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Values in Discrete Cosine Transform Based Gradient Vector Flow Active Contours
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Abstract: This study proposed to identify and investigate optimality of Discrete Cosine Transform (DCT)
based Gradient Vector Flow (GVF) active contours and this research is expected to yield a robust technique
which can be used to boundary map chromosome images having variability in shape and size, from chromosome
spread images. Weak edges are also mamfested here. GVF field active contours are found to have good
convergence properties. The energy compaction is enhanced by incorporating the DCT into the segmentation
scheme. A unique set of parameter values for the technique is required for boundary mapping every
chromosome image. Characterization studies have shown that an optimal range of values exists for each
parameter within which good boundary mapping results can be obtained for various chromosomes 1n similar

class of images.
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INTRODUCTION

Discrete Cosine Transform (DCT) based Gradient
Vector Flow (GVF) active contours are used to obtamn
accurate segmentation results from a class of
chromosome images that have variable properties in
shape, size and other mmage properties. Boundary
mapping 1s a segmentation approach that can be done
easily in noise-free high contrast images by employing
low-level techniques, traditional edge detectors, region
growing or mathematical morphology. Noise and
artifacts can possibly cause mcorrect segmentation or
boundary  discontinuities in  segmented  objects
(Mclnerney and Terzopoulous, 1996). The classical
boundary mapping techniques, namely, region growing,
relaxation labeling, edge detectionand linking suffer
from limitations leading to incorrect assumptions
during the boundary integration process.

ACTIVE CONTOUR MODELS

Active contours also called as snakes or deformable
curves, first proposed by Kass ef al. (1987) are energy-
mimmizing contours that apply information about the
boundaries as part of an optimization procedure. They are
generally initialized around the object of interest by

automatic or manual process. The contour then deforms
itself from its initial position in conformity with nearest
dominant edge feature by mimimizing the energy
composed of the internal and external forces. The energy
is composed of the internal and external forces. Internal
forces which enforce smoothness of the curve are
computed from within the active contour. External forces
derived from the image help to drive the curve toward the
desired features of interest during the course of the
iterative process. The energy function is minmimized, thus
making the model active.

The energy mimimization process can be viewed as a
dynamic problem where the active contour model is
governed by the laws of elasticity and lagrangian
dynamics (Rueckert, 1997) and the model evolves until
equilibrium of all forces 1s reached, which 1s equivalent to
a minimum of the energy function.

FORMULATION OF ACTIVE CONTOUR MODELS

An active contour model can be represented by a
curve ¢, as a function of its arc length T,

_[xO) 1)
4o [y(r) ]

with t=[0...1].
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To define a closed curve c(0) is set to equal c(1). A
discrete model can be expressed as an ordered set of n
vertices v, = (x,y,)" with v=(v,....,v,). The large number of
vertices required to achieve accuracy could lead to high
computational complexity and numerical instability
(Rueckert, 1997). Mathematically, an active contour model
can be defined in discrete form as a curve x(s)= [x(s), y(s)],
s€[1,0] that moves through the spatial domain of an image
to minimize the energy functional:

1

E:gé(a\X’(S)lz+[5|X”(S)|2+Eest(x(5))d5 (2)
Where, ¢ and [ are weighting parameters that control the
active tension and rigidity, respectively
(Xu and Prince, 1997). The first order derivative
discourages stretching and the second order derivative
discourages bending. The weighting parameters of
tension and rigidity, viz., ¢ and [ govern the effect of the
derivatives on the snake. The external energy functonE,,
15 derived from the image so that it takes on its smaller
values at the features of interest such as boundaries and
guides the active contour towards the boundaries. The
external energy 1s defined by:

contour’s

E,. = K/G,(xy) *1(x,y)] (3)

Where, G,(x,y) 15 a two-dimensional Gaussian function
with standard deviation o, I(x,y) represents the image and
K is the external force weight. This external energy is
specified for a line drawing (black on white) and positive
K 1s used. A motivation for applying some Gaussian
filtering to the underlying image 1s to reduce noise.

