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Implementation of Newmark’s Method for Second Order Initial Value Problems
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Department of Computer Science, International Islamic University, Sector H-10, Islamabad, Pakistan

Abstract: We discusses the conversion of the one-step Newmark’s method into two-step method and proved
that has same order as of one-step method. Next we consider the P-stability and phase properties of the method.
We consider the implementation of the method using Newton iteration scheme. Also we discuss the estimation
of local error and predictor used and presents the one step of the algorithm and convergence criteria. We
discuss the stepsize changing strategy and interpolant used to calculate the back values if required. Finally we
present the numerical result by applying the method to solve the stiff nonlinear differential system.
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INTRODUCTION
Censider the Newmark’s method!
Yoo = Yoty el (b, )+ By, )] (1)
Vo = Yot {yf(t, 7. )+ 81 (17,0 )] 2)

where, «, B, v and 8 are parameters (y = 1/2).
We can write the equation (1) the form

yn = Yn—l +hY:1—1 +h2 {O“’f(tn—l’ynrl ) + }Bf(tn ’yn )}
then

hy;l = yn _yn—l_hz {af(tnrl’ ynrl) + JBf(tn ’yn )} (3)
From equation (2), we have
hY:l - hY:ll +h2 {')’f(tm: Yn—l) + 5f(tn> Yn )}

By substituting the value of hy,, from equation (3), we
get

hy, =¥,y 0 {lo -y, v, B-OORE, . v, 0}
Now substituting  hy’, in equation (1), we have

Yo = YuT¥aVau
(o - Rt Y B - Bt Y, )
+h2 {af(trv yﬂ)+Bf(tn+1= yﬂ+1 )}

or, equivalently,
yn+1_2yn+yn—1 =h2 {ﬁnl+(a_ﬂ+5)n2+(?’-a)n3}

where, n, = f(t,. ... ), 0, = f{t,y,), ny = f{t, ,y. ) or,

Yo ot 0BT HepE) T, (- Tt )
where:
Voot = F (b Yo )» ¥ = F (80,3 )-
ORDER CONDITIONS AND P-STABILITY

Order conditions: The local truncation error for the
method (4) 13 given by

Sy(t,): 0] =y{ta)2y(t, ) 4y(t,.)
DY (b ) aB+y)F () Hr-a)F (L., )} (5)

Now expanding the terms ¥(t., ), ¥(t,,), ¥(t.,)

and Y(tn—l ) in Taylor series about t,, we have

2z

¥l = yit, Fhye, )+h—y<t >+ % )+ <‘°(t ..

2z

h
yit, )= y(t, Fhyt, )+_ it ) (3)(t )+ (‘”(t .
¥t ) =yt rhy O, )+ % .
Y(tm) y(t )hy(a)(t )+ (4)(12 }-..

By substituting the values of V(s ) ¥ (ta ), ¥ty )
and Y(tm) n equation (5), we have

3=(1-8-p 07 ¥(t, ) +(y-o-B )0y (1, )+
[1112-B/2-(y-e)/2 |y (1, ) + o(h’)

The method (4) 1s consistent if in equation (5), the
coefficients of h' and h' are zero such that the method is
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of the order greater than or equal to one. Since the
coefficient of h' and h' are zero, thus the method (4) is
consistent.

For a second order method, the coefficients of 1", h',
hfand h’ are zero while the coefficient of h* is non zero.
Thus we have
1-8-y =0, y-a-p=0
and
1/12-B/2-(y-2)/2#0.

This implies that
d=1-y,a=vy-Pandp# 112

Thus the necessary and sufficient conditions for
second order accurate methods are

d=l-yv,a=y-f and § # é (6)

P-stability: Lambert and Watson' has defined P-stability.
To analyses the stability properties of the method, we
apply the method (4) to the scalar test equation ¥~ € Y>
¢ real. This yield

Ve 2y oy =00 { By, H{oeB8)y, H(y-c)y,. |
or, equivalently,
(1+8¢'0* )y, +{-2+(a-B+8 e’ }y,
+{1+('y—0¢)02h2}yn_1 =0 (7)
Equation (7) is a difference equation of the form!
7, (ch)y,. +7,(chy, +7, (chy, , =0

where:

7,(ch) =1+ fc’h’,
7,(ch) = 2+ (@B + §)c*h,
1,(ch) =1+ (¥ —o)c’h’.

