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Abstract: An active database system is a system which provides the same functionalities as a classic database
system and 1s, equally, capable to react, automatically, to state changes by means of rules said active rules. The
triggering of these rules can produce an infite cycle and leads to the no termination problem. In this study,
we propose a method of termination analysis of active rules based on Petri nets (PN) and give an object

oriented representation to implement it. This approach is better than the previous ones because it takes into
a count composite events and the rule priority on the one hand and both rule representation and rule analysis

are performed in the same PN on the other hand.
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INTRODUCTION

Active database systems (Widom and Ceri, 1996,
Paton and Diaz, 1999) aim at the representation of more
real-world semantics in the database by supporting
event-condition-action rules (ECA-rules). ECA-rules can
be interpreted as “when the specified event occurs and
the condition holds, execute the action”. An event
mdicates the point in time when some sort of reaction 1s
required from the DBMS. For primitive events, this point
in time can be specified by an occurrence in the
database, by an occurrence in the DBMS, or by an
occurrence 1n the database enviromment. For composite
events (Chakravarty and Mishra, 1994; Gatziu and
Dittrich, 1994, Gehani et al., 1992), the point in time is
defined on the basis of other pomts in time which
represent other primitive
(called component events). These components are
combined by means of event constructors as: negation,
conjunction, disjunction, sequence etc. The action
describes treatments to achieve when a specific event
happens and some condition holds.

The active rule behaviour is difficult to predict and
require the development of techniques to analyse
properties of a set of rules automatically. One of these
unportant properties 18 the property of the rule
termination. Many works have tried to solve the no
termination problem; nevertheless, most of them present
msufficiencies.

The aim of this study 1s to propose a rule termination
analysis approach which considers the impact of both the
composite events and the rule priority on the termination
analysis problem. This method detects cyclic paths in the

and/or composite events

base of ECA rules, can analyse the relationships among
ECA rule components and detects cases of termination
which are not detected by the other approaches.

Among all methods which proposed to study rule
termination, some are based on models of graphs and
others use formal basis as the systems of rewrite or the
Petri nets. We present some of them in the following.

Aiken et al (1995) are the first to introduce the
notion of Triggering Graph (TG). They show that a
triggering graph without cycle determines and guarantees
the termination of a set of active rules in the context of
relational systems. Baralis et al. (1996) grouped the active
rules mto modules, termination of rule execution, within
each module 15 assumed and inter-module termination 1s
analysed. Tt is the only method that presents a modular
conception of the active rules. Baralis ef al (1998)
proposed a technique that exploits the information of the
graph TG and other graph called Activation Graph (AG)
to analyse the termination of a set of ECA rules. This
analysis uses an algorithm called algorithm of reduction.
This approach presents an mconvenience because it
doesn't propose a method of building the AG graph which
is not obvious. Baralis and Widom (2000) try to improve
these last methods. Their approach is based on a
“propagation algorithm”,
relational algebra to accurately determine when the action
of one rule can affect the condition of another. The
termination analysis is made by building the graph AG.
Their study 1s considered as a complementary method for
the two last one. Lee and Ling (1998) propose a path
technique for reducing the graph TG. The method
considers together the conditions of long triggering

which uses an extended

sequences called activation formulas. It 1s necessary to
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guarantee that the execution of rules outside the
triggering sequence cannot unpredictably change the
database state. Hence, only non-updatable predicates can
be mcluded m the activation formula. This condition
severely limits the applicability of the technique.
Bailey et al. (1997) use abstract interpretation for the
termination analysis of active rules. The 1dea 1s to reason
about sequences of database states using "approximate
semantics" and to use the fix point computation (over a
lattice) to handle cycles. This approach is applicable to a
simple and restricted rule language. A different approach
1s taken m (Karadimee and Urban, 1994), where ECA rules
are reduced to term rewriting systems and known analysis
techniques for termination of term rewriting systems are
applied. The analysis 1s based on an object-oriented data
model and instance-oriented rule execution model. This
approach is powerful, since it exploits the body of
work on Conditional Term Rewriting System, but its
umplementation appears to be complex even for small rule
applications. Kokkinaki (1998) uses Parameterised Petr1
Nets (PPN) to analyse the active rule termination in the
relational model. A PPN is a Petri Net (PN) whose places
are parameterised. The firing of the transition corresponds
to the rule execution. If there 1s no cycle in the PPN model
then the rules execution in the ADBS must terminate. The
inconvenience of this approach is that, the use of PPN in
modelling complex systems results in complex graphic
representations which are very difficult to be
conceptualised and handled. Other PN based method is
presented in (Zimmer et al., 1996). To represent the
triggering and activation notions in the PN, the authors
give for each rule two subnets Ei (for the triggering)
and Ci (for the activation). The authors detect a
non-terminating behaviour of rules using a coverability
graph based on the reachability graph. In this approach,
the conception of the PN 1s too complex. In addition, the
presence of a cycle in the PN does not imply that will
occur an infinite rule triggering. Li and Marin (2004)
present an approach based on coloured Petr1 nets named
CCPN (Conditional Coloured Petri Net) for modelling the
active database behaviour. Incidence matrix of PN theory
is used to find cyclic paths existing in the CCPN. Cycles
which satisfy some theorems given by the authors are
deleted. If there 13 no cycle mn the CCPN, the termmation
of the corresponding set of rules is guaranteed.
Nevertheless, this approach does not consider the priority
of rules.

