Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Tournal of Applied Sciences 6 (8): 1712-1719, 2006
ISSN 1812-5654
© 2006 Asian Network for Scientific Information

Formal Specification and Validation of
Selective Acknowledgement Protocol using Z/EVES Theorem Prover

Zarina Shukur, Nursyahidah Alias, Mohd Hazali Mohamed Halip and Bahari Idrus
Fakulti Teknologi Dan Sains Maklumat, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia

Abstract: Selective ACKnowledgment (SACK) 18 a complex commurnication protocol as it 1s used in various
types of distributed computer systems and networks. This acknowledgment mechanism is used with sliding

window protocol that allows the receiver to acknowledge packets received out of order, but within the correct
sliding window. In this study the SACK protocol has been specified by using Z formal specification language.
A formal 7 specification provides validation function to ensure that the specification 15 complete and
consistent. The completeness and consistency of 7 specification can be checked by proving initial state

theorem, pre-condition and properties of a system specification. This study demonstrates the validation process
of 7 specification of SACK by using theorem proving technique. A theorem prover tool called Z/EVES is used
to support the process. It helps to reduce time, energy and mistake than in relatively manual theorem proving

which can be tedious and error-prone task.

Key words: Formal specification, protocol communication, safety property, formal validation

INTRODUCTION

Validation refers to a set of activities, which ensure
that a developed product conforms to its specification.
Barden et al (1999). Define validation as a process
of checking whether a specification is comrect to the
real-world condition. For example, formal specification
satisfies a system requirement or that implementation
is acceptable to the customers and validation needs to
show that properties of the specification are real-world
properties. As in (Jacky, 1997), it is necessary to show
that a formal specification expresses the intent of the
prose requirements. There are several ways to validate a
system. These include Formal Technical Review (FTR)
technique, viewpoint resolution technique, animation,
symbolic execution and theorem proving. Within these

techniques, theorem proving is the most reliable
techmique.
Formal proving is a complete argument of

mathematical representation and it 15 used to validate
statement about system description. This shows that
formal proving can be used as one of the validation
techniques. Formal proving can be done manually or
with the support of formal method tools (WetStone
Technologies, 1999) such as theorem prover tools
(Wing, 1990) such as proof checker (Azurat, 2002).
Theorem prover is a tool that implements automatic
theorem proving without the need of user support

(WetStone Technologies, 1999). Manual proving using
humans 15 a long and looping process and there 1s a great
possibility a mistake will be made. Therefore in order for
humans to check proofs efficiently the preofs should not
be unreasonably large and they should be presented in a
user-friendly fashion However, much of the proof
involved in software verification is naturally detailed,
low-level and repetitious and often results in large
proofs-in short it is unsuitable for human checking. Thus,
formal proving supported by tool may not only reduce
the possibility of mistake but not totally removes it
{(Bowen and Hinchey, 1995). Therefore, the use of support
tool is a main factor that can effect the acceptance of
formal method practically (Babich and Deotto, 2002). In
this study, one theorem-proving tool is chosen to
support formal proving process, which 18 Z/EVES
(Meisels and Saaltink, 1997). Z/EVES is chosen as a
support tool because it can be applied in most process
and need only a minimum background education such
as Degree to use it. It can be leamed n a few months
depending on the type of applications and can be run in
many platforms such as Unix, SunOS3, Linux and Windows
(Nursyahidah et al., 2004). The details about 7Z/EVES
can be referred n (Meisels and Saaltink, 1997) and
(Saaltink, 1997).

Formal proving as a validation technique is used to
ensure specification has properties as it is required
{Babich and Deotto, 2002). Formal validation can only be

Corresponding Author: Zarna Shukur, Fakulti Teknologi Dan Sains Maklumat, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor, Malaysia Tel: 03-8921-6720 Fax: 03-89216184
1712

J. Applied Sci., 6 (8): 1712-1719, 2006

done onto the specification that was developed using
formal method. In brief, formal method refers to the use of
technique from formal logic and mathematic (NASA, 2002)
m the specification, development, verification and
validation phase with particular objectives (Giunchiglia
and Traverso, 2000). In this study, the chosen formal
specification to be developed 1s the specification for
Selective ACKnowledgment (SACK) which 1s a part of
TCP (Transmission Control Protocol) communication
protocol.

