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Non-linear Solution of Function Generation of Planar Four-link
Mechanisms by Homotopy Continuation Method
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Department of Mechanical Engineering, Far East College, Tainan 744, Taiwan

Abstract: The automation design program of planar four-link mechanisms, including four-bar and slider-crank
mechanisms, were presented. This program was developed on popular windows platform by Microsoft visual
basic language. The program can manage maximum analytical precision points’ synthesis problems of planar
four-link mechanisms. We just input necessary desired specs, the link lengths and mechanism profile will
quickly be determined by this program. Moreover, the animation simulation can also be performed m thus
program. Some examples were given i this study for illustration purpose.
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INTRODUCTION
1" developed a serial of graphical synthesis
methods in 1964’s. However, as we known, the graphical
methods are not exact solutions. Also, the methods have
some disadvantages such as the limitation of precision
points and the inaccuracy of drawing and so on. The
loop-closure equation had carried out by Freudenstein'™.
The Freudenstemn’s equation provided the ability to get
exact solutions. Nevertheless, we still must use calculator,
even computer, to help us to accomplish higher analytical
precision  points by equation.
Freudenstein’s equation provided maximum 3 linear exact
solutions and maximum 5 non-linear analytical solutions.
There are different works that has been devoted to the
courses of mechanism design until today™™.

In the process of solving mechamsm design
problems, some troublesome simultaneous equations
would be generated, especially the simultaneous
non-linear equations. Up to the present, we have already
many different methods can deal with the simultaneous
non-linear equations”. The initial guesses in these
numerical methods are a big trouble. Good initial guesses
can faster converge to the answers. Reversely, bad initial
guesses perhaps 1mply divergence. It's a well-known
COININOIL Sense,

Homotopy continuation method was known as early
as in the 1930°s. This method was used by kinematician in
the 1960°s m the U.S. for solving mechamsm synthesis
problems. The latest development was done by Morgan™
at GM. We also have three literatures by Morgan®™'",
' and Allgower"?. Morgan’s issues are better
readable than others. Continuation method gives a set of
certain answers and some simple iteration process to
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obtain our solutions more exactly. Wu' presented

some techniques for combining Newton’s, ancient
Chinese algorithim and homotopy methods to avoid
divergence on solving non-linear equation. Moreover,
Wul"! explored all the linear and non-linear sclutions of
' applied

the homotopy continuation method to search all the roots

the kinematics design problems as well as Wul

of mverse kinematics problem of robot. This study
attempt to use Freudenstein’s equation and homotopy
continuation method to solve the maximum analytical
precision points’ synthesis problems of planar four-link
mechanisms. The program is developed on current
popular windows platform by Microsoft visual basic
language. Further, the program is provided in this study.
(http://home Jamo.com.tw/tm .wu/Programs/Programs.htm ):

Freudenstein’s equation and homotopy continuation
method: Consider Fig. 1, the planar four-bar linkage
mechanism has the following Freudenstein’s equation

K, cosd, + K, cosy, + K, = —cos(¢, — ) (1)
Where:
2 2 2 2
K1:£>K2 :_éaKBZM’iEN (2)
Z, Z, 22,7,

Observing Eq. 1 and 2, the givens are (¢, ¥,) and
unknowns are (Z,, Z,, Z, Z,). Since 7, is ascale, it
can be chosen arbitrarily. The real unknowns
therefore become (Z,, Z,, Z,). Hence we only have
three equations to solve maximum three unknowns
linearly by Cramer’s rule or Gauss elimination method, etc.
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Fig. 2: The planar slider-crank mechanism

However, according to the Chebyshev spacing i the
actual synthesis problems, we have two free variables can
be assigned, i.e. (¢, ¥,), which are the initial position of
our desired mput and output design intervals. In other
words, we total have five unknowns (Z,, Z.. Z,, ¢,, ¥,) to
be determined. Tt will vield Eq. 1 to be

K cos(dg + &y, 3+ K, cos{usy + vy, )+ K
_COS(¢D + ¢n, Y- Wm)

= 3)

Theoretically, Eq. 3 can satisfy infinite positions
(¢, V) just by the five variables (Z,, Z,, Z., &, T,). We
can use so-called overlay method to synthesize this kind
of mechanism. In fact, the successful probability is very
lower. With the natural constraints of planar four-link
mechanisms, we only can get 2 or 3 precision points for
linear solutions and 4 or 5 precision points for nonlmear
solutions by Freudenstein’s equation. To ensure the
existence of solutions, the n unknowns must correspond
to n equations. This is Newton’s fundamental theorem of
algebra. So we can solve Eq. 3 analytically up to maximum
5 input-output position relationships, i.e. 5 precision
points. But, the five unknown variables in Eq. 3 are
coupled each other. We have to apply numerical
techmique to solve them. The Newton-Raphson 1s a
famous method. The defect is acquirement of good initial
guesses. With the aid of homotopy continuation
approach, we will more correct and quicker to obtain the
results.

