an expression for the entropy which differed from the
usual one used in statistical mechanics. Previous to this,
the Rény1 entropy was used as an interpolation formula
that comnected the Hartley-Boltzmann entropy to the
Shannon-Gibbs entropy. Notwithstanding the fact that
the Rényi entropy is additive, it lacks many other
properties that characterize the Shannon-Gibbs entropy.
For example, the Rényi entropy 1s not subadditive,
recursive, nor does it possess the branching and sum
properties™. The so-called Tsallis entropy fills this gap,
while being nonadditive, 1t has many other properties that
resemble the Shannon-Gibbs entropy. It is no wonder
then that this entropy fills an important gap.

Yet, it appears odd, to say the least, that information
scientists have left such a gaping void in their analysis of
entropy functions. A closer analysis of the literature
reveals that this is not the case and, indeed, a normalized
Tsallis entropy seems to have first appeared in a 1967 by
Havrda and Charvat™ who introduced the normalized
‘Tsallis” entropy

Suq ProPa) = DB -1] /@50 M
i=1

for a complete set of probabilities, P,:i-e 111’,:1 and
parameter g=0, but q # 1. The latter requirement 6 1s
necessary n order that (1) possess the fundamental
property of the entropy, that is, it is a concave function.
According to Tsallis'™, only for q=0 is the entropy, (1),
said to be expansible™ [cf. (6) below].

PROPERTIES OF ADDITIVE ENTROPY OF DEGREEq

The properties used to characterize the entropy

arel®,

Concavity
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i=1 i=1

where the nonnegative n-tuple, (p) = (p,...., pu), forms a
complete probability distribution. For ordinary means, the
n-tuple, (x) = (x,,...., X,), represents a set of nonnegative
numbers which constitute a set independent variables.
What constitutes the main difficulty in proving theorems
on characterizing entropy functions in information theory
is that the ‘independent variables’, (x), are not
independent of their ‘weights’, (p).

Coding theory, derives the functional dependencies
inavery elegant way through optimization. The entropies
S(x,) represent the costs of encoding a sequence of
lengths x;, whose probabilities are p, Mimmizing the mean
length associated with the cost function, expressed as
the weighted mean of the cost function, gives the optimal
codeword lengths x; as functions of their probabilities, p,.
Consequently, the entropies that result when the x; are
evaluated at their optimal values by expressing them in
terms of their probabilities, p,, constitute lower bounds to
the mean lengths for the cost function.

Non-negativity

SeyPro P20 3

Corresponding Author: Bernard Lavenda, Universita degli Studi Camerino 62032 (MC), Italy E-mail: bernard lavenda@unicam it



J. Applied Sci., 5 (2): 315-322, 2005

Symmetry

Sn,q(pl:- ---:pn) - Sn,q(p[l]s- . :p[n]) (4)

where, [ ] denotes any arbitrary permutation of the indices
on the probabilities. For the entropy, the symmetry
property (4) means that it should not depend upon the
order in which the outcomes are labelled.

The sum property

n
Sn,q(pla """ > pn) = 2 G n,q(pi ) (5)
i=1
where, 6, 13 a measurable function on ]0, 1.
Expansibility
Sn+1,q(0>p1>- ---:pn) - Sn,q(pls----:pn): (6)

meaning that the entropy should not change when an
outcome of probability zero is added.

Recursivity of degree-q

Sn,q (Pl: -Pn ) +

(p tp2) qsz,q[

P1 Pz

. (7)
P1+Pz P1tP2

|

asserting that 1f a choice 1s split into two successive
choices, the original entropy will be the weighted sum of
the individual entropies. Recursivity implies the branching
property by requiring at the same time the additivity of the
entropy as well as the weighting of the different entropies
by their carresponding probabilities™.