Commurmcation protocol 1s a complex protocol and it
15 used in many distributed system and networks. Non-
formal techniques are successfully used to design the
protocol, but it contains unexpected error and unwanted
behavior (Bochmarm and Sunshine, 1983). Validation
needs to be done on a formal specification so that the
unexpected error and unwanted behavior are discovered
in the earlier development phase in order to design the
correct protocol.

One of the formal validation techmques that involve
formal specification is to prove an initial state,
precondition and properties aspects (Barden et al., 1999).
The three aspects are proved by developing theorem and
then proving process 1s executed to prove these
theorems. If these theorems cannot be proved, it means
that the 7 specification was not consistent. Therefore, the
specification needs to be reviewed and corrected. After
that, the proving process 1s done once agam. This
shows proving is a repetitious process until the
theorem can be proved.

OVERVIEW OF SACK

Control Protocol (TCP)

acknowledgement system is a reliable sliding window

Transmission

transport protocol and flow control mechamsm used on
the Internet today. Selective ACKnowledgement (SACK)
is a newer mechanism that allows the receiver to let the
sender know what packet has been received. SACK 1s
used to report multiple lost segments. In SACK, a window
of TCP segment may be sent and received before an
acknowledgement is received by the sender. Sender,
receiver and charmmel are the main basic components in
SACK mechanism. The flow control works when the
sender first receives a message from the user application
process. The message is then put in the transmission’s
buffer at the sender. The message i1s segmented and a
unique sequence number 13 attached to every segment
before it is sent to the receiver through a channel. The
receiver buffer the received data segment at the receiver.
To validate the received segments, the recever transmits
ACK to the sender with a sequence number for the next

Send-pkt,_ () rc.ml Tev-pkt, ()
=1

deliver (m)

o —
e - J—_
Sender Receiver
S ——
——
Channel

Fig. 1: Structure of the SACK formal model shows the
four basic components

segment 1t 1s waiting to receive. If the recewver does not
receive the data segment, it will asks the sender to make
a retransmission of that segment. This provides reliability,
as the sender retransmits any segments that are not
acknowledged by the receiver. Smith and Ramakrishnan
(2002) model the components, which consist of a sender,
a receiver and two channels using I/O automata method
as shown in Fig. 1. Basic structure for the formal model
described in the figure includes a sender, a receiver, a
channel for packets from the sender to the receiver and a
channel for packets from the receiver to the sender. All
these component is presented by the symbol S, R, C,
dan C,,.

SACK Sender: Figure 1 shows that the sender has two
input operations which are send(m) and rev-pkt(t). The
figure also shows that the sender has one output
operation that is send-pkt(t). However, in detail
implementation of SACK mechanism, (Smith and
Ramakrishnan, 2002) identify three input operations, three
internal operations and one output operation for the
sender. Thus, there are seven operations for the sender as
describe below:

» Input operation that receives message from user
application, send(m)

» Input operation that receives validation from the
receiver upon reception of the data segment, rcv-
plkt(t).

» Input operation that receives validation from the
receiver upon reception of the data segment and ask
for a retransmission of a data segment, rev-pkt(acl,
bl, b2, b3).

¢ Internal operation that prepares a data segment to be
sent to the receiver, prepare-new-seg(s).

¢ TInternal operation that prepares a retransmission data
segment to be sent to the receiver, prepare-retran-

seg(s).

1713

J. Applied Sci., 6 (8): 1712-1719, 2006

Send-pkt (t) output
Sender operation
prepare-new-
seg(s) rev-pkt (t) .
e input

prepare-

rov-pkt (ack, b1, b2, b3) (Operation
retran-seg(s) /4

internal
operation

Fig. 2: Input, internal and output operation for sender

¢ Internal operation that causes a state of a data
segment in retransmission buffer to be set to not yet
received by the receiver. This operation is enabled if
time for retransmission is expired, reset-sack.

¢+ Qutput operation that sends a data segment to the
receiver, send-pkt(t).