The general solution of this difference equation 1s

Yo = BAT+BAT

where, B, and B, are constants and A, and A, are the zeros
of the stability polynomial

2 -
T +Tr+ 1, =0

(8)

. . . +
Making the Routh-Herwitz transformation = Iz
becomes 1-z

(T,=T, +T,02° + 200, — T )2+ (T, + T, +1,)=0
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Thus, the necessary and sufficient conditions for P-
stability are

(z,+7, 7,207, -1, =0,(7, +7, + 7,120
Since T, = T, we find from (7) that

p=v-a ©)

which is also a condition for second order accuracy. This
15 a necessary condition for P-stability. When tlus
condition 1s satisfied, the transformed stability equation
1s:

(27, -7)z" +(27,+7,) =0

and the necessary and sufficient conditions for P-stability
are

27,1 ,20and 27 ,+7 =0 (10)
where:
2t +7 =(a+ B +8)c’h?

From the conditions for second order accuracy (6),
we have

27,7 =4+ {48 -1)c*h’
and
2t 47 =c’h’

Hence the necessary and sufficient conditions for P-
stability, (10), becomes

¢’h’ 20 and 4+ (48 -1)c*h* =0
for all real values of ch. Thus
4p-1:0
or, equivalently,
Bz (11)

RESULTS

The necessary and sufficient conditions for second
order accuracy are

O0=1-y,a=vy-Pand P # 1/12.

and for P-stability

1
>
ﬁ4
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By using the second order accuracy condition (6)
equation (4) can be rewritten in the form

Vo -2Yo Yo =0 LBV +(128)¥, 4 BY . | (12)

which is second order accurate and P-stable if p>1/4. Tf
B=1/4, then this is the Trapezium rule.

The method (12) 1s Newmark’s second order written
as an equivalent two step method Method (12) is
equivalent to the following Newmark’s method (y = 1/2):

Vo = Yoty (5= B9+ Y | (13)

Vi =Y ot ¥4 0 | (14)

which is second order accurate and P-stable 1f B=1/4.

PHASE PROPERTIES

Phase analysis: When Newmark’s method (4) 15 applied
to the scalar test equation

y_CZy:\;emrt (15)

for real c,v and w, we obtain a recurrence relation of the
form

r2Yn+1+rIYn+rDYn-1
=i’ {bzeim’*‘+ble‘“”"+bn°“'”“‘} (16)

where, the {1} and {b} each depend on ch. The general
solution of this equation is:

y =BA" +B,A", + Q™"

where, B, and B, are constants and Q,e™" is a particular
solution of the recurrence relation, with Q, satisfying:

Q ] [rzehwh +rle1wh +I_D:| — VhZ [b2e21wh+b1e1wh+bu:|

(17)

The numerical forced oscillation is in phase with its

analytical counterpart if Q, is also real for all real wh'**1.

Now we will prove that , 1s real. We can rewrite (17) in
the form:

Q,[A+B] =vh*[C+iD]
where:

A=r, cos 2 whtr, coswhtr
B=r, sin 2 wh+r, sinwh
C=b, cos 2 whtb cos whtb,
D=b, sin2 whtb, sin wh

404

or
Q [A*+B? | =vh?[(CA+DB)+(DA-CB) |
s0 Q, is real if and only if DA-CB = 0 for all real values of

wh.
Then

DA-CB = (b,r r,b,) sin 2 wh

+(b,r,-b,r,+b,ryr,b, ) sin wh

Thus DA-CB = 0 for all real values of wh, if r, = 1,
b, = b;. So a symmetric method (17) for which

I, =1, h,=hy (18)

is certainly in phase.
When Newmarlk’s method (4) is applied to the scalar
test equation (15), we obtain

(1+ ,Bczhz)yn+l+[—2+(a -B+ 5)C2h2Jyn
+[1+(’)/*C€)Czh2]y ,=Vh’E

where:
E= {,Be“‘"ﬂ“ +{o-B+8)e™ +(y —oc)e“"“-l}

which 1s of the form (17), for which,

r,=1+ Bc’hir =2+ (@ - B +8)c’h’,

r,=1+(y—a)c’h’,
b,=B8.b =a-+8b =y-c.

Hence, from equation (18), it is in phase, whenever
p=vy-u

which 1s also a necessary condition for P-stability (eq. 9).

