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Abstract: This work deals with the non-linear formulation of 4-node axisymmetric hyperelastic solid model,
based on the concept of SFR (Space Fiber Rotation). The SFRaxi model uses the kinematics of a space fibre
to obtain an enriched displacement field. It improves m a sigmficant way the precision of the classical 4-node
axi- symmetrical element Q4axi. The corresponding results are comparable and even better in term of time CPU,
with those of the higher order Q8axi element. A hyperelastic behaviour law based on the Mooney-Rivlin
approach has been implemented allowing better simulations of blow-moulding and thermoforming of hollow
plastic bodies. The numerical results, very promising, are mainly focused on some plastic forming tests without

contact (swellings).
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INTRODUCTION

The plastic industry often uses numerical simulation
tools to reduce the time of the studies and to decrease the
number of some expensive experimental tests. These tools
are also used for optimising the process parameters of
some known forming technologies as thermoforming and
blow moulding of plastic bodies. The blow-moulding
and/or thermoforming processes have the disadvantage,
in the blowing step, to expand the hot parison until the
contact with the cold mould, from where the sticking with
this latter as the parison advances until this sticks
completely to the mould. The consequence of this
process is a product with an irregular distribution of
thicknesses. In order to remedy this problem, the
numerical simulation could be used for predicting the
where the thicknesses are the thirmest and the
value of the blowing pressure to apply.

arcas

Several plastic or rubber products are used in
various modern technological branches. The modeling
of the complex bahaviour of this kind of materials
requires advanced mathematical and numerical tools
(Mooney, 1940, Ogden, 1972; Crisfield, 1991).
Nevertheless, to carry out a numerical simulation of the
process such as thermoforming or blowmng, we have to
overcome several difficulties. The most awkward is the
numerical incompressibility of the axisymmetric element

and the large deformations of tlus kind of materials
presumed hyperelastic or viscoelastic. The management
of the contact between the parison and the mould
(Heinstein et al., 2000, Zhong et al, 1994), with
calculation of the reactions by a penalty method or by
using Lagrange multipliers technique, is also a crucial
difficulty to overcome.

A largely widespread approach for simulating
this kind of materials i1s the Mooney-Rivlin's model
(Mooney, 1940, Rivlin, 1948), including as a special case
the Néo-Hookean (Treloar, 1976) model where the
function of strain energy density is expressed in terms of
the invariants of the right Cauchy-Green tensor. Another
possibility is the use of the Ogden’s model, with a strain
energy density formulated in terms of the principal
elongations. Note that the Ogden model 1s considered as
being one of the most complicated constitutive laws used
in numerical modeling.

The main contribution of the present work
comes from the observation that the existing of fiute
element formulations for hyperelastic materials was not
satisfactory (Sze et al, 2004), particularly when using
shell elements in large deformations. Most of the
efforts were concentrated on membrane elements which
have the advantage of having a plane stress behaviour.
This allows eliminating incompressibility problem in
the finite element formulation. 3D volumetric elements
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(arbitrary 3D forms or 3D axisymetrical) (Ziane, 1999) have
also numerical difficulties due to the incompressibility
and require a penalisation of the stramn energy density
(Crisfield, 1991).

Recently, several works have been focused on
the fimite element developments. Sze developed a
hyperelastic 18-node solid element with a stabilization
technique to eliminate both membrane and shear locking.
Tuzel et al. (2004) studied the wave propagation in
hyperelastic materials using Mooney Rivlin model for the
axi-symmetric problems. Duster et al. (2003) developed a
higher order fimte element (p-version) to treat hyperelastic
materials, considered as quasi-incompressible, which have
been adapted for plane strain problems.

In this study, a new 3D axi-symmetrical 4-node
element, labelled SFRQaxi (Space Fiber Rotation
Quadrilateral Axisymmetric), has been developed, with a
Mooney Rivlin hyperelastic model (Mooney, 1940), for
axi-symmetric problems. It’s based on the Space Fiber
Rotation concept (Ayad, 1993, 2003) which allows
introducing additional rotation degrees of freedom in
order to give the element a lngh accuracy order without
increasing the mumber of element nodes.

Two well known tests are presented. They show the
good performances of the present element in terms of
accuracy and computational time, when compared to the
8-node quadratic element Q8axi for instance.