All the seven operations are presented in Fig. 2.
Z SPECIFICATION OF SACK’S SENDER

7 specification of SACK sender declares variables
that are used in the sender automata model into a form of
paragraphs. State, initial state and operation of the sender
is declared into a number of schemas. There are seven
operation schemas in the Z specification for SACK
sender: send, prepareNewSeg, sendPkt, revPkt, revPktl,
prepareRetranSeg and resetSack. The following section
presents the specification.

Global variables: Sender has a global variable which
presents a message, sequence number of a data and some
other variables. This section discuss on developing a Z
specification for the sender variable. The message
received from a user is hold into a buffer. The buffer is
presented as a BYTE variable value 0 or 1 as follows:

BYTE :: = zerolone

The message is segmented into several segments.
The size of a segment is a constant value and is presented
as a MSS variable as follows:

MSS == 536

In this specification, we assume that one segment can
have a size of an alphabet data. A Bytelnt variable
represents a data segment. Each segment is presented by
Byte variable and a sequence number of the segment is
presented by Seguum variable. The Bytelnt variable is
declared as follows:

Bytelnt = = BY TExSeqnum

Value of Seqnum is based on the value of WS, which
15 a window size in the sender. The window size 1s fixed
with a constant value of 8. Thus, a value of Segnum is
between 0 and 7. Both of the variables are presented as
follows:

WS ==
Seqgmum ==0.. 7

Sender also has a retransmission buffer which contains
data segments, sequence number of the data segment and
a state of the data segment. This 1s presented by SByte
variable as follows:

Shyte == BY TExSeqnum>BOOL

BOOL variable shows the state of a data segment,
either the data segment has been received or not by the
receiver. If the data segment is received by the receiver,
the value of the BOOL 1s set to TRUE. Otherwise, the
value is set to FALSE as follows:

BOOL :: = TRUE[FALSE

Bl variable shows a sequence number of a data
segment place on the left and right of a sequence number
of retransmission data segment and is presented as
follows:

Blk = = LeftxRaght

State of the sender: State for the sender is represented by
variables called state variables. The state variables are as
follows:

» sendBuf represents a sender buffer which contain
messages sent from user application. The type of the
sendBuf variable is seq BYTE and this variable shows
that the messages in the buffer are in a sequence as
1t was sent from the user application.

*» segmen presents a segmented messages and its type
is seq Bytelnt. The variable shows the segment is in
a sequence as in the sender buffer.

» refranBuf variable represents a retransmission buffer
and 1its type 18 SByfe. The variable shows a data
segment and its state (whether 1t was received by the
receiver). The retransmission buffer 1s used when the
recelver does mnot receive a data segment and
therefore, a retransmission 1s needed.

o readyToSend represents a state of the sender
whether it is ready to send data or not.

1714

J. Applied Sci., 6 (8): 1712-1719, 2006

o sndUna represents the sequence number of data
segment which is not yet validated its reception by
the receiver.

* sndNxt represents the next sequence number of data
segment to be transmitted.

All these variables are declared in state schema as
follows:

— Sender
sendBuf: seq BYTE
retranBuf: seq SByte
segmen: seq Bytelnt
ready ToSend: BOOL
sndUna: Seqnum
sndNxt: Sequum

In order to simplify the mathematical statements in
the specification, five auxiliary variables are introduced, as
in schema originalMessage. These variables are used to
store the original information of the respective message.

OriginalMessage
message: seq BYTE
senderData: seq BYTE
receiverData: seq BYTH
retransmitData: seq BYTE
dataSegmen: seq BYTE

Initial state of the sender: An mmitial state for the sender
needs to be declared by identifying the initial value for
every variable in the state schema. Initial value for the
buffer, retransmission buffer and segment is an empty set.
This shows there 1s no data has been received and
transmitted by the sender. The sender too 1s in not ready
state to sent any data. The value of the sequence number
of received data segment which has not yet been
validated by receiver and also the next sequence number
of data segment need to be transmitted is set to 0.

The overall imt state schema for the sender is
presented in schema InitSender.

