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and Sprung Masses using the Differential Quadrature Method
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Abstract: The dynamic characteristics of plates with mixed boundary and sprung mass are investigated. The
vibration analysis of plates with various boundary conditions and sprung masses 15 numerically modeled
using the differential quadrature method. The differential quadrature method is applied to each region and
with the imposition of appropriate boundary conditions and the problem is transformed into a standard
eigenvalue problem. The results also demonstrate the efficiency of the method in treating this class of

engineering problem.
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INTRODUCTION

Vibration is the most important modes of failure in
plates with sprung mass and it plays a crucial role in
engineering. Avalos ef al. (1993) dealt with the solution of
vibration by a sunply mounted concentred mass using
the well-known normal mode. Xiang et al. (1997) used the
Ritz method combined with a variation to solve vibration
of rectangular mindlin plates resting on elastic edge
supports. Laura and Grossi, (1981) calculated the
fundamental frequency coefficient for a rectangular
plate with edges elastically restrained against both
translation and rotation using polynomial coordinate
functions and the Rayleigh-Ritz’s method. Wu and Lue
(1997) solved the problem of the natural frequencies and
the corresponding mode shapes of a uniform rectangular
flat plate carrying any number of pomt masses and
translational springs using the analytical-and-numerical-
combined method. Grossi and Nallim (1997) analyzed the
problem the strain energy stored in rotational springs at
the plate edges of non-uniform thickness using the
Rayleigh-Ritz method with a polynomial expression as
approximating function. Nicholson and Bergman (1986)
used the Green’s function express the natural modes for
the damped plate-oscillator systems. Gorman (1997)
solved the free vibration problem of shear deformable
plates resting on uniform elastic foundations using the
modified Superposion-Galerkin method.

This work focuses on the application of differential
quadrature method to the vibration of plates with
various boundary conditions and sprung masses. In
the following section an overview of differential
quadrature method to preset the computation of its
weighting coefficients offered and discussed the selection

problem. The integrity and computational efficiency of
the method will be demonstrated through a series of
case studies. Very few study in the literature have
presented the vibration analysis of rectangular plates
with various boundary conditions and sprung masses
using the differential quadrature method.

THE DIFFERENTTAL QUADRATURE METHOD

With the mcreasing use of new fast and affordable
computers, along with the availability of various
numerical methods, the solutions of several complicated
engineermg problems have now become efficiently
achievable. The finite differences method, the finite
element method and the boundary element method
have been used extensively for solving linear and
nonlinear differential equations and consequently there
are several commercially developed software packages.
The development of new techniques from the standpoint
of computational efficiency and numerical accuracy is
of primal mterest. The differential quadrature method 1s
originally proposed by Bellman et af. (1972). Since 1t has
been developed, several researchers have applied the
differential quadrature method to solve a variety of
problems in different fields of science and engineering.
The differential quadrature method has been shown to
be a powerful contender in solving initial and boundary
value problems and become an alternative to the existing
methods such as the fimte element method or the finite
difference method. One of the fields among which can
find extensive applications of differential quadrature
method is structural mechanics. Civan (1994) solved
multivariable mathematical models using differential
quadrature method and differential cubature method.
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Han and Liew (1999) analyzed the axisymmetric free
vibration of moderately thick ammular plates using the
differential quadrature method. Chen and Zhong (1997)
pointed out that differential quadrature method and
differential cubature method, due to their global domain
property, are more efficient for nonlinear problems than
the traditional numerical techniques such as finite
element method and fimte difference method. The
differential quadrature method is used analyze the
mechanical behavior of anisotropic plates and beams
(Bert et al., 1993).