Phase lag: The definition of Phase lag is given by Brusa

and Nigro'™)
We can rewrite equation (16), with v = 0 in the form

[1+w102h1yn+1—2[1+ § . ¢’h’ ]yn

+[1+1}f102h2]y =0

where:

(19)

v =p.8 = o f+8)

(20)

Substituting Y. T & in (19) gives
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[Ty H e —2[1+8,H |+[1+y H o™ =0
where, ch =H. Expanding in Taylor series

e™ =1+ 0H+ L0°H’ + LO°H

+L0'H'+ LO°H + Lo°H ...

e =1-0H+L0°H - Lo’H’

+L0'H' - L0°H + L0°H ..

120 720

we have

[y B ™ —2[1+8 1 [+ [1+y 1P e
= (6% + 2w, 28, )H
+(é9“+w192)H“+(L95+§1;f19“)Hﬁ @1

360

Let @ =€ +EH+xH’. Then this becomes

(€ +26EH + 2exH? + £°H* + 2y, 25, | H’
+(és“ +l}!182)H4 +o
=(&® + 2y, ~28, )H" + 2eEH

+(2erc+§2 +Let +W182)H2 +..

On equating coefficients of H, j =2, 3, 4 to zero, we obtain

el +2y 28 =0 (22)
2€§ =0 (23)
Zex+E +Le' vy et =0 (24)

By substituting the values of ¥, and &, from (20) in
(22) we have

e t+a+f+6=0
By the order condition (6), a+p+& = 1. Thus
£ =i

From equation (23) 2¢£ = 0 implying that £ = 0, since
e=1. From (24).

2e+ &0+ Lt vy et =0

implying that
k=3 B)
Thus

0 =i+i(L—p)H* +O(H)
Thus the phase lag 1s

b-1=i(L-p)H +O(H')

12

If p = 1/12 ( in which case the method is not P-stable),
then we take

0=i+{H +oH’
Substituting m (21) yields

(~1+ 210 H + 2ioH" + 297,28, JH*
Hs -y JH + (55 + v, JH +
= 2A0H +(2i0 — L+ Ly JH + .

360

On equating the coefficients of H', j = 5, 6 to zero, we have

{ =020 —5+5w =0

360
then
O =i+i[—L+LpH +O(H).

Hence the phase lag is

b-1=1[- L+ LB 1 +O(1T)

360

IMPLEMENTATION

Tterative scheme: Consider the P-stable, in phase second
order one step version of the Newmark method given by
(13)and (14)

s s h = a=
yn+1 :yn+5[yn+l+yn]
. 1 .
Y1 = yn+hy1n+h2{)6Yn+1+(E'ﬁJYn}
forany J Ei where, Yari = f(taYen )s ¥o = F(t.5.)

When this method is applied to a nonlinear differential
system

- ’

y=f(ty)yla)=ny(a)=n 25)

a nonlinear algebraic system must be solved at each step.
This may be solved by using the Newton iteration
scheme. Thus on defining

F(y) =y-y,-hy,-h’ {Bf(tnﬂ’y)-‘r{%_ﬁ Jy"}
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the Newton iteration scheme 1is

{p) (o)

Fyi ) (vl i) = (s}, p= 1.2, (26)
where:
. of (t,...¥)
F(y)=Ih*f—=2=L
(y)=t'p—>
of
and > is the Jacobian matrix of f with respect to v.

Suppose that T 1s an approximation for the Jacobian matrix,

then

B(y) = 1-h* Bl

Thus the Newton iteration scheme becomes

(1h*B)(vi v} = F(yi) 27)

Js

The formation of y', is discussed below after the one-step
of algorithm.

Next, we consider the P-stable, in phase second order
two-step version of the Newmark method given by (12)

) p=12...,
where,

F(yi) =¥y, -hy,4? {Bf (tary sy ){;-ﬁ

yn+1 _2yn +yn—1 = hz [ﬁynﬂ +(1_2B ) yn +Byn—1:|

1 -
fOI' any }8 EZ Where ynil =f(tni17ynil)’yn =f(tnDYn)
When tlus method 1s applied to a nonlmear
differential system (25), a Newton iteration scheme i,
(10 By) (v

)=y p=1.2...

where,
F(ye)) =yiiay, +y,.