— InitSender
Sender’
sendBuf = {}
retranBuf’ = {

segmen’ = {
readyToSend = FALSE
sndUna’ = 0

sndNxt" = 0

Operations of SACK” sender: All the schema causes
changes to state schema of the sender which are
presented by expression ASender. An explanation about
all the schemas is as follows:

send schema: send schema is an input operation for the
sender. The sender receives message from the user
application. Expression m? represent the message. The
message 1s hold at the sender buffer. The expression has
' symbol that shows the variable state after an operation
is executed. The send operation schema is as follows:

— send
ASender
AOriginalMessage
m?: seq BYTE

sendBuf” = sendBuf"m?
retranBuf” = retranBuf
segimen’ = segien
readyToSend” = readyToSend
sndUna’ = sndUna

sndNxt” = sndNxt

message” = m?

senderData’ = sendBuf”
receiverData’ = receiverData
retransmitData’ = retransmitData
dataSegmen’ = dataSegmen

prepareNewSeg schema: prepareNewSeg schema is an
internal operation for the sender. Tt shows the sender
prepares a segment that 1s needed to be transmitted to the
receiver. This operation will only be executed if the state
of the sender is in not ready position to send any of the
segment, the buffer has a data and the next sequence
number of data segment to be transmitted 1s less than the
size of the window. The data, which 1s at the front of the
buffer, is taken out from the buffer to be segmented and
it 1s assigned with a sequence number. The segment is
grouped with the state of the data segment which 1s not
yet received by receiver and hold it at the retransmission
buffer. After segmentation, the state of the sender is in
ready to send the data segment. The prepareNewSeg
operation schema 1s as follows:

— prepareNewSeg
ASender
AOrnigmalMessage
readyToSend = FALSE
sendBuf # {}
sendNxt< sndUna + WS

if sndNxt + 1>7 then sndNxt’ = Oelse sndNxt™ = sndNxt+1

sendBuf” = tail sendBuf

segmen’ = segmen” {(head sendBuf, sndNxt))

readyToSend” = TRUE

sndUna’ = sndUna

retransmitData’ = retransmitData"(head sendBuf}

1715

J. Applied Sci., 6 (8): 1712-1719, 2006

dataSegmen’ = dataSegmen”{head sendBuf)
receiverData’ = receiverData

senderData’ = senderData

message’ = message

sendPkt schema: sendPkt schema is an output operation
for the sender. In this operation, the sender transmits the
data segment to the receiver. This operation will only be
executed if there is a data segment to be sent and the state
of the sender is in ready to send data segment. After the
segment has been transmitted, state of the sender 1s m not
ready to send a data segment. The sendPkt operation
schema is as follows:

— sendPkt
ASender
seg?: seq Bytelnt

seg? = segmen
readyToSend’ = TRUE
sendBuf” = sendBuf
segmen’ = segmen
retranBuf” = retranBuf
sndUna’ = sndUna
sndNxt” = sndNxt

rcvPkt schema: rovPkt schema 1s an input operation for
the sender. It shows the sender has received a validated
sequence number that was received by the receiver. This
operation receives the next sequence number of data
segment need to be transmitted. This operation will only
be executed if an expression sndUna<ack?<sndNxt 1s
true. If this is true, it shows that the segment which has a
sequence number before the value of ack? has been
received successfully by the receiver. Thus, the segment
will then be taken out from the retransmission buffer and
the value of the next sequence number of data segment
need to be transmitted is being updated The revPkt
operation schema 1s as follows:

— rcvPkt
ASender
AOrngmalMessage
ack?: Seqnum

retranBuf # ¢

if sndUna < ack? <SndNxt

then retranBuf” = tail retranBuf A retransmitData’ = tail
retransmitData

else retranBuf” = retranBuf /A retransmitData’ =
retransmitData

readyToSend’ = readyToSend

sendBuf” = sendBuf
segmen’ = segmen

sndUna’ = ack?
receiverData’ = receiverData
senderData’ = senderData
message’ = message
dataSegmen’ = dataSegmen
sndNxt” = sndNxt