The partial differential equation can be reduced to a
set of algebraic equations wusing the differential
quadrature method. Possible oscillations of numerical
results arising from higher order polynomials can be
avolded by using numerical interpolation methods.
The differential quadrature method uses the basis of the
Gauss method m deriving the denivative of a function.
Tt follows that the partial derivative of a function with
respect to a space variable can be approximated by a
weighted linear combination of function values at some
mtermediate pomts in that variety. A differential
quadrature approximation at the ith discrete point on a
grid m the direction of x-axis is given by

a"f M
a(XiXJY): Al(]m)f(xj,y)for i=12..N, (1)

x
=1

A differential quadrature approximation at the ith
discrete point on a grid in the direction of y-axis may be
written as

e} M,
%— Bl(]m)f(x, y])for i=12,..N, 2
i=1

where A;™ and B,™ are the weighting coefficients. The
test function can be written as

JEY 2 B 55 _ _
f(xy)=x""y" fore =1,2,...N, andf =1,2,.,N (3)

Substituting Eq. (3) to Eq. (1) and (2), Eq. (1) and (2) are
computed by

M, ~ o amxm—l
Zxk 1 A(k r_ o
k=1

for i=12,.,N,ande=1,2,..N,

X=X

(“4)

and

N o B
v B—lB(m) _ a yﬁ 1

2)’1 k o

= dy

forj =12,.,N, aﬂdB:LQ,...,Ny
(5)

The higher-order derivates may be obtamned using
following equations

My

AP =% APAY (6)
k=1
M 7

@ _ W4 @

A1j - ZAik Akj ( )
k=1
Nx

Aff) _ 2 AP Afj) (8)
k=1
My

Af,m) — 2 AY Ag“‘” )]
k=1

where Af]l),AfJZ),...,Ame) are the 1th, 2th, ..., mth order
weighting coefficient matrix in the direction of x-axis,

respectively.

NY

Bff) :235?31? (10
k=1
NY

Bff) :EBEJBS) (11
k=1
NY

Bff) :EBE)BS) (12)
k=1
NY

Bf]m) _ 2 Bi(li)Bl(qm—m (13)

P

where B{",B{”,...B® are the 1th, 2th, ..., mth order
weighting coefficient matrix n the direction of y-axis
respectively. The above relation gives the higher order
weighting coefficient matrix based on the first-order
derivative weighting coefficients. The above relations are
not restricted to the choice of sampling points. It is
emphasized that the mumber of the test functions must be
greater than the highest order of derivative in the
governing equations.

The selection of locations of the sampling points is
important in ensuring the accuracy of the solution of
differential equations. Using equally spaced points can be
considered to be a convenient and an easy selection
method. A more accurate solution could be obtamed by
choosing a set of unequally spaced sampling points for a
domain separate into by N, and N, pomnts. A simple and
good choice can be the roots of shifted Chebyshev and
Legendre pomts. The mner points are

-2
X, -2 l—cosg fori =3,4,...,N_ -2 4
2 N, -3

in the direction of x-axis
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i—2
¥, :E l—cosu fori=3,4,..,N_-2 (15)
2 N_ -3 v

¥

1 the direction of y-axis and boundary points are

x =0 (16)
X, =0.a (17
Xy =a-9d.a 18)
X, =a (19)

y; =0 (20)
¥, =0b 2
Ve, =b-3Db 22)
¥y, =b 23)

n the direction of y-axis. 8, and &, are small distance, a 1s
the length of the plate in the direction of x-axis and b is
the length of the plate in the direction of y-axis.

TRANSVERSE VIBRATION OF A RECTANGULAR
PLATE AND MASS-SPRING SYSTEM

Figure 1 depicts the geometry of a plate with mass-

spring system. The strain energy of the plate and mass-
spring system is

1‘i‘j.D( (x y’ ) BZW(X;yJ)I dxdy
293 dy (24)

W(xu,yu,t))2

+%k(z(t)—

The kinetic energy of the plate and mass-spring system 1s

H[ Loyt }dxder%M[azT(t)]z (25)

where w 15 the deflecton of the plate, M 1s the
concentrated mass, k is the spring constant, z is the
sprung mass location, x; 18 the location of sprung mass in
the direction of x-axis, y, is the location of sprung mass in
the direction of y-axis, t is the time, D = ER*A(12(1-v*)) is
the flexural rigidity, E is Young’s modulus, p is the density
of the plate material and h 1s the plate thickness.
Substituting Egs. (24) and (25) into Hamilton’s equation,
this leads to the equations of motion of the plate with
§prung mass as:

Yy
F 3
Free
F
k
a9
- & B
A » X
90000000000 v
Free
Rational spring
supported
a

Fig. 1: A plate partially rotational spring supported

' t 9’ t a* t
DN i) ()
ax axoy oy

F'wixy.t (26)
+phgf)7k(z(t)fw(xn’yn,t))
3(x-x,)8(y~vy,) =

2
Mddzt(zt) +k(z(t) - w(x,.y,.1)) =0 @7

At a simply supported or a clamped boundary, the
transverse deflection of the plate 15 zero:

w=0 (28)

at a simply supported boundary, the condition of zero
normal moment can be reduced to

2
aW:O (29)

in the direction of x-axis and

Fw
2

ay' (30)

in the direction of y-axis. The condition of zero normal
moment at a free boundary in the direction of x-axis 1s
given by
dw  Fw
2 v 2
ax ay

-0 (1)

where v is Poisson’s ratio. The condition of zero normal
moment at a free boundary in the direction of y-axis 1s
given by
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2 2
aay LA aax L (32)
The condition of zero effective shear force at a free
boundary 1s given by

3 3
d'w ( 7V) d'w 0
ox’ ox’ay (33)
in the direction of x-axis and
3 3
AL S (34)
dy 9xdy

mn the direction of y-axis. The following form gives the
condition of spring supported:

Pw  ow

ot toax (35)

in the direction of x-axis and

pIW _y 9w (36)

o'ty

in the direction of y-axis. k, is the torsion stiffness.
Substituting w = We™ and z = Ze*" into Eq. (26) and (27),
Eq. (26) and (27) can be written as

IW(xy)  W(xy) W(xy)
P TP oy o By’ (37)

(2~ W(x,y,))B(x —x,)8(y —y, ) = o'phW(x,y)

k(Z-W(x,.y,))=0’MZ (38)

where w is the natural frequency. Substituting Eq. (1) and
(2) to Eq. (37) and (38), leads to

N, N,

EAIkW +22A EB \NNEBJ1 g
k=1 1=1 1=1

—k(Z—W(XD_yD, ))S(X x,)8(y~

k(Z-W(x,x,,t)} = o'MZ (40)

v,)= mphW (39)

The algorithmic procedure of the differential quadrature
method leads to a simply supported or a clamped
boundary, the transverse deflection of the plate at a
simply supported boundary can be written as

W=0 (41)

The condition of zero normal moment can be reduced
to the following discrete forms. For example, at the edge

y=0

M
Y B{ W, =0 (42)

=1

o

in the direction of y-axis. The condition of zero normal
moment at a free boundary can be reduced to the
following discrete forms. For example, at the edge y = 0

vZAﬂ{ Z Bw, =0 (43)

1=

The condition of zero effective shear force at a free
boundary can be reduced to the following discrete forms.
For example, at the edge y = 0

NY
(2-v NEA IEBH \7\/kl+121311 =0 4
=1 1

k=1

The following discrete form gives the condition of
spring support. For example, at the edge y =0

NY

N
EBII le *E(bE 1 '\Nh =0 (45)
1=1 =

1n the direction of y-axis. Eq. (39)-(45) can be rearranged
in matrix form as

K, K, K,|[W,] [o o 0 (W,
K, K, K,[{W | =|0 oph o [{w! (46
K, K, K.|=z 0 0 wM|lZ

where Kj; is the stiffness matrix element, the subscript b
and i refer to the locations at the boundary and the
interior regions, respectively. The vector {W.} and {W;}
are the normal deflection vectors corresponding to the
boundary and interior pomnts. By substituting Eq. (46) to
a general eigenvalue form, Hq. (46) can be expressed as

e e sl
P ]

The eigenvalues will be obtained by solving the
eigenvalue problem of Eq. (47).