Normality
11
Sy (=, =)=1 g
Z,q(z 2) ( )
Decisivity
S3,4(L0)=8,,,(0,1=0 ©)
Additivity of degree-q
Snm,q (plqla""aplqm:"":pnqm)=Sn,q (pla """ > pn)
+(2"1) Sy g Proes Pa) Stng (Gisereeos ) (10)

for any two complete sets of probabilities, (p) and (q). As
late as 1999, Tsallis™ refers to (10) as exhibiting “a
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property which has apparently never been focused before
and which we shall refer to as the composability
property." Here, composability means something different
than in information theory”, in that it “concerns the
nontrivial fact that the entropy S(A+B) of a system
composed of two independent subsystems A and B can
be calculated from the entropies S(A) and S(B) of the
subsystems, without any need of the microscopic
knowledge about A and B, other than the knowledge of
some generic universality class, herein the nonextensive
universality class, represented by the entropic index
q..",

However, the additive entropy of degree-g, (1), is not
the only solution to the functional equation (10) for g # 1.
The average entropy:

g-1

n 1/q
..... 1- Zp?

i=1

S g (PLovs P ) = (11

also satisfies (10), with the only difference that (1-q)/q
replaces the coefficient in the multiplicative term™. Since
the weighted mean of degree-q i1s homogeneous, the
pseudo-additive  entropy (11} 15 a first-order
homogeneous function of (p), 8%, (Ap.... .Ap,) = AS%,,
(Piser > po). It can be derived by averaging the same
solution to the functional equation (10), in the case q # 1,
as that used to derive the Tsallis entropy, except with a
different exponent and normalizing factor, under the
constraint that the probability distribution is complete™.
Although the pseudo-additive entropy (11) lacks the
property of recursivity, (7), it 1s monotonic, contimous
and concave for all positive values of q. Weighted means
have been shown to be measures of the extent of a
distribution™" and (11) relates the entropy to the
weighted mean rather than to the more familhar logarithm
of the weighted mean, as in the case of the Shannon and
Rényi entropies.

Tsallis, in fact, associates additivity with extensivity
1n the sense that for mdependent subsystems

Snm,q P19y, Pnlm) =

According to Tsallis™, superadditivity, q<1, would
correspond to superextensivity and subadditivity, g>1,
would correspond to subextensivity. According to
Callen!'?, extensive parameters have values in a composite
system that are equal to the sum of the values in
each of the systems. Anything that 15 not extensive

15 labelled intensive, although Tsallis would not
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agree [cf. (30) below]. For instance if we consider
black-body radiation in a cavity of volume V, having an
mnternal energy, U and magnify it A times, the resulting
entropy

AS (U, V)= ga”“(wf’ AV, (13)
will be A times the original entropy, S(U, V), where, o is the
Stefan-Boltzmann  constant. Whereas  extensitivity
involves magnifying all the extensive variables by the
same proportion, additivity in the sense of being
superadditive or subadditive deals with a subclass of
extensive variables, because the condition of extensivity
of the entropy imposes that the determinant formed from
the second derivatives of the entropy vanish’. The
entropy of black-body radiation, (13), 1s extensive yet it is
sub-additive in either of the extensive variables. The
property of subadditivity is what Lorentz used to show
how interactions lead to a continual increase in entropy!™.
This 18 a simple consequence of Minkowski’s mequality,

3/4 3/4 3/4
uy’”t tuyt 2,y

where, u = U/V 15 the energy density. Hence, (sub-or
super-) extensivity is something very different from
(sub-or super-) additivity.

Strong additivity of degree-q

Smn,q(plqllv'""pnqlm"""pnqnm) =
(14)

n
Sn,q(pls----spn)Jr Zp_? Sm,q(qj1=“'qjm)
i=1

where, q; 1s the conditional probability. Strong additivity
of degree-q describes the situation in which the sets of
outcomes of two experiments are not independent.
Additivity of degree-q, (10), follows from strong additivity
by setting gy = Qu =... = Qu — G and taking (1) mto
considerationt™.

A doubly stochastic matrix (), where, m = n, is used
in majorization to distribute things, like income, more

evenly! and this leads to an increase in entropy. For if

qj:iqijpi: 13)
and =
n n n n
EqJ' :Epizqij ZEPi =1
j=1 i=1 j=1 i=1

1t follows from the convexity of P=x Inx, or
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v i‘hjpz < i%“}’@i),

i=1 i=1
that
n n n
Sy 90 ) = *Z‘hlﬂﬁh 2*2 Zqijpi Inp; 16
=1 =1 -1

since Zi- 195 > 1. We may say that p majorizes q, p>q if
and only if (15) holds for some doubly stochastic matrix
(g ). A more even spread of ncomes increases the
entropy. Here we are at the limits of equilibrium
thermodynamics because we are mvoking a mechanism
for the mcrease in entropy, which m the case of mcomes
means taking from the rich and giving to the poor™. This
restricts g in the ‘Tsallis” entropy to ]0, 1[. Values of q in
11, 2[ show an opposing tendency of balayage or
sweeping out!'. Whereas averaging tends to decrease
inequality, balayage tends to increase it!',