0| Be(t, ¥ | H(128)y, 4B, |

Local error estimation and predictors: To estimate the
local error, we will consider an approach based on
comparing the predicted and corrected values. As the
corrector 1s a second order Newmark’s method, the order
of the predictor must be one to enable us to compute a
local error estimate. We use a predictor based on
mformation available on the current step. We can use the
predictor

406

ygﬂ

=y thy, (28)
which 1s just the Euler’s method.

We can also use the predictor based on the Lagrange
interpolant which interpolates to (tn, yn) and (tn,pyn,l)a
we obtain

YI('EF)I -

Q'Yn _Yn—l (29)
(this predictor can be used only if two back values are
knowmn). For the two step version of the Newmark method,
we will use this predictor.

Suppose u(t) is the local sclution, yv., is the
predicted value of y,,, cbtained from (28) or (29) and ¥,
1s the corrected value obtained from the iteration (27).
Then, provided the local error in y™,., is O(h?), we have

alty )5 = An o{1e)

o+l
u(t,,)vid = o)

where, A is independent of h. Subtracting these

equations, we have

¥y, = Ab+O(h’)

and hence the local error in .., is given by
uthyi) = vy o)

Thus the local error may be estimated from

Len+ T Yﬂ _ySr)l

(31
One-step of the algorithm: Suppose h is the stepsize to
be used for the next step. If we use the one step version
of Newmark’s method, we need v, v, andy, which are
available from the previous computation. For the two-step
version of Newmark’s method, we need  Yur Yos Yoy a0,
which are available from previous computations. Also an
approximation T to of/dy is known. Suppose that the
triangular factors of [-h*BJ are available and that a
predicted value y",,, has already been computed from
(28) or (29). The iteration (27) for the Newmark method can
be implemented as shown in the following algorithm.

Algrithm: (Second order P-stable Newmark’s method)

Setp=1
Repeat

Evaluate 7, =fit_,, YE,FHI ))
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GGy
Calculate
(1-h* BT)v =Gy
Solve

yflﬁ-)l = yg—ll) v
Set

p=ptl

until convergence (Q iteration, say)
(a) When we use the one-step version of Newmark’s
method, we take

GlyE 0y =y Uy, +hy;+(;-l3 Jyn + hz,

(2l

Before proceeding to the next step, we set Yo = Vasr-

We wish to caleulate  Ya1 @4 Yo without evaluating

Q .
f(tn*-l’y(n’f% ) To do so, we use the (13) to compute Y1

y;+1- ThUS

v
L

and then (14) to compute

1
B

1)1
ﬁ |:hg(yn+1_Yn)

ynﬂ Jyn j|

and

r I h . .
Vs =yn+5[yn+yn+1]

(b) When we use the two-step version of Newmark’s
method, we take

Gy =y ray, v, [ B(Z4y,,) +(1-2B)Y, |

[Q}

Before proceeding to the next step, we set ¥, = ¥ui- TO
calculat Yu1 without evaluating f (tnﬂ, 1(33) we use
(12). Thus

¢ = L[y oy iy Bh -(1-2B)h%

yn+1 - th [ynﬂ yn ynrl JB ynrl ( JB) yn:|

To test for convergence in the algorithm, we check
the condition ||v||<e. If this absolute error test 1s
satisfied then the iteration has converged. We take
£ = ¢*Tol, where, Tol is the local error tolerance supplied
by the user and ¢ is an appropriate constant. We
choose ¢ =1.0.If | |v||>& and p=2, we form an estimate of
the rate of convergence,

407

v i)
p-1

Rate = .
yl(qﬂ : _YEJPHZ :

To ensure that convergence i1s not too slow, we
assume that the iteration fails to converge whenever
Rate>0.9. Tf Rate<0.9 then we perform another step of the
iteration and check the above condition. Continue in this
way until either the absolute error test is satisfied or the
number of iterations exceeds some upper limit, Pmax = 5,
(to obtain our results, we choose Pmax = 5). Thus if
p>Pmax the iteration is deemed to have failed to converge.

If the iteration diverges, some combimation of stepsize
reduction and reassemble and refactorisation of the
iteration matrix (1-p b’I), with or without reevaluation of
the Jacobian matrix J, should be used. For the numerical
results obtamed below, we have tested two strategies.