THEORETICAL FORMULATION OF THE
ELEMENT SFRQAXI

The mmplementation of a hyperelastic law in the case
of thin structures, with the assumption of plane stress
hypothesis 0,, = 0, makes it possible to deal directly with
the problem of mcompressibility (I,= 1) and to determine
the hydrostatic pressure p. In 3D-solid or 3D axisymmetric
formulations, the pressure cannot be determined by the
boundary conditions. To overcome this difficulty, we
adopt a quasi-incompressible formulation suggested by
Crisfield. It consists in uncoupling the strain energy mn a
volumetric energy, related to dilation and the energy of
distortion, related to the 1sochoric deformation.

We present the main equations wsed for the
inplementation of the bahaviour law in an axisymmetric
solid element. A Total Lagrangian Formulation, associated
with a displacement model using the concept of Space
Faber Rotation 1s used. The final model 1s a 4-node 3D
axisymmetric finite element with three degrees of freedom
per node. 2 = 2 Gauss points are only used.

Approximation of the geometry: The position vector of an
unspecified point in the meridian plan, expressed in a
cylindrical base, 1s given by:

. . 4 4
X, =ri+zk Withr=>Nr:z=% Nz (M
i=1 i=1

Formulation of the displacement model: The displacement
field of an unspecified point p(r, Z) of the plan is defined
by the following approximations:

u il u W

{ }-ZN{ '}+ NG, A(F-)

W] o W, i-1 ’ (2)
6, =6,] et i=1.4

i is the unit vector following the axis y perpendicular to
plan (r, o, z), whereas (f - f;) is the position vector of the
fiber connecting the point p to the node i (Fig. 1).

The term éy ~ (—f B f)(Z) can be written under a matrix
form: !

) -0, (zle) (3)
0, A (fT-1)=1 0, (r—1)
0
Components (u, w! (2), can finally be written as:
uj_| N
{W} - {(Nw> {Un} With:
(NN, 0 —N(z-7) “)
= 1i=1_4
(N"y| [0 N N(r-z)

The shape functions N, are those of the classical 4-node
bilinear element Q4:

N1:(1 - EEJ(I - T]Tll)WithEl:*L _13 _1:+1 et
n=+1,+1,-1,-1,+l fori=1..4 (5)

Dernvatives of the terms (N, (z-z)) compared to R and Z
are:

(N (2 - 2)), (N (2 - 2); (N (z - 2)),, =N, (- 2)+ N,
(6)

It should be noted that rotations 8, are defined only with
the nodes at the tops (Fig. 2).

Green Lagrange strain’s tensor: The strain gradient
tensor components is written as:

1+ U,rg 0 U: 0
u
I+ 0 ™
r
\N,rU 0

[F]=| o0

1+ W,ZU

The Right Cauchy-Green tensor C' = F' F becomes
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Fig. 1: Kinematics of a rotating fiber
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1 by — >
Reference element ! Real element
Fig. 2: Axisymmetric element SFRQaxi
[ S (1+U, U, +
(1+1,) +W5,, 0
(1 +Wz )W’r
U 2
[C]= 0 [HJ 0 (8a)
r
(1+U,)U,, + o U+
(1+ W, )W, (1+ W, )
We define also the three invariants of:
L =C+Cut+Cy
IZ - Cll + CZZCB + C33cll - 0213 (Sb)
L=C,CnCy-Cy 0213
The tensor of Green Lagrange 1s defined by:
1
[B}=—((CI-TD ©)

Principle of the minimum total potential energy: The
total potential energy 1s defined by:

- Z(
mtfj WDy T3 (11)

W represents the strain energy per unit of no deformed
volume, accumulated in the structure during the
deformation:

ext) (1 0)

with

Wi in=cad-s+od —3)-&-%1((]—1)2 (12)

Using a Mooney-Rivlin behaviour law, W given by
Crisfield becomes:

Wann=-W,a.+ W,y a3

Where T et T, Tepresent the modified invariants, whose
expressions are given by (14):

1

_ 73 e

b= E

_ ,E 4 L k=— (14a-c)
L=Ll?=1J° 1J=T1° 3(1-2v)

(a) (b) (c)

The variation of the external potential energy I, 18
given by:

8I1%, = [[,(8u){p}as’ (15)

6w is the displacement in the local base Lg’ ge’ﬁ>
the compressive forces distributed along
Thus

and {p}

e meridian line.