RESULTS AND DISCUSSION

Figure 2 shows the eigenvalue of the plates which are
supported as all of edges are simple support with
a/b = 0.5 and the umiform equidistant distribution of
discrete grid points. The dimensionless natural frequency
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Fig. 2 The natural frequencies of the plates which are
supported as all of edges are simple support with
a/b = 0.5 and the uniform equidistant distribution
of discrete grid points
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Fig. 3: The natural frequencies of the plates which are
supported as all of edges are simple support
with a/b = 0.5 with the roots of shifted Chebyshev
and Legendre points

is definedas =0’ (Ph/D)  The other results in
Figure 2 are cited from reference (Leissa, 1969). Tt can
be seen that the numerical results agree with the data
from theory to within 5.38(%) when just 16x16 sample
points are used. Figure 3 lists the eigenvalue of the plates
which are supported as all of edges are simple support
with a/b = 0.5 with the roots of shifted Chebyshev and
Legendre points. Tt can be seen that the numerical results
agree with the data from theory to within 4.43(%) when
just 10x10 sample points are used.
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Fig. 4. The natural frequencies of the plates which are

supported as all of edges are simple support with
a/b = 0.8 and the uniform equidistant distribution
of discrete grid points
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Fig. 5: The natural frequencies of the plates which are
supported as all of edges are simple support with
ab = 0.8 and the roots of shifted Chebyshev
and Legendre points

Figure 4 shows the eigenvalue of the plates which
are supported as all of edges are simple support with
ab = 0.8 and the uniform equidistant distribution of
discrete grid points. Tt can be seen that the numerical
results agree with the data from theory to within 0.50(%0)
when just 16x16 sample points are used. Figure 5 lists
the eigenvalue of the plates which are supported as all
of edges are simple support with a/b = 0.8 with the
roots of shifted Chebyshev and ILegendre points. It
can be seen that the numerical results agree with the data
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Fig. 6. The natural frequencies of the plates which are
supported as all of edges are simple support with
a/b = 1.0 and uniform equidistant distribution of
discrete grid points
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Fig. 7. The natural frequencies of the plates which are
supported as all of edges are simple support with
a/b = 1.0 and the roots of shifted Chebyshev and
Legendre pomts

from theory to within 0.01(%) when just 12x12 sample
points are used.

Figure 6 shows the eigenvalue of the plates which
are supported as all of edges are sumple support with
a/b = 1.0 and the uniform equidistant distribution of
discrete grid points. Tt can be seen that the numerical
results agree with the data from theory to witlhun 0.09(%)
when just 16x16 sample points are used. Figure 7 displays
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Fig. 8 The natural frequencies of the plates which are
supported as all of edges are simple support
with a/b = 1.2 and the uniform equidistant
distribution of discrete grid points
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Fig. 9. The natural frequencies of the plates which are
supported as all of edges are simple support with
a/b = 1.2 and the roots of shifted Chebyshev and
Legendre pomts

the eigenvalue of the plates which are supported as all
of edges are simple support with a/b = 1.0 with the roots
of shifted Chebyshev and Legendre points. It can be
seenn that the numerical results agree with the data
from theory to within 0.01(%) when just 12x12 sample
points are used. The computational time for using the
differential quadrature method with 8x&, 10x10, 12x12,
14x14, 15%15 and 16x16 sample ponts are 0.601,1.423,
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Fig. 10: The natural frequencies of the plates which are
supported as all of edges are simple support with
a/b = 1.5 and the uniform equidistant distribution
of discrete grid points
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Fig. 11: The natural frequencies of the plates which are
supported as all of edges are simple support with
a’b = 1.5 and the roots of shifted Chebyshev and
Legendre points

11.186, 27.059, 37.474 and 37.484 seconds, respectively.
However, a computational time over 68.659 seconds is
required for using FEM in the similar problem.