Strategy 1: If the iteration diverges then reevaluate the
Tacobian (if it has not already been evaluated at this
point), halve the stepsize and refactorise the iteration
matrix and repeat the step. If it diverges again then halve
the stepsize and refactorise the iteration matrix and repeat
the step. Continue halving the stepsize and refactorising
the iteration matrix until the iteration converges.

If the iteration comverges but the step has to be
rejected because the local error test is not satisfied, then
repeat the step with a smaller stepsize. In this case
reevaluate the Jacobian (if it has not already been
evaluated at this point) and refactorise the iteration matrix.
If the local error test is satisfied and the stepsize is
changed the again reevaluate the Jacobian (since thus 1s
a new point, the Jacobian could not have been evaluated
here before) and refactorise the iteration matrix.

Strategy 2: The Jacobian is reevaluated the first time an
iteration diverges and also the iteration matrix is
refactorised. Then we repeat the integration step. If
divergence occurs again then we halve the stepsize and
refactorise the iteration matrix, without reevaluating the
Jacobian and repeat the step. We continue halving the
stepsize and refactorising the iteration matrix until the
iteration converges.

If the iterations converges but the step has to be
rejected because the local error test is not satisfied, that
is ||Le,,||>Tol, the step is repeated with a smaller
stepsize and the iteration matrix is refactorised without
reevaluating the Jacobian. If the local error test
| ILeg || < Tol 1s satisfied, we take y,.., = ygﬂ but for the
next step if the stepsize 13 changed then we refactorise the
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iteration matrix without reevaluating the Jacobian such
that we refactorise the iteration matrix whenever the
stepsize 1s changed.

Changing the stepsize: The stepsize to be used for the
next (or repeated step) may be calculated from the local
error estimate and local error tolerance. A local error
estimate for the second order Newmarl’s method may be
obtained from the relation (31 ):

yl(-srjl _yfn)l

where, v'% is the corrected value and  ¥%, is the [irst

order predictor. Then, we have from (30) that

Le,,, = Ah’+0O(h’)

This mnplies that

‘Lem-l
hZ

[al=
If we choose the stepsize, H, so that the error
estimate on the next (or repeated) step is expected to

equal the user supplied local error tolerance Tol, we find
that

Le,., - |ARE-0(F’)

Or,

]

This implies that

Tol
||Le

it

In practice, since the above analysis only holds

n+l

asymptotically as h-0, we take
1

ool

where, p 13 a safety factor, whose purpose 1s to avoid

Tol

|Le (32)

1

1
failed step (p is often taken to be 27! where p is the
order of the predictor, or sometimes 0.8 or 0.9).

To avoid large fluctuations in the stepsize caused by
local changes in the error estimate, we put a restriction on
the amount by which the stepsize may be increased or
decreased. We do not allow the stepsize to decrease by
more than a factor p; or increase by more than a factor p;.

408

Also to avoid the extra function evaluations, Jacobian
evaluation and matrix factorisations involved in changing
the stepsize, we do not increase the stepsize at all unless
1t can be mcreased by a factor of at least p,, where p,<p;.
For the numerical results, we have considered
2" and p, = 0.2, p, = 2.0and p, = 3.0.

When we apply the two step version of Newmark’s
method, suppose vy, is accepted and a new stepsize h
predicted for the next step. We need to find the

p=

i

approximation to y(tnﬂ-ﬁ) andy(t —H). We can take

¥(towsh) (t..)

nt+l

=B .

and evaluate the function

f(Y( 2+ h)) where, P, .1 (t) is the mterpolating polynommal

of degree one satisfying the conditions B, (t,) =y,
and B, (t,.;) =¥, We find that
= h h
P (t. -h)=|1-=|y, +—y, 33
1,n1( 1 ) { h:|y 1 hy (33)

Wocmtey{ ] =Dty B (0, ) =By,
Where P, ., (t) is the interpolating polynomial of degree

two satisfying the conditions P, . {(t )=y,
and P, . (t,,, )=y, and either () P, (t,.,) =¥,., or (b)
P,...(t) = ¥,we find that
. h h h
(a) P2n+1( +1 h) - |:1'h}yn+1 hyn (h h)yn+1 (34)
(b) pZ,nﬂ (tn+1'H) A (35)
— |, h h hy =

and Pz,nﬂ(tnﬂ_h) - |:1_h}yn+1+hYn_2(h_h)yn (36)

i::\’2,n+1 (tnﬂ_H) = Q'Yn (37)