An active contour that minimizes E must satisfy the
Euler Equation

ox"(s)-px""(s)-VE,=0 “

Where, F,,, = ax"(s) — px""(s) and F,, = -VE_, comprise
the components of a force balance equation such that:

FigtFu=0 (3)

The internal force F,, discourages stretching and
bending while the external potential force F,, drives
the active contour towards the desired image
boundary. Equation 4 is solved by making the active
contour dynamic by treating x as a function of time t
as well as 5. Then the partial derivative of x with respect
to t is then set equal to the left hand side of Eq. 4 as
follows:

x(8,8) = ax"(8,0)-Px""(s,0-VE o (6)

A solution to Eq. 6 can be obtained by discretizing
the equation and solving the discrete system iteratively
(Kass et al., 1987). When the solution x(s.t) stabilizes, the
term x,(s,t) vanishes and a solution of Eq. 4 1s aclhieved.

Traditional active contour models suffer from a few
drawbacks. Boundary concavities leave the contour split
across the boundary. Capture range is also limited.
Methods suggested to overcome these difficulties,
namely multiresolution methods (Leroy et al, 1996),
pressure forces (Cohen, 1991), distance potentials
{Cohen and Cohen, 1993), control points (Davatzikos
and Prince, 1994), domain adaptivity (Davatzikos and
Prince, 1995), directional attractions (Abrantes and
Marques, 1996) and solenoidal fields (Prince and Xu,
1996), however solved one problem but mtroduced new
ones (Xu and Prince, 2000). Hence, a new class of external
fields called GVF fields (Xu and Prince, 2000, 1998) was
suggested to overcome the difficulties in traditional active
contour models.

GRADIENT VECTOR FLOW (GVF)
ACTIVE CONTOURS

GVF active contours use GVF fields obtained by
solving a vector diffusion equation that diffuses the
gradient vectors of a gray-level edge map computed from
the image. The GVF active contour model cammot be
written as the negative gradient of a potential function.
Hence 1t 15 directly specified from a dynamic force
equation, instead of the standard energy minimization
network.

The external forces arising out of GVF fields are
non-conservative forces as they cammot be written as
gradients of scalar potential functions. The usage of
non-conservative forces as external forces show improved
performance of GVF field active contours compared to
traditional energy-minimizing active contours (Xu and
Prince, 2000; 1998).

The GVF field points towards the object boundary
when very near to the boundary, but varies smoothly over
homogeneous 1mage regions extending to the image
border. Hence the GVF field can capture an active contour
from long range from either side of the object boundary
and can force it into the object boundary. The gradient
vectors are normal to the boundary surface but by
combiming Laplacian and Gradient the result is not the
normal vectors to the boundary surface. As a result of
this, the GVF field yields vectors that point into boundary
concavities so that the active contour is driven through
the concavities. Hence, the GVF active contour model is
msensitive to the imtialization of the contour and it 1s able
to move mto boundary concavities.

Information regarding whether the imtial contour
should expand or contract need not be given to the GVF
active contour model. The GVF active contour model has
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a large capture range. The GVF 1s very useful when there
are boundary gaps. because it preserves the perceptual
edge property of active contours (Kass ef al., 1987, Xu
and Prince, 1998). Also. the GVF provides for flexible
initialization of the initial contour.

The GVF field is defined as the equilibrium solution
(Xu and Prince, 2000) to the following vector diffusion
equation:

u, = g(Vt ) Pu-h(VE [)(u-Vf) (7a)
u(x.0) = Vi(x) (7b)

Where, u, denotes the partial derivative of u(x,t) with
respect to t, V' is the Laplacian operator (applied to each
spatial component of u separately) and f is an edge map
that has a higher value at the desired object boundary.
The functions in “g” and “h” control the amount of
diffusion in GVF. In Eq. 7, g(|V{[)V'u produces a smoothly
varying vector field and hence called as the smoothing
term, while h(|Vf |)(u-Vf) encourages the vector field u to
be close to Vf computed from the image data and hence
called as the data term. The weighting functions g(+) and
h(+) apply to the smoothing and data terms respectively
and they are chosen as Xu and Prince (1998) g(|Vf [)=n and
h{|Vf [)=[Vf F. g(*) is constant here and smoothing occurs
everywhere, while h(*) grows larger near strong edges and
dommates at boundanes. Hence, the Gradient Vector Flow
field is defined as the vector field v(x,y)=[u(x.y).v(x,y)]
that minimizes the energy functional:

e=Tu(ulul v vy« |VEP|v-Vi2dxdy (8

The effect of this variational formulation is that the
result is made smooth when there is no data.

