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Abstract: Characterizations of Semi-simple algebra were mutiated by Cartan. In recent years, semi-simple
Lie algebras have been characterized with the help of Killing forms. In this study we have made an attempt to
define generalized killing forms and have applied these to the question of existence of Lagrangians in a physical

system.
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INTRODUCTION

Killing Forms (KFs) play a very important role in
characterizing semi-simple algebras!. One of these
schemes is the Cartan’s criterion that states that Lie
algebra 1s semi-simple if and only if its KF is non-
degenerate. Recall: a Lie algebra has an extra structure
called the Lie bracket or Lie product which has close link
with calculus of manifolds.

BASIC DEFINITIONS AND USEFUL RESULTS

Bilinear forms: Let V, (F) be an n-dimensional linear
space defined over the scalar field F. Then the mapping:

T:V,xV~F
with the following axioms 13 called a bilinear form:

(1) T (cu+Pu,v) = aT(u, v), HpT(u, v)
G T (w yvTOv) =v T (w v + 0T (u, v;)

forallu, u, v, v, eV, (F and &, B, v, & €F

The rank of a bilinear form T on V, (F) denoted by
rank (T) is defined to be the rank of any matrix
representation of T. We say that T 13 degenerate or
non-degenerate according as whether rank (T) < dim (V)
or rank (T) = dim (V).

A bilinear from T on a linear space V,(F) is said to be
symmetric if:

Twv)=T(v,u)foralluy v eV

Theorem 1: Let T: IR® x TR"IR be a bilinear form and let
A be a matrix representation of T. Then A 1s symmetric if
and only if T 1s symmetric 1 IR"

Theorem 2: Let T be a symmetric bilinear form on a linear
space V, (F). Then V,_ has a basis {v}", ., m which T 1s
represented by a diagonal matrix 1, e. T (v, v;) = 01f1#j.

Quadratic forms: A mapping q V.(F)-F is called a
quadratic form if q(v) = T(v, v) for some symmetric bilinear
form T on V. If T 18 represented by a symmetric
matrix A = (&) then q: V (F)~F is represented in the form:

q(X) = T(X, X) = X'AX

={x, X, . . o X))
ay Ay Ay . Ay |[ X
dy Ay Ay Az || %2
ay 8y Ay gy || Xy
a'nl anZ an3 a'nn Xn
=208 X X,
L
2 2 2
= a,X Fay, X o, ta, X, +2 Y X X,

1%)

Note that, if A 1s diagonal, then it has the diagonal
representation
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qiX)=X'AX=a, %+ a, X+ ta, x

That 15, the quadratic polynomial representing 'q' will
contain no “cross-product” terms. For example, consider
the mapping q: IR *~IR over the scalar field IR, defined by:

q(x, vy ) =ax’+ Zhxy + by’, where a, b, h € IR

Then ¢ (x, v) satisfies all the conditions of quadratic
forms. The symmetric matrix A of this quadratic form is

A—[E EJ and m case h=0 1.e. A 1s diagonal then
q(x, v) = ax*+ by

Killing forms™: Let G be a Lie algebra Suppose X, Y are
arbitrary elements of G. Then the operator.

adX: G-G
defined by adX(Y) = [X,Y] is a linear transformation.

Recall: If V 1s a vector space over the field F, Then a
mapping T of V(F) into V(F) is called a linear
transformation (or a linear operator) if T satisfies the
following conditions:

DIfv,v,e V(I), thenT (v, +v,) =Tv, + Tv,
QDIf v,eV(F), s € F, then T(sv,) =sTv,

To see that adX: G-G defined by adX(Y)=[X,Y] s a
linear transformation.
We calculate: adX(Y+7) = [X,Y+Z],VY,Z G

=X (Y+24)-(Y+Z) X
=XYV+X7 - YX -ZX
=(XY -YX)+ 37 - 7X)
=X, Y]+[¥X Z]
=adX(Y)+ adX(Z)

Also, adX(aY)=[X, ¢Y|YaeF
=Xa¥Y -aYX
=a(XY - YX)
=X Y]
= gadX(Y)

Hence the
transformation.
Note that X-ad¥X is a representation of the Lie algebra
G with G itself considered as linear space of the
representation. The representation adX, called the
adjomnt representation, always provides

operator adX: G-G 18 a linear

a matrix

860

representation of the algebra. For example, the adjoint
representation of the algebra of SO(3) is given by:

(M), = C, =€, = - €, Where, €, 1s antisymmetric in 1.k,

Thus the matrices

00 0 0 0 010
L,=|0 0 -1,L,= |0 0 0|landL,=[1 0 0
01 0 -10 00 0

with structure constants £, being antisymmetric in i and
k given by:

[L, LJ=eu Ly

are also the matrices of the adjoint representation.
The Killing form of a Lie algebra G 1s the symmetric
bilinear form:
K3 Y)=Tr (adX adY).