We can take y(tm—ﬁ) =P (tm—ﬂ),'y(tnﬂ-ﬁ) = Plnﬂ (tnﬂ-ﬁ)
15 the mterpolating polynomial of degree three
satisfying the conditions P, (t, ) =y, P, (t..,) =¥,
and P3,n+1 (tn ) Y and P3,11+1 (tn+1) BRFTSE
We find that
— h h
PB,n+1(tn+1_h) = |:1_H}yn+l+ayn
_ (38)
07 b W h ohh |
273 e [ 66 |



J. Applied Sci., 5 (3): 402-410, 2005

P3,n+1(tn+1_h) = {l_i:|yn+l+iyn (39)

We any mterpolating
polynomial discussed above to find approximation to
Y(tnﬂ-h) and _}_’(tm'h)- A similar approach can be
adopted when y,., has to be rejected (because of error
test failure) and the step repeated with a new stepsize h
and also when the iteration diverges and the stepsize is

halved.

carl use one

Starting technique and numerical results: Since the two
step version of Newmark’s method requires the mutial
calculation of y, and y,, given vy jand ¥y ,(uutal
conditions), we need to calculate the starting value y,
before applying the two-step version of Newmark's
method and form the error estimate. If the error test 1s
satisfied and y, 1s accepted then we proceed to the two
step version of Newmark’s method. For the one-step
version of Newmark’s method, we use the predictor given
by (28) while (29) for the two-step version of Newmarl:s
method.

On change of stepsize, when we apply the two-step
version of Newmark’s method, we have considered
different choices of mterpolating polynomial discussed
above. For the numerical results, we have used the
following notation for these choices.

NMI1ST: One step version of Newmark method.
NM2P1: Two step version of Newmark method and apply

the interpolating polynomial of degree one given by (33)
to approximate y{t-h) and evaluate f{y(t-h))

NM2P2: Two step version of Newmark method and apply
the mnterpolating polynomial of degree two given by (34)
and (35) to approximate  y(t-h) and y{t-h)

NM2P3: Two step version of Newmark method and apply
the cubic Hermite interpolant given by (38) and (39) to
approximate y(t-h) and §(t-h)

For the numerical results, we have solved the
following initial value problems

Exmple 1: The scalar nonlinear problem
ytsinhy =0, y(0) =1, y(0)=0.

The next two problems both use the same differential
equation but with different imtial conditions. These
nonlinear differential equations are

y,tsinh(y,+y,) =0, ¥,+10%, = 0.

Exmple 2: v,(0) =1, v,(0) =0, y;(0) = 107, v,(0) = 0.
Exmple 3: y,(0) = 1, y,(0) = 0, y,(0) = 107, ¥,(0) = 0.

The above problems have been solved for te[0,6].
The error at the end point is obtained by comparing the
computed solution with the solution obtained by using a
fixed step code with a small stepsize for example 1 and for
the first equation of examples 2 and 3. For the second
equation of example 2 and 3 we have use the exact
solution. We denote the error at the end pomt by
MAXERR where for the scalar equation it is | Error at t =6
and for the system it is ||Emor at t =6||. For these
examples the stepsize is chosen initially tobeh =1.0. The
results obtained for the cases where the maximum number
of iteration permitted, Pmax, 1s 5.

Table 1: Methods are compared for example 1 with Pmax =35, Tol=10"2and e =1072

Methods MAXERR FCN IC NIT NST STP S8T C8 S F1
NMI1ST 1.48x107° 66 1 65 52 58 52 9 6 -
NM2P1 4.91x1072 101 1 88 69 78 69 13 9 12

NM2P2 2.00=1072 83 1 82 67 74 67 10 7 -
NM2P3 1.66x10~2 92 1 91 72 81 72 13 9

Table 2: Methods are compared for example 1 with Pmax =35, Tol=10"*ande =10"*

Methods MAXERR FCN JC NIT NST STP SST C8 FS Fl
NMI1ST 3.17x107° 488 1 487 463 474 463 15 11 -
NM2P1 8.39x1073 738 1 720 692 705 692 19 13 17
NM2P2 1.55%1072 679 1 678 650 663 650 18 13 -
NM2P3 2.89x1077 681 1 680 652 665 652 18 13