Figure 8 shows the eigenvalue of the plates which
are supported as all of edges are simple support with
a/b = 1.2 and the uniform equidistant distribution of
discrete grid points. It can be seen that the numerical
results agree with the data from theory to within 0.10(%)
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Fig. 12: The natural frequencies of the plates which are

supported as all of edges are simple support with
a/b = 1.8 and the uniform equidistant distribution
of discrete grid points
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Fig. 13: The natural frequencies of the plates which are
supported as all of edges are simple support with
a/b = 1.8 and the roots of shifted Chebyshev and
Legendre points

16x16 sample pomts are used. Figure 9
eigenvalue of the plates which are

when just
displays  the
supported as all of edges are sumple support with
a’b = 1.2 with the roots of shifted Chebyshev and
Legendre points. Tt can be seen that the numerical results
agree with the data from theory to withuin 0.01(%) when
just 12x12 sample points are used.
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Fig. 14: The natural frequencies of the plates which are a
spring-mass system mounted on and supported
by simple support with different M/M,

Figure 10 shows the eigenvalue of the plates which
are supported as all of edges are simple support with
a/b = 1.5 and the umform equidistant distribution of
discrete grid points. It can be seen that the numerical
results agree with the data from theory to within 7.08(%)
when just 10x10 sample points are used. Figure 11 plots
the eigenvalue of the plates which are supported as all
of edges are simple support with a/b = 1.5 with the roots
of shifted Chebyshev and Legendre points. Tt can be
seen that the numerical results agree with the data from
theory to within 3.76(%) when just 10x10 sample points
are used.

Figure 12 shows the eigenvalue of the plates which
are supported as all of edges are simple support with
a/b = 1.8 and the umform equidistant distribution of
discrete grid points. It can be seen that the numerical
results agree with the data from theory to within 4.09(%)
when just 16x16 sample points are used Figure 13
eigenvalue of the plates which are
supported as all of edges are simple support with
a’b = 1.8 with the roots of shifted Chebyshev and
Legendre points. Tt can be seen that the numerical
results agree with the data from theory to witlhun 0.30(%)
when just 12x12 sample points are used. It can be
observed from Fig. 2-13 that the results solved using the
of shifted Chebyshev and Legendre points are
more than the solved using the
uniform equidistant distribution of discrete grid points
and the results solved using 10x10 grid points did not
agree with the reference data.

displays  the

roots

accurate results

90 4

+u
(e
e
-1
]
L)
—
=
—
—
—
b
y—
w

Fig. 15: The natural frequencies of the plates that are a
spring-mass system mounted on, free at all of
edges, except simple supported with torsion
spring at half of edge with different kil

Figwe 14 shows the natural frequencies of the
plates with a spring-mass system and simple supported
at all of edge. The data used in this analysis are as
follows: a=1.0m b=10m, h= 0005 m, v = 0.3,
ph=3925kgm 7, E=2.051 x10"N m %D =ER/[12(1-v")]
= 2.3478x10° Nxm, M, = phab = 2355 kg, k, = D/a’ =
5.8695x10° N m™ and k/, = 0.2. The eigenvalue of the
spring-mass system mounted on the plate 1s calculated
and this plate 18 simple supported. The results reveal
that @ decrease as M/M, increase. The difference
between w solved using the DOM and w from reference
paper 1s less than 0.44%.

Figure 15 plots the natural frequencies of the plates
that are a spring-mass system mounted on with free at
all of edges, except simple supported with torsion
spring at half of edge. There 15 a sprung mass m the
central pomnt of the plate. The data used in this analysis
are as follows: 1515 sample points, &, =107, §, =107,
a=1.0m,b=1.0m, h=0.005m,v=03,ph=3225kgm™,
E=2051x10"Nm’, D = Eh¥/[12(1-v")] = 2.3478x10° N *m,
M, = phab = 2355 kg, k, = D/a’ = 5.8695x10° N/m, k,a/D
and M/M, = 0.1. Tt is worthy of mentioning that M, is the
total mass of plate and k, is the stiffness of the plate. The
results indicate that the magnitude of w mcreases as k/k,
Inereases.

CONCLUSIONS

The differential quadrature method is shown a
powerful means of obtaimng accurate solutions to the
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problem of rectangular plates with various boundary
conditions and sprung masses. The natural frequencies of
the plates increase as the torsion spring stiffness
mcreases. The natural frequencies of the plates with
sprung mass decrease as the weights of the sprung
masses mcrease. The investigation into the integrity of
the various grid spacing schemes indicates that the use of
unequally spaced grids in conjunction with the techmque
can produce the fastest convergence. The comparisons
and numerical examples show the effectiveness of the
differential quadrature methaod.
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