If {E}_, 1s a basis n G for theng, =K (E E)=C,C,
1s called the metric tensor for G where, the C%, are the
structure constants of G.

A GENERALIZATION OF KILLING FORMS

We consider a connected and compact Lie group with
corresponding Lie algebra G having dim (G,) =1, and any
arbitrary Lie algebra G, with dim (G,) = ;. Then the direct
sum G=G; G, 18 a Z ,-graded Lie algebra. Suppose

+1

B= {X}Eil 18 a basis of G with dim (G)=1,+1,. Then
form by the mapping
K" GxG-IR 0

Now we define the generalized Killing form by
symmetric bilinear form:

KX X) =X C.Cy

where:
0,if and only if X, € G,
1, if and only if X, € G,

1s called a degree of X| Further X, 1s said to be even or
odd, respectively if d, = O or 1.
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APPLICATION OF KFs

Invariant quadratic forms defined origmally by the
then algebraists have close link with KFs of differential
geometry™®. Cartan's criterion on semi-simplicity of
algebra may be stated in an equivalent form: a Lie algebra
G is semi-simple if and only if det (g;) # O where, g, 1s the
metric tensor for G. Thus we see that semi-simple algebras
always admit a non-degenerate invariant quadratic form
on G. The general result stated above on KFs may be
used to test a set of differential equations for the
existence of a Lagrangian of a physical system.

Let G be a 2-dimensicnal non-abelian solvable Lie
group with corresponding Lie algebra G spanned by the
basis {X,. 30},

1 0 01
X, = and X, =
0 -1 0 0

with commutation relation

Where:

(X, X,]=2X,

We consider the Yang-Mills equations associated
with G:

DF* =0 @

with D, the covariant derivative associated with G-valued
connection v, and curvature F representing Yang-Mills
potentials and fields, respectively. The algebra involved
here has a degenerate KF since det(g;) = 0. On the other
hand, consider the SL(2,C) (C 1s set of complex numbers)
algebra with a basis {X,,X,, X;} given by:

1 0 01 0 0
X, = X, = and X, =
0 -1 0 0 10

Analogously, we define the Yang-Mills
equations associated with the above
3-dimensional algebra:

field

D.F*=0 3)

The algebra invelved here has a non-degenerate KF
since det(g;)#0. Applying variational principle on
principal fibre bundles, we see that the above Yang-Mills
equations assoclated with the Lie group G under
consideration are exactly the Buler-Lagrange differential
equations'”. Since the corresponding Lie algebra G admits
a non-degenerate KF. But the equation (2) fails to be
Euler-Lagrange equations since the corresponding Lie
algebra G does not admit a non-degenerate KF.

CONCLUSION

Let us consider the GKF. It 18 possible to require that
K" acts on the sub-space G, only. Consequently K'
reduces to the usual Killing form for the Lie algebra G,
Recall: G, 1s compact m the sense of the group K 1s
negative definite and hence Gy 1s semi-sunple. It mdicates
that a graded Lie algebra G can be made to possess a GKF
which guarantees that a Lagrangian must exist for the
theory under consideration.

REFERENCES

1. Hermann, R., 1966. Lie Groups For Physicists. W.A.
Benjamin, Inc. New York, USA., pp: 14-17.

2. Choquet-Bruhat, Y., C. Dewitt-Morette and
M. Dillard-Bleick, 1977. In: Analysis, Manifolds and
Physics. North-Holland  Publishing  Company.
Netherlands, pp: 152-168.

3. Hamermesh, M., 1962. Group Theory and its
Application i to Physical Problems. Addison-
Wesley Publishing Company, Reading,
Massachusetts, USA., pp: 299-311.

4. Sattinger, D.H. and O.I. Weaver, 1986. Lie Group
and Algebras with Applications to Physics,
Geometry and Mechanics, Springer-Berlag, New York,
pp: 21-29,119-127.

5. Cahen, M., S. Gutt, C. Kozameh and E.T. Newman,
1988, J. Math. Phys., 29: 1022-1025.

6. Helfer, A., M. Hickman, C. Kozameh, C. Lucey and
E.T. Newmar, 1987. Phys. Rev., 36: 1740-1744.

7. Bleecker, D., 1981. Gauge Theory and Variational
Principles. Addison-Wesley Publishing Company,
Tnec. London, UK., pp: 55-63.



	JAS.pdf
	Page 1


