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Abstract: A new hybrid analytical algorithm has been developed and used to present, in a simple analytical
method, the effect of uniform suction in case of a laminar, incompressible, steady flow of an electrically
conducting fluid over a rotating disk in the presence of a circular magnetic field imposed at the disc. The
analytical results obtamned in this work have been compared with both numerical method and other analytical

method and showed to be accurate in comparison.
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INTRODUCTION

The flow past of a rotating disc in a viscous fluid has
received considerable attention in the past few decades.
Karman (1921) was the first to consider the steady laminar
motion of an incompressible viscous fluid over an infinite
plane disc rotating at a constant angular velocity. He
derived the simplified equations that govern the flow over
an nfinite rotatng disc and solved them by an
approximate integral method. Cochran (1934) integrated
the equations obtained by Karrman (1921 ) numerically and
obtamed a more accurate solution. Stuart (1959) presented
a numerical solution for small values and a series solution
for high values. Bodewadt (1940) solved numerically the
problem of the flow produced over an infinite
stationary plate in a liquid which is rotating with uniform
angular velocity at an mfimte distance from the plate.
Kumar (1988) studied the effects of a circular magnetic
field on the flow of a conducting fluid about a porous
rotating disk. Gorla (1992) mvestigated the effect of a
uniform suction m the case of a laminar incompressible
steady flow of an electrically conducting fluid over a
rotating disc in the presence of magnetic field, where the
governing equation was reduced to a system of ordinary
equation and series solutions were obtained. New
methodologies to solve nonlinear differential equation
analytically (Mansour and Hussein, 1990; Mansour ef al.,
1991; Mansour et af., 1993, Jubran et ai., 1993
El-Asir et al., 1994) proved to be accurate and efficient.

In the present study, a new computerized hybrid
solution to the uniform

suction effects on the

magnetohydrodynamic electrically conducting fluid over
a rotating disc has been developed and used to solve
analytically the nonlinear magnetohydrodynamic problem
accurately and efficiently, for wide range values of
suction parameter greater than zero, in a very simple
manner. The analytical results were compared with both
the series and the numerical methods.

MATERIALS AND METHODS

The disc surface is in the plane z = 0 and rotates
about the z-axis with constant angular velocity (w). An
axial electric current of uniform density (J;) 1s imposed at
the disc surface. Equivalently, a tangential magnetic field
component g = € r is imposed at the disc surface. The
current lines and magnetic lines are conducting fluid in an
axisymmetric motion over a rotating disk as shown m
Fig.1, the governing equations can be written within
boundary layer approximation as:

z

Circular magnetic line

Current lin in
the axial plane

Disc

Fig. 1: Physical model of the rotating disc
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where, u, v and w represent the velocity components inr,
0 and z directions; f,g and h represent the normalized
magnetic field components in r, 0 and z directions ; v 1s
the kinematic viscosity and 1) 18 the magnetic diffusivity,
more over we define

m=—oy/0z, tw =dy/or, if =—d\/oz,
th =~/ ar, y=—(vw)" r*H({).
A=—(vw) r'a(2),v =wG({),

11z

g=1QM({), L=z(w/v) (8)
where w and £} denote the angular velocity of the disk and
the angular magnetic field strength, respectively. Now by
assuming that a tangential magnetic field component is

imposed at the disc, theng = rQand Q=1/27, ()"

where I 1s the axial electric current of umiform density
mnposed at the disc and the magnetic field strength

components in radial and axial directions f and h are
absent, then Eq. 1-7 can be reduced to:

H” + 2HH - H*? -p'M? + G = 0 @
G"+2HG - 2HG =0 (10)
M + 2¢IIM' = 0 11

where, o = V/1" is the magnetic prandtl number, p =Q/w
and the primes denote differentiation with respect to (.