When the gradient of the edge map is large. it keeps
the external field nearly equal to the gradient, but keeps
field to be slowly varying in homogeneous regions where
the gradient of the edge map is small, i.e., the gradient of
an edge map Vf has vectors point toward the edges,
which are normal to the edges at the edges and have
magnitudes only in the immediate vicinity of the edges
and in homogeneous regions Vf is nearly zero. p is a
regularization parameter that governs the tradeoff
between the first and the second term in the integrand in
Eq. 8. The solution of Eq. 8 can be done using the
Calculus of Variations and further by treating u and v as
functions of time, solving them as generalized diffusion
equations (Xu and Prince, 1998).

DISCRETE COSINE TRANSFORM (DCT)
BASED GVF ACTIVE CONTOURS

Transtorm theory plays a fundamental role in
image processing. The transform of an image vields more

insight into the properties of the image. The various image
transforms that are in use are the fast fourier transform,
walsh transform. hadamard transform. haar transform,
slant transform and the DCT . DCecan be computed via fast
algorithms like the FFT and it has excellent energy
compaction. Hence, the Discrete Cosine Transform
promises better description of the image properties.
Therefore the DCT is embedded into the boundary
mapping scheme to obtain better energy compaction. The
2D DCT is defined as:

N-IN-1 v+
C(u,v) =a(wa(v) 3§ 3 F(x.y)cos| g Jeos| 2] g

2N 2N
x=0 y=0

The local contrast of the Image at the given pixel
location (k.l) is given by:

2(2n+1)-1 b
W,
Pkl) = —H (10)
dnn
. +E_t|du,v|
where, E = ”T an
d ¥ telnt 12
an N= {;(;Mn—: ri_‘i’.n+} ( )

Here, w, denotes the weights used to select the DCT
coefhicients. The local contrast P(k,1) is then used to
generate a DCT contrast enhanced image (Tang and
Acton, 2004), which 1s then subject to selective
segmentation by the energy compact gradient vector flow
active contour model using Eq. 8.

RESULTS AND DISCUSSION

The chromosome metaphase image shown in Fig. 1
having size 480x512 pixels at 72 pixels per inch resolution
was provided by Prof. Ken Castleman and Prof. Qiang
Wu, from Advanced Digital Imaging Research, Texas.

;_-ﬁﬂ'l .\ »
N
s T . faenll
& ;‘sﬁ‘d-::.a‘
7 ’r>, ¢

Fig. 1: Original chromosome spread image (Courtesy:
Prof. Ken Castleman and Prof. Qiang Wu,
advanced digital imaging research, texas)
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Insignificant and unnecessary regions in the image were
removed interactively. The chromosome of interest was
selected from the chromosome spread image by user
selection of a few points that formed the vertices of a
polygon. On constructing the perimeter of the polygon
from the selection points, seed points for the initial
contour were automatically determined by periodically
selecting every third pixel along the perimeter of the
polygon. The GVF deformable curve was then allowed to
deform until it converged to the chromosome boundary.
The optimum parameters for the deformable curve with
respect to the Chromosome 1mages were determined by
tabulated studies. The image was made to undergo
minimal preprocessing so that the goal of boundary
mapping in chromosome 1mages with very weak edges 1s
maintained.

The DCT based GVF Active contour is governed
by the following parameters, namely, o, |, &, P and k.
0 determines the Gaussian filtering that 1s applied to the
unage to generate the external field. Larger value of 0 will
cause the boundaries to become blurry and distorted and
can also cause a shift in the boundary location. However,
large values of 0 are necessary to increase the capture
range of the active contour.