revPEktl schema: rovPkt! schema is an input operation
for the sender. It shows that the sender receives a
validated sequence number that was received by the
receiver and need to be retransmitted. This operation
receives the next sequence number of data segment need
to be transmitted and the sequence mumber of data
segment to be retransmitted depends on a value of 512,
52?7 and b3?. This operation will only be executed if the
expression sedUna<ack?<sndNxt is true. Tf this is true,
1t shows that the segment which has a sequence number
before value of ack? has been received successfully by
the receiver. So, the segment will then be taken out from
the retransmission buffer and the value of the next
sequence number of data segment to be transmitted 1s
being updated. Next, every sequence mumber in
retransmission buffer is being checked in order to
determine which packet needs to be retransmitted. The
checking is made using the following expression:

s If the sequence number of the segment in the
retransmission buffer<52?, or the sequence number
of the segment n the retransmission buffer>543?, then
the state of the segment 1s as in the original state.

s If b27<the sequence number of the segment in the
retransmission buffer<$3?, then the state of the
segment 1s that the segment has been received by the
receiver.

The revPkt! operation schema is as follows:
— revPktl

ASender
AOriginalMessage

ack?: Seqnum
b1?: Sequum
b2?: Segnum
b3?: Segnum

retranBuf = ¢

retransmitData # ¢
if sndUna < ack? < sndNxt
then retranBufl® = tail retranBuf

A retransmitData’ = tail retransmitData

171¢e

J. Applied Sci., 6 (8): 1712-1719, 2006

M (¥ e: ran retranBuf
o (if e 2<b2?e.2>b3? thene3=e3else e3 =e3)
Y (if b2?<3.2<b3? then ¢.3 = TRUE else ¢.3 = ¢.3)))
else retranBuf” = retranBuf
readyToSend’ = readyToSend
sendBuf” = sendBuf
segimen’ = segien
sndUna’ = ack?
receiverData’ = receiverData
senderData’ = senderData
message’ = message
dataSegmen’ = dataSegmen
sndNxt” = sndNxt

prepareRetranSeg schema: revPkt! schema 1s an internal
operation for the sender. It shows that the sender is
preparing a segment that need to be retransmitted to the
receiver. This operation will only be executed if state of
the sender is in not ready to send a data segment and the
retransmission buffer has a data. The data segment which
was not received by the receiver in the retransmission
buffer is then segmented. Next, the state of the sender is
i ready to send a data segment. The prepareRetranSeg
operation schema 1s as follows:

— prepareRetranSeg
ASender
AOrnigmalMessage

readyToSend = FALSE
retranBuf # &
WV e: ran retranBuf;, f segmen
s ife3=FALSE
then segmen’ = segmen " {(e.1, e.2)}
else segment” = segment
readyToSend” = TRUE
sendBuf” = sendBuf
retranBuf” = retranBuf
sndUna’ = sndUna
sndNxt” = sndNxt
receiverData’ = receiverData
senderData’ = senderData
retransmitData’ = retransmitData
message’ = message
dataSegmen’ = dataSegmen

resetSack schema 13 an imnternal
operation for the sender. It shows that all of the segment
state in the retransmission buffer is not yet received by
the receiver. This operation will only be executed if time
for retransmission 1s expired. The resetSack operation
schema 1s as follows:

resetSack schema:

— resetSack
ASender

7 e: ran retranBuf’

o VI ran retranBuf

* ¢2 ¢ Sequum A 2 € Sequnum A .3 = FALSE A
el=f1Ae2=1f2

segment’ = segmen
readyToSend” = readyToSend
sendBuf” = sendBuf
sndUna’ = sndUna
sndNxt” =0

FORMAL VALIDATION OF Z SPECIFICATION OF
SELECTIVE ACKNOWLEDGEMENT PROTOCOL

The methodology of formal wvalidation of Z
specification for SACK sender is shown 1 a flow chart as
mFig. 3.

The methodology of formal validation of Z
specification for SACK sender starts with the translation
of the /O automata model of protocol SACK (Smith and
Ramakrishnan, 2002) to the 7 specification in LaTEX
format. Then, the 7 specification is type checked. Type
checking is a condition before using a theorem proving
function in Z/EVES (Nursyaludah and Zarina, 2006). Type
checking is used to check if the specification has a type
checked error. If there 1s no type error, next 1s to develop
a 1mtial state, pre-condition and properties theorem for
proving m the same 7 specification. Type checking is also
done to these theorems to ensure there 1s no type error. If
there is no error, then next is to prove the three theorems.
Type checking and theorem proving process need to be
repeated until the theorems is proved correct and
produced a complete and consistent specification.