In tlus analysis the disc 1s porous and the suction
occurs at the disc surface such that

w {0) = -2a(vw)'"?

with the following boundary conditions :
1)u=0, v =wr, g(0) at the disk surface (z=0)
2)u=v =0 far away from the disc (z = )

and the boundary conditions for Eq. 9-11 are

H(0) = a, H(0) = 0, H'(=) = 0, G{0) = 1,
G(=) =0, M(0)=1, M (=) =0 (12)

where, a is the suction parameter and is equal to
METHOD OF SOLUTION

The sets of equations that were derived in the
foregomng section are nonlinear ordmary differential
equations. To find their solution, one expects H to be
nearly constant for large value of ¢ greater than one
which satisfies the boundary condition, that is =0,
H=a

The key pomt to the solution 1s to comsider a
guessed function which defines H and satisfies the
boundary condition. The simplest form of the proposed
guessed function is:

H({)=a (13)

In Eq. 9-11 H 15 replaced by the guessed function in
the second term and H' is replaced by the first
derivative of the guessed function. Thus, Eq. 9-11 are
reduced to:

H” + 2all" - M2 + G = 0 (14)
G"+2aG' =0 (15)
M + 2aM’ = 0 (16)
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The solution of the second ordinary differential
Eq. 15 and 16 that satisfies the boundary conditions
G(0) =1, M(0) =1, G(==) =0, M(e*) = 0, can be written as:

G(Ey=e % a7

M(E) =% (18)
Radial velocity component (H'): Upon substituting Eq. 17
and 18 into Eq.13 the following linear ordinary differential
equation 1s obtained

Hm + 2aHﬂ _ BZ e—dmi _ 6—435 (19)

Integrating Eq. 19 twice with respect to , the
following first-order linear differential equation can obtain

2
H'+ 2aH + — |1- B—ze“aﬂ‘*“)
16a o
e®t - CE-C, =0 (20)
Which has the solution:
2
Ho| e B gea e
32a’ ol (1-2a)
1 1
et —|C,+C | E——
2a 2a D

Substituting the boundary conditions given in Eq. 12
mto Eq. 21 and considering H{e) = fimte value, the
complete analytical solution for the axial velocity becomes

H:a+%[QBZ+R} (22)

a3

and for the radial velocity H' becomes

, 1 T
a
Where:
Q _ 20te'23§ 2—6_413& - 20L+1,R _ e—4a§ _ 26—235,\ +1
o’ (200-1)
_ g7k gl T —o2% g
a(2a-1)

Tangential (azimuthal) velocity component (G): To obtain
the tangential velocity component (G), Eg. 10, 20 and 23
will be considered to get accurate solution for tangential
velocity as follows. Rewrite Eq. 10 in the following form

G" + 2HG = 2GH' (24)

Upon Substituting Eq. 23 for H' and Eq. 17 for G in the
right hand side of Eq. 24 and the guessed function in
Eq. 13 for H in the left hand side of Eq. 24, the following
second linear ordinary equation will be obtained.

# ’ 1
G"+2aG" ——
da

672a§(2m+1) - 641352
Sl S et gt Etlop
o200 -1) - (25)

Upon integrating Eq. 25 twice, the following solution
will be obtained for tangential velocity component G

_F {Bz j’} (26)
o6a* " F

where:
_ 3
o (4(12 —1)

[gza(zw)é —o 2o+ De™ = + (o{2a + 1) — De_zaﬂ
1 4 qya-ab L —6ab
P= E[(%a Le & }

Magnetic field strength (M): Consider Eq. 11 and rewrite
it m the form.

M = -26HM’ 27
take the derivative of Eq. 18 and rewrite it in the form
M = -2¢ae % (28)

substitute Eq. 22 for H into Eq. 27 we obtain

£ _ 1 2 r (29)
M’ = —20{&-#— o (QB + R)}M
rearrange Eq. 29 in the form
M’ + 20aM’ = - (QB° +R)M’ (30)
16a°

substitute Eg. 28 to the right hand side of Eq. 30, then
Eq. 30 will have the form

2
4 ’ [0
M"+ ZoaM’ = —

aZ

—2af _ . —daal

e -20+1
o’ (200 1)

2o _ - -
B+ e™® —2a® —2a 1] [g i

(31)
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Integrating (31) twice with respect to ¢ and applying
appropriate boundary conditions given in Eq. 12, the
following solution for M can be obtained

M = C,e ™ 4+ C e 2t 4 ¢ e F 4 ¢ 2ot
Where:

BZ
307 (20— 1)(B* + 64a* —1)

C, =

O(3

(0+2)(640a" -’ +5°)
~ 207 (B - at(20.-1))
' (3208t — o +B7 (e 1) (20— 1)
o’ (322" +1)-p’
S
C,=1-C,-C,-C,

Cl()

RESULTS AND DISCUSSION

In this study, the numerical results obtained from the
presented new hybrid analytical solution to solve the
problem of a uniform suction in case of a laminar,
incompressible, steady flow of an electrically conducting
fluid over a rotating disk in the presence of a circular
magnetic field imposed at the disc are computed
graphically and shown in Fig. 2-4, where the radial
velocity, tangential velocity and magnetic strength
against (, respectively are considered for p =1, « = 10 and
a=1,1.5,2,2.5,3. These obtainable curves are similar
to those obtained by Grola (1992). The effect of the

0.04

¢G=1Lo0=-10

bl i

0.03 -
3 0.02

0.01 i

Fig. 2: Radial velocity distribution H' versus axial
coordinate { for suction parameter a =1, 1.5,2, 2.5,
3 (top to bottom)

12

¢=1,0=10)

Fig. 3: Tangential velocity distribution G versus axial
coordinate ( for suction parametera=1, 1.5, 2, 2.5,
3 (top to bottom)

0.0 0.05 0.10 0.15 0.20
§

Fig. 4: Magnetic field strength M’ versus aial coordinate
¢ for suction parameter a = 1,1.5, 2, 2.5, 3 (top to
bottom)

magnetic prandtl number «, the axial coordinate (, the
suction parameter o andfon the radial velocity H', the
tangential velocity G and the magnetic strength M, are
shown in Fig. 5 and 6 where increasing [ results in
decreasing the radial velocity and in increasing both the
tangential velocity and the magnetic strength, but as
shown, this decrease or increase is very small no matter
what the values of { and the suction parameter a are. On
the other hand, the magnetic strength is very sensitive to
any change in the value of the suction parameter a or {
values, while the radial velocity and tangential velocity
are not highly sensitive to the suction parameter for small
values of { and become more sensitive as { value is
increased. Results of radial velocity, tangential velocity
and magnetic strength obtained from both, the series
solution by Gorla and the new presented analytical
method are shown in Fig. 7-9 with respect to the numerical
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a=10)
— Radical velocity H'
- — - Tangental velocity G
- - - - Magnetic field M
-0.20 Frrr e
0.00 0.40 0.80 1.20 1.60
p
Fig. 5a: Radial velocity H', Tangential velocity G and
Magnetic field strength M versus 3 for { = 0.01
anda=3
b (o= 10)
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p - - - - Magnetic field M
1
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§

Fig. 5b: Radial velocity H', Tangential velocity G and
Magnetic field strength M versus 3 for { = 0.01
and a =1

integration method results, where the solid line represents
the results of the new hybrid method, the dashed line
represents the results of numerical integration method and
dotted line represents series method (Gorla solution).
According to Fig. 7, one can see that for a small value
of suction parameter (a = 1), the new hybrid method
provides exact solution for the radial velocity in the range
2.3<(<0.1 and provides a reasonable solution else where,
while for higher suction parameter (a = 3), the
presented work provides exact solution for the entire
range of (. Figure 8, shows the tangential velocity

1.00
E (@=10)
080 ——mmm e mm e
0.60 3
0.40 ‘ — Radical velocity H'
3 - - - Tangental velocity G
] - - - - Magnetic field M
0.20
Brosommmm e e
-0.00
0.20 P
0.00 0.40 0.80 1.20 1.60
Fig. 5¢:  Radial velocity H', Tangential velocity G and
Magnetic field strength M versus P for { = 0.1
anda=1
0.9 3
0.7 3 -
g — Radical velocity
3 N — — - Tangental velocity
05 3 .. - - - - Magnetic field
0.3 3 T
3 ~ -
0.1 3 e
0.1 3 - : : . M
0.0 2.0 4.0 6.0 8.0 10.0 12.0
o
Fig. 6a: Radial velocity H’, Tangential velocity G and
Magnetic field strength M versus Magnetic
Prandtl number ¢ for { =0.1,a=Tland =1
: !-"'—‘_'——""_‘_—"“"‘—‘-—__
0.5
] .“.‘
1 kY —— Radical velocity
0.3 3 5 — — - Tangental velocity
3 Ay - - - - Magnetic field
'\
0.1 ‘-.\\‘
0.1 T - ey
0.0 2.0 40 6.0 8.0 10.0 12.0
o