Micro is a regularization parameter in Hqg. 8 and
requires a higher value in the presence of noise in the
mage. ¢ determines the tension of the active contour
and P determines the rigidity of the contour. The tension
keeps the active contour contracted and the rigidity keeps
it smooth. ¢ and p may also take on value zero implying
that the nfluence of the respective tension and rigidity
terms i the diffusion equation 1s low. ¥ 15 the external
force weight that determines the strength of the external
field that 1s applied. The iterations were set suitably.

Experimental results: Chromosome spread image
samples, their corresponding DCT based GVF vector
fields and their output images are presented in Fig. 2-13.

The output images indicate successful boundary
mapping of chromosome mmages using DCT based GVF
Active Contours (Fig. 2-13).

Experimental validation: In order to quantify the
performance of a segmentation method, validation
experiments are necessary. Validation is typically
performed using one of two different types of truth
models. In this study, ground truth model 1s not available
and hence validation 1s performed on ordinal or ranking
scale and then quantified. For experimental validation, a
set of 10 random samples is taken and characterization of
each parameter 13 done. The outputs were tabulated n
ranking order with “1” describing the best quality output

and as the quality decreases the rank increases up to rank
97. Rank 98 is a special case, where the output image is
rejected based on quality or the output mmage is not
available due to numerical instability possibly caused due
to the greater number of contour peints (Rueckert, 1997).
The tables represent characterization studies for each
parameter. Each table denotes varnation for only one
parameter either between the lower and upper limits of the
parameter or between the lower and upper limits giving
significantly different output, with the other parameters
taking a constant value. The best parameter value of that
table 1s the one that gives maximum good quality outputs
for all samples or a majority of samples, as the study is
done exhaustively on every parameter treating the other
parameters as constants.

The statistical median 1s used to judge the
distribution of values for each parameter value for all
samples. When the median leans towards the lower
values, Le., towards “17, it indicates that almost 50% of
the outputs lean towards “1”, making that particular
parameter value an optimal one and that optimal value is
chosen. The characterization studies reveal that each
parameter sometimes has an optimal range within which 1t
can assume any value thereby giving majority good
outputs for all samples. But for the sake of experimental
purposes, only that investigated discrete value of each
parameter that gave best output was chosen.

An important point to be noted 18 that
characterization studies have been performed for those
parameter values which give either significant output or
signmficant difference mn performance between adjacent
parameter values. Those parameter values where there s
no significant difference between adjacent parameter
values have not been tabulated. Also, those parameter
values outside the tabulated range whuch gave no proper
results have not been tabulated.

Hence the optimal set of parameter values that give
good boundary mapping for the given class of
chromosome images 1s 0 = 0.25, n=0.075, ¢ =0, =0 and
k= 0.625. A safe limit of 5% tolerance can be introduced
to the optimal range of parameter values to make them
suitable for use in similar classes of chromosome spread
images as indicated m Table 6.

Statistical validation: The parameters act independently

boundary  mapping
characterization, the effect of other parameters will also be

on the scheme. In each
felt as they assume a definite constant value. In the
course of the characterization study from Table 1 to 5,
optimum values for the respective parameters are chosen
and applied as constant in the characterization study of

the next parameter in the successive table. In the last
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(b)
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Fig. 2: a) The original image of Sample 2, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 2. The mapped boundary is indicated in red color

@

(b)

©

Fig. 3: a) The original image of Sample 3, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 3. The mapped boundary is indicated in red color

(@

(b)

©

Fig. 4: a) The original image of Sample 4, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 4. The mapped boundary is indicated in red color
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() (b) ©

Fig. 5: a) The original image of Sample 5, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 5. The mapped boundary is indicated in red color

(@ (b) (©)

Fig. 6: a) The original image of Sample, b) corresponding DCT based GVF field, ¢) boundary mapped output image
of Sample 6. The mapped boundary is indicated in red color

(2) (b) ©

Fig. 7. a) The original image of Sample 7, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 7. The mapped boundary is indicated in red color
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(@) (b) ©

Fig. 8: a) The original image of Sample 8, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 8. The mapped boundary is indicated in red color

(a) (b) ©

Fig. 9: a) The original image of Sample 9, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 9. The mapped boundary is indicated in red color