Table 3: Methods are compared for example 2 with Pmax =5, Tol= 10" and e = *

Methods MAXERR FCN JC NIT NST STP 88T (] FS FT Fl
NMI1ST 1.47x1073 66 1 65 52 58 52 9 6 10 -
NM2P1 2.16x1072 93 1 85 72 78 72 8 & 9 7
NM2P2 4.75%1073 379 1 378 269 323 269 103 54 104 -
NM2P3 7.08x1074 88 1 87 72 79 72 11 7 12 -
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Table 4: Methods are compared for example 2 withPmax=35,Tol=10"%and e =—*
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problems with Tel = 10"*and 107,
In each case, we present the following statistics:

Number of evaluation of the differential equation
right hand side f, FCN;,

Number of evaluation of the Jacobian of/dy, JC;
Number of iterations overall, NIT;

Number of iterations in steps where iteration
converged, NST;

Number of steps overall, STP,
Number of successful steps
ntegration, SST;

Number of steps where the stepsize is changes, CS;
Number of failed steps, FS;

Number of LU factorisation of the iteration matrix, FT
Number of function evaluations by usmg the
mterpolating polynomial of degree one given by (30)
to find back values on change of stepsize, FP1.

The results are presented in Tablel-6 for strategy 1

to complete the

and in Table 7-9 for strategy 2.
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Methods MAXERR FCN JC NIT NST STP SST CS FS FT Fl
NMI1ST 1.88x107° 567 1 566 540 552 540 18 12 19 -
NM2P1 2.06%1073 846 1 816 770 792 770 31 22 32 20
NM2P2 1.79%107* 733 1 732 706 718 706 18 12 19 -
NM2P3 5.39x107> 803 1 802 738 769 738 46 31 47 -
Table 5: Methods are compared for example 3 with Pmax=35,Tol=10"2 and ¢ =2
Methods MAXERR FCN JC NIT NST STP SST CS FS FT Fl
NMI1ST 1.48x1072 66 1 65 52 58 52 9 & 10 -
NM2P1 4.91x1072 101 1 88 69 78 69 13 9 14 12
NM2P2 2.01x1072 83 1 82 67 T4 67 10 7 11 -
NM2P3 1.66x10~2 92 1 91 72 81 72 13 9 14 -
Table 6: Methods are compared for example 3 with Pmax=35,Tol=10"2 and ¢ =2
Methods MAXERR FCN JC NIT NST STP SST CS FS FT Fl
NMI1ST 3.17x1072 488 1 487 463 474 463 15 11 16 -
NM2P1 8.39x1072 738 1 720 692 705 692 19 13 20 17
NM2P2 1.55%1072 679 1 678 650 663 650 18 13 19 -
NM2P3 2.89x1072 681 1 680 652 665 652 18 13 19 -
Table 7: Methods are compared for example 1 with Pmax =35, Tol =10 and ¢ =~
Methods MAXERR FCN JC NIT NST STP SST CS ES F1
NMI1ST 2.08x1073 66 8 65 52 58 52 9 6 -
NM2P1 4.73%1072 101 10 88 69 78 69 13 9 12
NM2P2 2.28%1072 83 8 82 67 74 67 10 7 -
NM2P3 1.56x1073 92 10 91 72 81 72 13 9 -
Table 8: Methods are compared for example 2 with Pmax =35, Tol =102 and ¢ =
Methods MAXERR FCN JC NIT NST STP SST (o] FS FT Fl
NMI1ST 2.08x1073 66 8 65 52 58 52 9 6 10 -
NM2P1 2.03%x1072 93 6 85 T2 T8 72 8 6 9 7
NM2P2 5.85x1073 514 109 513 292 402 202 215 110 216 -
NM2P3 1.76x10~4 38 8 87 72 79 72 11 7 12 -
Table 9: Methods are compared for example 3 with Pmax =5, Tol= 10" ande = *
Methods MAXERR FCN JC NIT NST STP SST (o] FS FT Fl
NMI1ST 2.08x1073 66 8 65 52 58 52 9 6 10 -
NM2P1 4731072 101 10 88 69 T8 69 13 9 14 12
NM2P2 2.28%1072 83 8 82 67 T4 67 10 7 11 -
NM2P3 1.56x1073 92 10 91 72 81 72 13 9 14 -
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