Fig. 6b: Radial velocity H’', Tangential velocity G and
Magnetic field strength versus Magnetic
Prandtl number o for { =0.1,a=3 and =1
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Presented analytical solution
= = - Numerical solution

- - - - Series solution (Gor 1 a)
B=1,0=10)

0.02

0.00

-0.00 3

Y T TV TrTYTY

1.0 1.5 2.0 25

g

Fig. 7a: Radial velocity distribution H' versus axial
coordinate ¢ for suction parameter a = 1

0.004 7
- Presented analytical solution
] - - - Numerical solution
0.003 - - - - Series solution (Gor 1)
] ®=1a=10)
0.002 3
=
0.001
0.000 4
-0.001 3 . . — .
0.0 0.5 1.0 1.5 2.0 2.5

Fig. 7b: Radial velocity distribution H' versus axial
coordinate { for suction parameter a =3

12 3
E Presented analytical solution
E - — - Numerical solution
1'0_: - - - - Series solution {Gor 1 a)
E ®=1,0=10)
0.8 %
© 0.6
0.4 3
0.2 3
0.0-. — T T T T Y +——r-r—7
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Fig. 8a: Tangential velocity distribution G versus axial
coordinate { for suction parameter a = |

versus the axial coordinate (. It is obvious that the
presented method provides exact solution in the entire
range of { for a greater than zero. Figure 9 shows the
magnetic strength, where it is shown that the new method

Presented analytical solution
— — - Numerical solution
E - = - - Series solution (Gor 1 a)
3 G=1,0=10)
0.8 3
O 0.6
043
LERAR R an an a0y M EREESSS T v
0.5 1.0 1.5

g

Fig. 8b: Tangential velocity distribution G versus axial
coordinate { for suction parameter a = 3

12
3 —— Presented analytical solution

10 3 - = - Numerical solution

3 - - - - Series solution (Gor 1 a)

®=1,0=10)

0.8.3

S 063 :

3 \
3 2
—

024

0.0 e
0.0 0.05 0.10 0.15 0.20

g
Fig. 9a: Magnetic field strength M versus axial

coordinate { for suction parameter a = 1

1.2
3 Presented analytical solution

103 — — - Numerical solution

- - - - « Series solution (Gor 1 a)

E B=1,a=10)

0.8

S 0.6-]

0.4
.

0.23 \
E X

0.0 3 T -
0.0 0.05 0.10 0.15 0.20

g
Fig. 9b: Magnetic field strength M versus axial

coordinate { for suction parameter a = 3

provides almost an exact solution for both small and large
suction parameter in the entire range of (.

To assess the effectiveness of the presented new
hybrid analytical solution, the results of the new method
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and the series solution method by Gorla (1992) are
compared with the numerical integration method. The
results of the new method prove to be closer and more
accurate as shown n Fig. 7-9. In addition, the new method
is very simple and straight forward in terms of
mathematical process. In
hybrid analytical numerical method presented here has

conclusion, the new

been successfully applied to obtain simple, accurate and
reliable solution and is shown to be better in comparison
with the series solution.

NOTATION
a Suction parameter
G Azmuthal velocity component
H Axial velocity component
f,g.h Components of magnetic field strength in radial,
azimuthal and axial directions, respectively
I Current density
M Magnetic field strength
p Pressure
r Radial direction
uvw Radial azimuthal and axial velocity components
W, Umform suction at the disc surface axial direction
z Axial direction
Greek Symbols
p Density
0 Electrical conductivity
o Magnetic Prandtl number
p Qlw
v Kmematic viscosity
£ Dimensionless axial coordinate
n A parameter (a £)
n Magnetic diffusivity
W Angular velocity of the disc
Q Angular magnetic field strength
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