¢ ¢
- -
@ (b) (©

Fig. 10: a) The original image of Sample 10, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 10. The mapped boundary is indicated in red color
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(@ (b) ©

Fig. 11: a) The original image of Sample 11, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 11. The mapped boundary is indicated in red color

(a) (b) ©

Fig. 12: a) The original image of Sample 12, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 12. The mapped boundary is indicated in red color

Ny : N,
- : L =
‘o : &
(a) (b) (0)

Fig. 13: a) The original image of Sample 13, b) corresponding DCT based GVF field, ¢) boundary mapped output
image of Sample 13. The mapped boundary is indicated in red color
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Table 1: Characterization of sigma

Table 4: Characterization of beta

GVF (DCT) o GVF (DCT) B

Sample Sample

No. 005 01 015 02 025 05 06 0.8 1.0 12 No. 0.0 0.5 1.0
1 770077177 3777 29 77 29 13 77 1 23 30 71
2 7707777 29 13 13 13 13 29 77 2 5 21 21
3 97 77 3 28 77 29 78 81 75 78 3 5 21 31
4 77077 29 28 31 70 79 79 79 78 4 21 23 1
5 97 97 97 97 88 98 98 98 98 98 5 98 98 98
6 8% 8 46 38 38 14 38 38 46 78 6 98 46 70
7 97 97 97 97 88 98 98 98 98 98 7 98 98 98
8 8% 8 8 54 98 98 98 98 98 98 8 38 94 13
9 77077 77 77 38 46 15 7713 79 9 23 71 71
10 8 77 13 77T 46 65 78 13 78 77 10 3 21 30
Median 86 77 77 66 62 55 78 78 77 78 Median 23 38 71

The median indicates that the acceptable optimal range of @ is 0.2 to 0.5.
The best value compared qualitatively amongst those tested is 0.25 and
hence it is chosen for performing further characterization.

Table 2: Characterization of Mu

The median indicates that the acceptable optimal range of [} extends from 0
to 0.5. The best value compared qualitatively amongst those tested is 0 and
hence it is chosen for performing fiuther characterization.

Table 5: Characterization of kappa

GVF (DCT) p GVF (DCT) &

Sample Sample

No. 0.05 0.075 0.09375  0.1125 0.15 0.3 No. 0 0.5 0.625 0.75 0.875 1.000
1 23 21 21 23 23 97 1 97 7 5 5 5 5
2 21 5 23 23 23 97 2 97 3 3 3 1 1
3 30 29 29 46 50 97 3 97 21 19 21 30 57
4 23 23 23 40 23 97 4 97 7 7 7 23 7
5 98 98 98 97 97 97 5 97 98 98 98 98 98
6 48 40 48 48 46 97 [ 97 98 98 98 86 98
7 98 98 50 50 34 97 7 97 98 98 98 98 98
8 98 89 62 97 97 97 8 97 86 98 97 98 82
9 7 86 30 71 71 97 9 97 7 7 23 23 21
10 23 21 29 71 23 97 10 97 21 5 19 19 21
Median 39 35 29 49 40 97 median 97 21 13 22 26 69

The median indicates that the acceptable optimal range of p is 0.05 to
0.09375. The best value compared qualitatively amongst those tested is
0.075 and hence it is chosen for performing further characterization.

Table 3: Characterization of alpha

GVF (DCT) o

Sample

No. 0 0.125 0.25 0.5 1.0
1 7 23 77 71 77
2 7 30 29 77 30
3 5 67 78 78 67
4 23 23 79 80 80
5 98 98 98 98 97
6 98 48 40 46 87
7 98 98 98 97 97
8 90 86 62 97 94
9 21 23 23 71 27
10 5 7 23 21 7
Median 22 39 70 78 79

The median indicates that the acceptable optimal range of « extends from 0
to 0.123. The best value compared qualitatively amongst those tested is 0
and hence it is chosen for performing further characterization.

characterization study shown in Table 5, the values of o,
u, ¢ and P take on the chosen optimal values and only x
15 1nvestigated, thereby vielding a one way variation
Hence, one way analysis of variance on Table 5 is
sufficient to test the significance of the entire boundary
mapping process. A sigmficant outcome from Table 5 will
justify that the experimental results of Table 5 are vald,
implying that the selected parameter values from Table 1
to 4 used as constants in Table 5 are also valid Hence

The median indicates that the acceptable optimal range of « extends from 0.5
to 0.875. The best value compared qualitatively amongst those tested is
0.625.