>

8T1= ;(anf;t 8T1%,)=0 (16)

Where SIIE, represents the first variation of internal
elementary energy:
k T 71 0
st = s W(L.L.1) av an

int

Residual vector: The residual vector is defined from BHkt

(7

BIIE, =2n{8U, 8W, &0, ... 8U, 8W, 86,)

jj } 1’ det I ddn (18)
SIT;, ={8U)if L.} (19)

Using the Mooney-Rivlin law, we obtain

8IT5, = [ (A 8T+A,8T,+A,8T,)dV* (20)
with 1 N
_L 2 VA :73(:1111337
A =C L% A, =C,L7%
2 = 1x(I-1)
ZC,LL -
3 23

81,061, b1, represent the variation of the mvariants of
tensor [C] (8):
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o L =tr{8[C]) = 8C,, + 8Cy, + BC;;
o Tiz =(Cpp+ Gy = 8C, +{C) + Cyp) 8C, +(C + Cpp) 6C5; - 2C,; 8C,;
&I, =CpCu 6C, + (CCy - T 8C,, + € Cpy +0 Cyy - 2C,,C,5 00,

Substituting the Eq. (21) and (17) leads to following expression of the elementary internal strain potential:

STIE, = J-VU(B1 8Cpq + By 8Cy, + B38Cy3 + By 8Cy;) dV°

Bi=A +(Cy+Ca) Ay T 0y Cys Ay

with B, =A +(C+C) A+ (C,C - T4 A,
By=A (G +C) Ay (T Ay
B, = -2 (CpA; + CuCAy)

By injecting the Eq. (23)in (22), § H%(nt becomes

STk, = .[v“ (D,8U,, +D,8U,, +D; 8 W, +D, 8 W,, + D, U Jav®
with

6U:r = Ni,réUi - Ni,r (Z - 21)667_1 5 6U:z = Ni,16U1 - N1,z (Z - Zi)em - N16611

6War = N1,r6Wi - N1,r (f - I.i)éezi + N166n 5 6Waz = N1,16Wi - Ni,z (f - I.1)6ezi
and

D=2 By(1+U,)+B4 U, D,=2B;U,,+B,(1+U,,)
D; =2B,W, +B,(1+W,,) D, =2Bs(1+W,, )+ B,W,,

2B 8)
D = 02{1 + 0]
T T
The variation of the internal strain energy will be written as

Nod
5 [k - _[ "Z‘is{(BlEl +ByEy + B3E; + B4E4 )8U; + (BiEs + ByEg + ByE; ) W, +
int 5
v i=1

(BEg + ByEg + B3E o + ByEy; ) 30,

E;=20+U,) N;,,

2 u
with Ep = ? [1+ ?J Ni . Es=2W, N,
E;=2U, N, Eg=2(1+W,, IN;.,
Eq=(1+U, )N}, +U,, Ny, Eg=(1+ W, )Nj, + W, N,

Eg = 2(1+ U, )Ny (=24 2 )+ 2W,, [ Ny (1- 1)+ N
Eg —2(1+UJNi(zzi)
)

Eip=2(1+ W, )N, (1= )+ 2U,, (N, (—2+ %) - )

Epp = (U, Nig(—z+7)) + (1+ W,, )(Np, (- 1)+ N ) +

ir

W, Np, (r— 1)+ (1+ U,r)(Ni,z (~z+7)- Ni)
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dV"=2mr? det J d£ dn) (27

<1\'11,1'> :jll <N1,E> + j12 <N1,n>
(N1,z> = j21 Q\Iu{) + j22 Q\L,q)

(28)

Thekvector of internal forces can be easily derived from
81T (25):

ko _ k
6]:[mt - <6U>{fmtj (29)

Tangent matrix (K"): The calculation of the elementary
tangent matrix can be explicitly defined by expressing the
second variation of the elementary virtual work or by a
perturbation techmque. We have adopted the last
technique which usually used. Tt is based on a finite
difference scheme:

{KT}—{R({U}+{5UJ})}_{R({U}‘{5UJ})} (30)

28U;
NUMERICAL EXPERIMENTS

All our geometry and results have been drawn and
visualized using the educational version of GID software
(www.gidhome.com).