Yet Tsallis™ refers to processes with g<1, i.e. p'>p,
as rare events and to g=1, 1e. pi<p, as frequent events.
However, only m the case where, q<1 will the Shanmon
entropy, (16) be a lower bound to other entropies like, the
Rényi entropy

n
1
R
Shq = - anpiq
i=1

(17)

which 1s the negative logarithm of the weighted mean of
p.*t. The Rényi entropy has the attributes of reducing to
the Shannon-Gibbs entropy, (16), in the limit as g~ 1 and
to the Hartley-Boltzmann, entropy

Bpo (.., 1my=Inn (18)

in the case of equal apriori probabilities p, = 1/n. This
leads to the property of

n-maximal

1 1
Snq (ProsPn ) < sn,q(;,...,—}

n

(19)

for any given mteger n>2. The right-hand side of (19)
should be a monotonic increasing function of n. As we
have seen, the tendency of the entropy to increase as the
distribution becomes more uniform 1s due to the property
of concavity (2). Hence, 1t would appear that processes
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with g<1 would be compatible with the second law of
thermodynamics, rather than being rare exceptions to it!

Continuity: The entropy 1s a continuous function of its n
variables. Small changes in the probability cause
correspondingly small changes in the entropy. Additive
entropies of degree-q are small for small probabilities, 1.e.,

q N
lim 8, (p) = lim prrd-py ol
p—=0 p—0 A

CODING THEORY AND ENTROPY FUNCTIONS

The analogy between codmng theory and entropy
functions has long been known™. If k,...k, are the
lengths of codewords of a uniquely decipherable code
with D symbols then the average codeword length

n
Zpiki

i=1

(20)

15 bounded from below by the Shannon-Gibbs entropy
(16) if the logarithm is to the base D. The optimal
code-word length is k; = -In p,; which represents the
mformation content in event E. When D =2, p, = 1/2 and
contains exactly one bit of information.

Ordinarily, one tries to keep the average codeword
length (20) small, but it cannot be made smaller than the
Shannon-Gibbs entropy. An economical code has
frequently occurring messages with large p, and small k.
Rare messages are those with small p, and large k; The
solution n; = -ln p has the disadvantage that the
codeword length is very great if the probability of the
symbol 1s very small. A better measure of the codeword
length would be:

n
1 k
;log Epi D™ 20

i=1

where T = (1-q)/q, thereby limiting q to the interval [0, 1].
As T-eo, the limit of (21) 18 the largest of the k,
independent of p;. Therefore, if  is small enough, or tau
large enough, the very large k’s will contribute very
strongly to the average codeword length (21), thus
keeping 1t from being small even for very small p,. The
optimal codeword length is now:

n
k; =—qinp; +in Y B
i=1
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showing that the Rényi entropy is the lower bound to the
average codeword length (21)""). Tust as the p, =D™X
are the optimum probabilities for the Shamon-Gibbs
entropy, the optimum probabilities for the Rény1 entropy
are the so-called escort probabilities,

pki = P?

- : 22
%o pf (2

As p,~0, the optimum value of k; 13 asymptotic to q
ln p; so that the optimum length 15 less than In p, for g<1
and sufficiently small p;. This provides additional support
for keeping q within the interval [0,1]%7.

Although the Rényi entropy 1s additive it does not
have other properties listed above; for mstance, it 1s not
recursive and does not have the branching property nor
the sum property. Tt is precisely the ‘Tsallis’ entropy
which fills the gap, while not being additive, it has many
of the other properties that an entropy should have!™.
Therefore, in many ways the additive entropy of degree-q
(1) is closer to the Shannon entropy, (16) than the Rényi
entropy is". The so-called additive entropies of degree-q
can be written as:

n
Snq (P1s o P ) = Z(Pﬁ----* pd f(#
i=2

} (23)

where the function f is a solution to the functional
equation:

fx)+(1x°f (—
1-x

. ]—f(y) (1) f(i}
1=y

subject to f{0) = f(1), which was rederived by Curado and
Tsallis®®. The property of additivity of degree-q {10) was
referred to them as pseudo-additivity, omitting the original
references. What these authors appeared to have missed
are the properties of strong additivity, (14) and recursivity
of degree-q (7). These properties can be proven by direct
calculation using the normalized additive entropy of
degree-q, (1). Additive entropies of degree-q>1 are also
subadditive.