Firstly, we rewrite Eq. 3 as function {(Z,, 7., Z,, ¢,
¥,), then we assume a new controllable/given function
(7, 7y, 2.y, &y, F). The homotopy continuation function
therefore 1s defined as:
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Hi) =tH(Z,,Z,.Z,.0p. W ) +

(1-1)g(Z,.2,,2,.0,,,)=0 ey
Where:
=K, cos(¢, + ¢, )+ K, cos(y, + )
+K, +cos(¢, + by, —w, —wy,)
g=K cos($p, )+ K, cos(y, )+ K, +
cos{¢, —y, ) —2cos(Py,)— 2 (5)

The last two terms -2cos(dy,,)-2 of function g mean
the correction dependent on the controllable initial
guesses (K, K,,K,, ¥,)=(1, 1, 1, 0) for 4 precision points.
As well as (K, K, K, ¥)=01,1,1, . O)=0(1,1,1,
0, 0) for 5 precision points.

What we have to do 15 change the homotopy
parameter t from O to 1 to get the answer of f = 0. By the
test, the iteration times do not need very large. We just
only need to iterate 100 times to yield the converge
results. Of course, the iteration procedure of Newton-
Raphsonmethod is still necessary. In many situations, the
convergence speed of Newton-Raphson combined with
homotopy 1s faster than only using the Newton-Raphson
method.

Secondly, from Fig. 2, the Freudenstein’s equation of
planar slider-crank mechanism is:

K, S cosd, + K, sing, —K, =8’ (6)

Where:
K, =22,K,=27,2, K, =2 -Z2+Z: ieN  (7)

Similarly, the homotopy continuation function for the
planar slider-crank mechanism 1s defined as:

Hﬁ)ztf(ZZ,Z,j,Z,l,d)D,Sﬂ)-ﬁ'

(A-08(Z,. 25, 2. 4,5 =0 (8)
Where:
=K (8, +5,)cos(0, +d, ) +
K, sin(dy, + ¢y - K, (8, + Sm)z
g=K 5, cos($, )+ K, sin(¢p, )
~K, — 8] —sin(gy,) -1 ©

EXAMPLES

Example 1: Synthesis of planar four-bar mechanism with
2 precision points: If we would like to synthesize 2
precision points from Eq. 1, one free choice should be
given because of we have 2 equations and 3 unknowns
(2, 7., Z,) or (K, K,, K). One variable of Z,, Z, or Z, will
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be assigned to determine following simultaneous linear
equations

{chos¢1+K2 cosys + K, = —cos(dy — y) (10)

K, cos¢, + K cosys, + K, = —cos(d, — yr)

We design the free choice ag Z; in this study. Of
course, Z; also is the free choice in all cases of planar
four-bar linkage mechanisms. We give the input-output
data, (&, '¥')) and (&b, '¥',), in this example as enter the
values and free choices Z, = 5.2, Z.= 0.8 shown in Fig. 3.
The results are the same with Tao™ contribution.

Example 2: Synthesis of planar slider-crank mechanism
with 2 precision points: In general, planar slider-crank
mechanism with 2 precision points means crank and
piston system. Similarly, if we degire to synthegize this
kind of mechanism. Consider Eq. 6, we can chooze the free
variable from Z, (crank length) or Z, (offset from fixed
pivot to slider) to determine simultaneous linear Eq. 11.
This study provides these two choices. In this example,
we let offset Z, =-2 to compare with Tao™ literature.

K8 cosdy + K sind — K, = §;
a1

K,S,cos0, + K sing, - K, = 5

The answers are also the same with Taoll. Note that,
in Fig. 4, Z, denotes S, displacement in the planar slider-
crank mechanism, drawn in Fig. 2. We already give them
values in “Si or 8" column of Fig. 4. So we do not need to
assign ite data again. On the other hand, the scale in this
mechanism should be the real dimension of the slider.