Table 6: Optimal range of DCT based GVF active contour parameter values
for chromosome spread images

Parameter Chosen parameter

GVC value for tested

Acceptable range Optimal range of

(DCT) spread image of parameter values  values at 5% tolerance
a 0.250 [0.20, 0.5] [0.1900, 0.5250]
n 0.075 [0.05, 0.09375] [0.0475, 0.0984]
o 0.000 [0.00, 0.125] [0.0000, 0.1313]
B 0.000 [0.00, 0.5] [0.0000, 0.5250]
K 0.625 [0.50, 0.875] [0.4750, 0.9187]

The optimal range of parameter values is calculated fiom the acceptable range
of parameter values by introducing a 5% tolerance to the lower and upper
limits.

one way Anova test is performed on the last
characterization (Table 5) to judge the experimental
results. At the customary .05 significance level, one way
Anova test yields a p value of 7.17082E-08 on Table 5,
which rejects the null hypothesis. The very small p-value
of 7.17082E-08 indicates that differences between the
column means are highly significant. The probability of
this outcome under the null hypothesis 1s less than 8 in
100,000,000, The test therefore strongly supports the
alternate hypothesis that one or more of the samples are
drawn from populations with different means. This implies
that the results in Table 5 do not arise out of mere
fluctuations and the results are actually significant.
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Table 7: Calculated error measures for the 12 samples

Original image Contour image

Error in maxor

Original image Contour image Error in minor

major axis major axis major axis minor axis minor axis minor axis
Sample No. length (pixels) length (pixels) length (pixels) length (pixels) length (pixels) length (pixels)
1 39.673068 41.229220 1.556152 15.309357 16.309208 0.999851
2 31.063703 31. 776621 0.712918 14.696620 15.662865 0.966245
3 38.900907 40.212541 1.311634 15.4976064 16.359518 0.861854
4 70.118650 71.032654 0.914004 17.241634 18.791087 1.549452
5 57.781579 58302327 0.520748 15.471960 16.374778 0.902819
6 36.164279 37.384992 1.220712 14.941666 15.585226 0.643560
7 52.453700 52363700 -0.090000 13.251430 14.094662 0.843232
8 52.066324 52.978411 0.912087 15.394485 16.263917 0.869432
9 41.050011 42.358409 1.308398 17.451655 19.020988 1.569333
10 54.495901 54.316297 -0.179604 13.678191 14.134171 0.455980
11 31.806652 31.691938 -0.114715 15.565916 16.285951 0.720035
12 54.871574 54.551044 -0.320530 16.631023 17.047393 0.416370
Mean Diametric Error 0.645983667 0.899846917
Mean Radial Error 0.322991833 0.449923458

The very low values of the Radial Error in the detected boundary of the chromosome images (at 72 pixel per inch resolution) justify the efficiency and accuracy

of the segmentation scheme.

Therefore the experimental results are valid. This justifies
that a suitable value of parameter k can be chosen from
Table 5 and that the constant values of parameters o, p,
and P used in Table 5 are also valid as these values also
have significant influence on the results tabulated in
Table 5. Therefore, the experimental results and the
mnferences that are discussed in the previous paragraphs
are also significant.

Error quantification: Any segmentation scheme has to be
quantified m terms of the error, to justify its efficiency.
Tabulation of the error in segmentation for the 12 samples
(shown under subheading Experimental Results) is done.
The error is calculated as a difference between the
diametric lengths along the major and minor axis of the
original mmage and the boundary mapped image
correspondingly. Actual error measure is determined
radially, which 1s half of the value of the diametric error.
The mean error is calculated from the tabulated error
values in Table 7.

CONCLUSIONS

The DCT based GVF Active Contours are well suited
to the task of boundary mapping in chromosome spread
images with the same optimal value of parameters for a
class of images. This can be extended to other classes of
chromosome spread umages.
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