Moreover, additive entropies of degree-q satisfy the
sum property, (5) where,

S yp) = —pp/2 9 -1 = 0. (24)

Only for g=0 will (24) and consequently (1), be concave
since
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& =alq-DpF a2t -p=o,

where, the prime stands for differentiation with respect to
p.. This 1s contrary to the claim that the additive entropy
of degree-q is “extremized for all values of q". It can
easily be shown that the concavity property

G4 ipixi Zipi & X

i=1 i=1

umplies the monotonic mcrease in the entropy (19). Setting
p. = l/m and using the sum property (5) lead to

Sn,q(plv“"apn):z G Q(Pi)

i=1

e 80

i=1
vefbind

showing that S_ (1/n,..., 1/n) is maximal.

In order to obtain explicit expressions for the
probabilities, Tsallis and collaborators maximized their
non-normalized entropy

1

peeae

n

n
SEqProPa) =| 3 PR 1-q)
i=1

(25)

with respect to certain constraints. Taking their cue from
Jaynes '™ formalism of maximum entropy, (25) was to be
maximized with respect to the finite norm™/

I:p(x) dx=1

and the so-called q average of the second moment™!

(3 = [ lopeoridx/o)- o 26)

The latter condition was introduced because the
variance of the distribution did not exist and the weights,
(p%), have been referred to as “escort’ probabilities [cf. (22)
above]. The resulting distribution is almost identical to
Student’s distribution
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Hg-1)  T/q-1)
7 3-q IG-q)/2(q-1)

(@, 2 7
1427
[ +(3_q)ﬂx]

where, (3-q)/(q-1) 1s the number of degrees of freedom and
|t is the Lagrange multiplier for the constraint (26,

The Gaussian distribution is the only stable law with
a finite variance, all the other stable laws have in finite
variance. These stable laws have much larger tails than
the normal law which 1s responsible for the mfimte nature
of their variances. The initial distributions are given by
the intensity of small jumps™, where the intensity of

Jumps having the same sign of x and greater than x in
[27]

plu)=

(27)

absolute value 1s

Fi= .

< (28)

for x>1. For p=<1, the generalized random process, which is
of a Poisson nature, produces only positive jumps, whose
intensity (28) 1s always mcreasing. No moments exist and
the fact that

71 = et (29)

where, 4 1s both positive and real, follows directly from
Polya’s theorem: If for each 4, Z{0) =1, 7 (1)=0, Z(A) = 7
(-X), Z(}) is decreasing and continuous convex on the
right half interval, then Z(A) is a generating function®.
Convexity 1s easily checked for O<g <1 and it 13 concluded
that Z(1) is a generating function. In other words,

1-Z(A) = -I:(l —e My dRx) =T - B P

exists for a positive argument of the Gamma function and
that imphes p<1.

This does not hold on the interval 1<p<2, where it
makes sense to talk about a compensated sum of jumps,
since a finite mean exists. In the limit p = 2, positive and
negative jumps about the mean value become equally as
probable and the Wiener-Levy process results, which 1s
the normal limit. If one introduces a centering term in the
expression, -Ax, the same expression for the generating
function, (29), is obtained to lowest power in A, as A~0
and x -ee, such that their product is fimte.

These stable distributions, 0<p=<1, (and quasistable
ones, 1<f<2, because the effect of partial compensation
of jumps mtroduces an arbitrary additive constant) are
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related to the process of super-diffusion, where the
asymptotic behavior of the generalized Poisson process
has independent with intensity™
strictly stable processes, the super-diffusion packet
spreads out faster than the packet of freely moving
particles, while a quasi-stable distribution describes the
random walk of a particle with a fimite mean velocity. It
was hoped that these tail distributions could be described
by an additive entropy of degree-q, where the degree of
additivity would be related to the exponent of the stable,
or quasistable, distribution. Following the lead of
maximum entropy, where the optimal distribution results
from maximizing the entropy with all that is known about
the system, the same would hold true for maximizing the
additive entropy of degree-q. However, it was immediately
realized that the variance of the distribution does not
exist.