Type checking: The 7 specification of SACK sender,
which was wrtten in LaTEX format, has been type-
checked. Type checking must be done as a condition
before wsing a theorem proving function in Z/EVES
theorem prover. Type checking is used to check if the
specification 1s free from type error. An example of an
equation predicate expression comtains type error is as
follows:

sendBuf = zero

In the equation predicate above, a variable m the
right side must have the same type with a variable in the
left side. The above expression is type-checked using
Z/EVES and produces error message as follows:

1717

J. Applied Sci., 6 (8): 1712-1719, 2006

Type checking
¥
Prepare Z
specification in Hes typ? e Proof
LaTEX format initial state
T Yes theorem
¥ No
Prepare
« Initial state
theoram No
* Pre-conditions Has type? >
theorem
» Propertica " Yes
theorem
in LaTEX format No

Proof

theorem

properties

Yes_ / Z specification is
consistent

Z specification is
consistent and is
applied in the
correct domain

Z specification
satisfy the
require
properties

@

Fig. 3: The methodology of formal validation of Z specification for SACK sender

Error TypesNotSame (line 71) [Type checker]: types of
\Local sendBuf and\Global zero are not the same.

The above error message shows that in Line 71, the
declared sendBuf and zero m the equation predicate
sendBuf = zero does not have the same type.

Proving of initial state theorem: An intial state theorem
1s used to show that at least one condition for SACK does
exists. A simple state to show and to prove 1s the mutial
state (Woodcock and Davies, 1996). One initial state
theorem has been developed for Sender of SACK based
on it’s mitial state schema. The following shows the mutial
state theorem (Nursyalidah and Zarina, 2006).

theorem ThelnitSender
I Sender’ # InitSender

This theorem has been proved by only using
command proving that is a prove by reduce command.

Proving of precondition theorem: The use of proving of
precondition theorem is to show every operation is not
applied beyond the domain, which is a situation where the
output from the operation 1s not recognized (Woodcock
and Davies, 1996). This can be shown with the state

before of a particular operation, exactly relates at least to
the one of the state after the operation. It means that the
state before an operation and after the operation clearly
satisfy the specified relation (Spivey, 1998).

To demonstrate how the proving of precondition is
done, an operation of receiving packet by a sender will be
used as an example. This operation receives the next
sequence number of data segment that 1s needed to be
transmitted. This operation will be executed 1if the number
1s greater than the value of sndUna and less than sndNxt.
To check whether the specified operation can be applied
within this domain, we develop the following theorem:

theorem rcvPkiPre
¥ Sender; Original Message; ack?: Seqnum, s: BYTE
| ack? = sndUna Aack? < sndNxt A retranBuf » ¢
e pre rovPkt

Proving of safety properties: One of the two properties
that are normally discussed in protocol communication
are;, safety. The other one 1s liveness. Safety properties
are assertions that certain undesirable things do not
happen (Duke and Rose, 2000). For example in
communication protocol, the stream of messages
recelved should be the same as the stream transmitted,
without loss, replication or permutation. Based on the /O

1718

J. Applied Sci., 6 (8): 1712-1719, 2006

automaton model by Smith and Ramalrishnan (2002), we
develop several theorems that represent the safety
properties of SACK protocol. These theorems are then
proved by using Z/Eves theorem prover. In tlus section,
we demonstrate two safety properties that can be
validated by using Z/Eves.

First, safety property in sending operation; the
message that is going to be sent, m, must be added at the
back of sender buffer. The theorem that represents this
statement is as follows:

theorem OperationSend
vsend; m?: seq BYTE » sendBuf” = sendBuf m?

Second, safety property in preparing a new message;
the message m, that 1s retrieved from the sender buffer
(sendBuf) will be pushed ad the back of resending buffer,
retranBuf.

theorem OperationPrepareNewSeg
VprepareNewSeg ¢ retranBuf’ =
retranBuf™ ((head sendBuf, sndNxt, FALSE))

All of the theorems discussed in the above section
have been proved by using 7Z/Eves theorem prover by
using only one step command that is prove by reduce.