Example 3: Synthesis of planar four-bar mechanism with
3 precision points: Three precision points are the
limitation of the planar four-link mechanism syntheses,
including four-bar and slider-crank mechanisms, with
gimultaneous linear equations. We do not need to assign
redundant free variable except for the fixed link Z, for
four-bar linkage. The simultaneous linear equations in this
example are

K, cos¢y + K, cosys + K, = —cos(d — ys)
K, cosd, + K, cosys, + K ; = —cos(d, — ys)
K, cosd, + K, cosys + K, = —cos(, — yr)

12)

Now, we run this example as the type of enter the
function, shown in Fig. 5. We supply the design
information as:

y=gnx, 0°2x <90° 4, =97° Adp=120°

Yy = 60°, Ay=60°, Z, =52.5 (13)
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Fig. 3: Syntheziz of planar four-bar linkage mechanizsm
with 2 precision points
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Fig. 4: Synthesis of planar slider-crank mechanism with 2
precision points
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Fig. 5: Synthesis of planar four-bar linkage mechanism
with 3 precision points
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Fig. 6: Synthesis of planar slider- crank mechanism with 4
precision points
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Fig. 7: Synthesis of planar four-bar linkage mechanism
with 5 precision points

Where, &g, Ty and Z; are arbitrary. Specifically, ¢y
and 't are arbitrary for linear solutions of Eq. 12 by means
of using Chebyshev spacing method to yield (&, 'F1),
(¢, ¥ and (¢., ¥2). We can also change any value
(¢, 'P) by “Click” and input data in the “Values Grid” in
Fig. 5 to meet special location requirement such as
positioning machine.

The computation results of links length, shown in
Fig. 5, are checked by Sandor®. They are the same.

Example 4: Synthesis of planar slider-crank mechanism
with 4 precision points: Exceed 4 precizion points, Eq. 1
and 6 will become non-linear. This is discussed in
previous section. We egpecially apply the homotopy
confinuation method to handle this problem. Alzo, we
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define two homotopy functions (4) and (8), respectively
in this paper to solve the simultaneous non-linear
equations.

We give the following design specs to run this
example. The answers are shown in Fig. 6. The automation
program takes usjust 0.47 sec in merely AMD-K6/2-500
CPU.

y=¢*, 0<x <1, §, =30°%Ad=60°% AS=6
(14)

Where, we still have one free parameter ¢, to be
chosen arbitrarily in all problems of 4 precision points
syntheses.

Example 5: Synthesis of planar four-b ar mechanism with
5 precision points: By the similar manner, we provide a
set of design data as following to synthesize the planar
four-bar linkage mechanism with 5 precision points

y=§,1£x£2, AO=90° Ay=90% Z =1 (15)

We can also obtain these design data from
Hartenberg’s book™. Owing to the computation of this
program, we find the inaugural Chebyshev’s data x; to x;
are puzzle in Harfenberg’s book. They seem wrong.

The final results of this example are shown in Fig. 7.
The program takes us just only about 0.64 sec to run this
example. It presents that the homotopy continuation
method hag high efficiency in solving simultaneous non-
linear equations.

CONCLUSIONS

All mechanism design problems should solve
simultaneous equations except for graphical methods.
However, the graphical methods can not obtain the better
accurate results. We must use analytical methods to
determine the exact solutions. Whatever we solve what
kinds of simultaneous equations and no matter how many
precision points are assigned, we always have two types
of simultaneous equations. They are linear and non-linear.
This paper applies Gauss elimination and Homotopy
continuation methods to solve simultaneous linear and
non-linear equati ons, respectively.

In analytical solving the planar four-bar and slider-
crank mechanizsms, we have 2 to 5 precision points can be
asgigned. The giving of 2 or 3 precision poinis can
generate simultaneous linear equations. However, 4 or 5
precision points will generate simultaneous non-linear
equations. The solutions for these two types are not
difficult for thiz program. Over 5 precision points, we
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should use graphical method such as overlay method. Tt
1s not a closed form method. It 1s a trial and error
techmque and not guarantees the solutions. As we
known, more free variables mean more answers for our
problems. Reversely, we can equate less free choices to
lesser results for the design problems. So it 1s not easy for
us to certainly say what kind of design problems is mice.
May be, we should decide them by the real needs.

This study develops a PC’s program on windows
platform by Microsoft visual basic language to solve the
design problems of planar four-bar and slider-crank
mechanisms. Some programming techniques and debug
measures are applied and included mn the program.
Furthermore, the ammation simulation artifice 1s also been
combined in this program. From this program, we can
quickly and exactly obtain our desired requirements and
view the animation simulation real-time. It 1s hoped that
the study presented here will contribute towards progress
i the kinematics syntheses of mechamsms and provide
some programming approaches for the scientists or
engineers.
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