Comparing the derivative of the tail density (28) with
(27) identifies B = (3-q)/(g-1), requiring the stable laws to
fall in the domain 5/3<q<3™!. However, it is precisely in
the case in which we are ignorant of the variance that the

merements . For

Student distribution is used to replace the normal since it
has much fatter tails and only approaches the latter as the
number of degrees of freedom increases without limit!*”,
Tust as the ratio of the difference of the mean of a sample
and the mean of the distribution to the standard deviation
15 distributed normally, the replacement of the standard
deviation by its estimator is distributed according to the
Student distribution. This distribution (27) was not to be
unexpected, because it stands in the same relation to the
normal law as the “Tsallis” entropy, (25), 1s to the shannon
entropy m the limit as the number of degrees of freedom
is allowed to increase without limit.
Whereas weighted means of order-q

ol

do have physical relevance for different values of q, the
so-called g-expectation

n q
Zi-1 P X

1

TP

1

-1 p]

n q
Zio1Di X

(x)q =

)

has no physical significance for values of g # 1. Since the
statistical
thermodynamics lies in the association of average values

connection  between mechanics  and
with thermodynamic variables, the g-expectations would
lead to incorrect averages. This explains why for Tsallis
the internal energy of a composite system is not the same
as the mtermnal energies of the subsystems and makes the

question “if we are willing to consider the nonadditivity
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of the entropy, why it is so strange to accept the same for
the energy?"™ completely meaningless. Yet, the zeroth
law of thermodynamics and the derivation of the Tsallis
nonintensive mnverse temperature,

(30)

fas"’q/l 1-q)§
B*W[*( -q)

hal
q

where, U, is the g-expectation of the internal energy, rest
on the fact that the total energy of the composite system
is conserved™".

It is as incorrect to speak of ‘Tsallis” statistics™" as it
would be to talk of Rényi statistics. These expressions are
mere interpelation formulas leading to statistically

31]

meamngful expressions for the entropy m certain well-
defined limits. Whereas for the Rény1 entropy the limits
q-1 and g-0 give the Shannon-Gibbs and Hartley-
Boltzmann entropies, respectively, without assuming
equal probabilities, the additive entropy of degree-q
reduces to the Shannon entropy in the limit as g~ 1, but it
must further be assumed that the a priori probabilities are
equal in order to reduce it to the Hartley-Boltzmann
entropy. Hence, only the Rényi entropies are true
interpolation formulas.

Either the average of -In p, leading to the Shannon
entropy, or the negative of the weighted average of p*’,
resulting in the Rényi entropy will give the property of
additivity™™. Whereas the Shanncn entropy is the negative
of the logarithm of the geometric mean of the probabilities,

Sn,l (pl: sPa )7

where:

a
i

Sn (p1> >pn) =TII =1 plljl

is the geometric mean, the Rényi entropy is the negative
of the logarithm of the weighted mean

Sy q=—InM_ .

where:

1/(q-1)

n
-1
M= 2 pip{

i=1

is the weighted mean of p,*'. If the logarithm is to the base
2, the additive entropies of degree-q are exponentially
related to the Rényi entropies of order-q by

5 = (2008t g) iy

n.q
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which make it apparent that they cannot be additive. But
nonadditivity has nothing to do with nonextensivity.

As a concluding remark 1t may be of mterest to note
that undoubtedly the oldest expression for an additive
entropy of degree-2 was introduced by Gini®? in 1912,
who used it as an index of diversity or inequality.
Moreover, generalizations of additive entropies of
degree-q are well-kmown. It has been claimed that “Tsallis
changed the mathematical form of the definition of
entropy and introduced a new parameter q"f
Generalizations that introduce addiive entropies of
degree-q+r;-11%!

n qtr -1
Zio1py

n

Sp (Pro-sPp) = -
S e Ty n
1 z“1=1 p:l

1}/(21“1-1),

with nt+1 parameters, should give even better results when
1t comes to curve fitting.
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