CONCLUSIONS

In this study, we present a Z specification of SACK
(sender) which has been developed based on L/O
automata model of (Smith and Ramakrishnan, 2002). Then,
we demonstrate a validation process of 7 formal
specification of SACK sender using theorem proving
technique. According to our experience, many theorems
have been through a long and repetitious proving
process. If the proving is done manually by humans, the
possibility a mistake will be made is lugher. With Z/EVES,
not only this possibility can be reduced, the proving can
be done fast and reliable.

REFERENCES

Azurat, ALSW.B., 2002, A swvey on embedding
programming logics in theorem prover. (online)
http:/Aarww library uu.nl/digiarchief/dip/dispute/2002-
0308-131854/2002-007. pdf.

Babich, F. and L. Deotto, 2002. Formal methods for
specification and analysis of communication

protocols. IEEE Commun. Surveys and Tutorials,

4: 2-15.

Barden, R., S. Stepney and D. Cooper, 1999. Z In Practice.
Great Britain. Prentice Hall Intemational (UK) Limited.

Bochmann, G.V. and C.A. Sunshine, 1983. A survey of
formal methods in computer network and
architectures and protocols. IBM Corporation
Yorktown Heights, New York. Plenum Press.

Bowery, J.P and M.G. Hinchey, 1995. Ten commandments
of formal methods. Computer, IEEE, 28: 56-63.

Duke, R. and G. Rose, 2000. Formal object-oriented
specification using object-Z. MacMillan Press Ltd.

Grunchiglia, F. and P. Traverso, 2000. Special section an
theorem proving, Theorem proving in technology
transfer: the user’s point of view. Intl. J. STTT 3: 1-12.
Springer-Verlag. http://www.ora.on.ca/z-eves/
welcome. htm]

Jacky, 1., 1997. The Way of Z. United States of America.
Press Syndicate of the University of Cambridge.
Meisels, I. and M. Saaltink, 1997. The Z/EVES Reference

Manual (for Version 1.5). Ora Canada. Canada.

NASA ARC., 25 Janwar 2002, V and V of Advanced
Systems at Nasa. Task No: 10 TA-53.3 (WBS
1.4.453). Charles Pecheur, RIACS. Northrop
Grumman Corp.

Nursyahidah, A., S. Zarna, 1. Baharn and M.H. Mohd.
Hazali, 2004, Pengesahsahihan Spesifikasi Formal
Sistem Malklumat Pelajar Menggunakan Pembukti
Teorem Z/EVES (Validation of Formal Specification of
Student Information System Using Z/Eves Theorem
Prover), in Prosiding Simposium Kebangsaan Sains
Matematik ke Universiti Islam Malaysia, 12: 23-24.

Nursyahidah, A. and S. Zarina 2006. Experience of
Validating the Sender of Selective Acknowledgement
(SACK) Protocol By Using Z/EVES Theorem Prover.
Techmcal Report. FTSM, Umiversiti Kebangsaan
Malaysia.

Saaltink, M., 1997. The Z/EVES Mathematical Toolkit
Version 2.2 for Z/EVES Version 1.5. Ora Canada.
Canada

Smith, M.A. and K K. Ramakrshnan, 2002. Formal
specification and verificaion of safety and
performance of TCP selective acknowledgment.
TEEE/ACM Transaction On Networking, 10.

Spivey, J.M., 1998. The Z Notation: A Reference Manual
2nd Edn. England.

WetStone Technologies, Inc., 1999. Formal Methods
Framework, F30602-99-C-0166, Final Monthly Status
Report. Air Force Research Laboratory/IFGB, Rome,
NY 13441-4505.

Wing, .M., 1990. A Specifier’s Introduction to Formal
Methods. Computer. TEEE, 23: 8-23.

Woodcock, T. and J. Davies, 1996 Using 7: Specification,
Refinement and Proof. Prentice Hall, Londen.

1719

	JAS.pdf
	Page 1