Circular plate under uniform pressure: We consider a
circular plate treated by Hughes ef af (1983). Radius L
and thickness h are respectively 7.5 in and 0.5 in. The
plate 1s fixed on its cwcumference and subjected
to a pressure on one of its faces (Fig. 3). Weusea
quasi-incompressible hyperelastic material represented by
the Mooney-Rivlin’s model with the constants C, = 80 psi
and C, = 20 psi. The penalty factor K used to penalize the
internal energy is taken equal to 10, Different meshes are
used to analyse the performance of our SFRQaxi element
in terms of CPU time, comparatively with the Q4axi
element and the Q8axi element taken as reference solution.

Four different meshes are tested (Fig. 6). The last
mesh, named same 1n the Fig. 6, allows getting the same
number of degrees of freedom (dof) for the three elements:
the problem 1s solved using the same memory.

Figure 5 shows that the results of the pressure
variation, in accordance with the vertical displacement of
the middle pomt of the plate, are almost identical
compared to those given by Hugues ef al. (1983). For a
given strain step, we have represented on the Fig. 4 an
image of the thickness distribution, showing in
consequence the interest to use 3D axi-symmetrical
elements.

?
WZ+¢¢¢¢¢¢¢¢¢¢¢P¢O<}_>

h

@v L r

Fig. 3: Circular plate under pressure

il v ey o Bill

Fig. 4: Distribution of thicknesses
Circular swelling of plate
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Fig. 6: Element performances in terms of CP1J time
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h0=6.985 o =88.90
§>|:‘P:::::::::::::::::::::::: =
R
r=19.05

All dimensions are in mm

Fig. 7. Hyperelastic circular membrane deformed by a
punch

Fig. 8 The membrane shape after deformation

Distributions thicknesses
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=
=
0.6
0.4
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0.0 0.2 0.4 0.6 0.8 1.0
r/a

Fig. 9: Thickness distribution along radius

Compared to the results of the quadratic element
Q8axi in Fig. 6, our element SFRaxi performs well the
Hughes solution with a small time. On the other hand,
Q4ax1 seems turming more quickly. It cans give a no
accurate solution indeed 1if the elements are distorted or
the mesh is not sufficient.

Hyperelastic plate subjected to a rigid punch: A second
example 13 a hyperelastic plate deformed by a ngid
punch. This test has been experimentally studied by
William (1970) for evaluating the thickness distribution of

the plate (Fig. 7). A 2 x 20 finite element mesh has been
used with the present SFRQax1 element and classical
4-node Q4axi and 8-node QRaxi elements. The numerical
results are compared with those given by the experimental
test (William, 1970) (Fig. 9).

Let’s consider the case of the sticking contact. We
have used a contact algorithm based on the position code
techmque due to Heinstein ef af. (2000). It will be detailed
in a future issue. A simple Néo-Hookean model has
been used to define the material behaviour. The rigidity
modulus given by (William, 1970) is C, = 0.448 MPa.
The penalisation factor of the energy density 1s k = 100.
The moving distance considered for the punch is
90 mm. An mplicit scheme based on Newton-Raphson
technique is used for the resolution. The test is carried
out with 90 steps of vertical displacement (1 mm) applied
to the punch (Fig. 8).

CONCLUSIONS

A formulation of a heuristic 3D axi-symmetrical
bilinear hyperelastic 4-node element (12 dofs) for plastic
forming processes is presented. For a similar accuracy, its
performances compared with the expersive quadratic
&-node QBaxi element (24 dofs) are better in terms of CPU
time. The main advantage of the present element concerns
the numerical mtegration of both tangent stiffness matrix
and residual vector. Only 2x2 Gauss points have been
used QBaxi requires 3x3 Gauss points for instance. A
second advantage 1s the possibility of camrying out
re-meshes at the areas of strong curvatures.

Moreover, compared to the membrane or shell
elements which are defined by a middle neutral surface,
SFRQ axi allows measuring directly the distribution of the
thickness during the forming processes. An adequate
penalisation term of the energy density 1s required in this
case, in order to converge quickly and to give the
anticipated results.

SFAQax1 can offer a good compromise between the
execution speed and the required accuracy.
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