EXTENDED COLORED PETRI NET (ECPN)

Our approach 1s mspired by Li and Marin (2004). We
umprove this method by adding the notion of rules priority

and showing how the termination analysis can be affected
by this notion.

PN 1is a graphical and mathematical tool and may be
applied in various areas. Active database 1s a promising
application area of PN. Up to now, few researches have
used PN as ECA specification language. In SAMOS
(Gatziu and Dittrich, 1994; Geppert et al., 1995), PN 1s
partially used for composite event detection and
termination analysis.

In our model named ECPN, the rule event is
represented by a place pl, the condition ¢ and the priority
pr of the rule are attached to a transition t and the rule
action a is represented by a place pZ. Relationships
between the rules can be viewed in the same graph
(Fig. 1).

ECPN 1is a colored PN (David and Alla, 1989; Jensens,
1992) defined as follows:

ECPN={E P, T. A, N, C, Con, Action, D, T, I} where:

E is a finite set of non-empty type, called colour sets.
Tt determines all the data value, the operations and
functions that can be used n the net expressions.

P is a finite set of places. It 18 divided mto four
subsets: P, . P, P. andP_ P, represents the set of
primitive places and correspond graphically to a single
circle. P, represents the set of composite events. P,
includes the following events: negation, sequernce,
closure, last, history and simultaneous. They correspond
graphically to a double circle. P, represents the set of
composite events which includes the conjunction,
disjunction and any. They correspond graphically to a
single dashed circle. P_ is the set of places which are
used when two or more rules are triggered by the same
event. They correspond graphically to a double circle
where the interior circle 1s a dashed one.

T 1s a finite set of transitions; it 1s divided into three
subsets: Ty, T, and T . T, corresponds to the set of
rules. Each tramsition of rule type is represented
graphically by a rectangle. T, 1s the set of transitions of
copy type. They are represented graphically by a single

Fig. 1: Relationships between two rules rl and 12
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bar. A copy transition is used when one event e can
trigger two or more rules. A copy transition will produce
n same events where n 18 the number of rules wlich are
triggered by the same event e. T, is the set of
transitions of composite type. They are represented
graphically by a double bar. A composite transition is
used for generating a composite event from a set of
primitive or composite events.

A is a finite set of arcs. Tt is divided into two subsets:
The input arcs which are defined from P to T and output
arcs which are defined from T to P. Inhibitor arcs are used
to represent the Negation composite event.

N 18 a node function. It maps each arc into a pair
where the first element is the source node and the second
1s the destination node (N: A - PxTuT =P).

C 1s a color function. It maps each place p to a type
C(p) (1e,C: P~ E).

Comn 18 a condition function. It 13 defined from either
T e or T e Into expression such that:

vte T Type(con(t) =B,
where Con function evaluates the rule condition.

Wte T, Type(con(t))=B,
where Con function evaluates the time interval of t against
tokens timestamp. B 1s used to denote the Boolean type
containing the values false and true.

Action 18 an action function. It maps each rule type
transition t € T, into a type C(p) which will be deposited
into its output place.

D is a time interval function. It is defined from T, to
a time interval [d,(t), d,(t)], where t €T and d(t), d{t)
are the initial and the final interval time, respectively. The
interval is used by the Con function to evaluate
transitions t €T,

T 15 a timestamp function. It assigns each token in
place p a tunestamp.

I1s an wmtialization function. It maps each place p mto

a closed expression which must be of type C(p).

Example of an ECPN: Let's consider the set of rules R1,
R2, R3 andR4 expressed according to the following
formalism:

Define rule rule-name On event If condition Then action

Define rule R1

On reduce-salary () (e0)
If employee.salary <1500 (T0O)
Then raise-salary () (el)

Define rule R2

On raise-salary () (e3 a copy ofel)
If employee.children-nbr >5 (T3)

Then send-bonus () (ed)

Define rule R3

On raise-salary () (e2 a copy of el)
If employee.age >60 (T2)

Then be-retired () (e5)

Define rule R4

On send-bonus () (ed)

If employee.salary <10000 (T4)

Then raise-salary () (el)

These rules necessitate the class Employee which has
the attributes: id-emp, salary, bonus, children-nbr, age.
The ECPN which comresponds to the set rules given
above 1s shown m Fig. 2. Furthermore, we consider that
R1=R3>R2> R4 where Ri> Rj means that Ri has priority
than Rj.

€,
T
e «

T,
" "
T, [ 1 [ 1 T,
LD e.
T4

Fig. 2: Example of an ECPN

el el e2 e3 e4 =3
TO -1 1 0 0 0 0
T1 0 -1 1 1 0 0
T2 0 0 -1 o) 0 1
T3 0 0 0 -1 1 0
T4 0 1 0 0 -1 0

Fig. 3: Incidence matrix from ECPN of Fig. 2
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Termination analysis: et S= {rl, 12,13, ..., m} be aset
of rules, when the action of rule rl triggers the rule 2,
action of rule 12 triggers the rule r3 and so on and finally,
action of rule rmy, triggers the rule rl, this process performs
a cyclic rule triggering and it can produce an inconsistent
state of the database when it executes these rules
mfinitely. To study the problem of rules termination and
the impact of rules priority on it, we give an algorithm
which uses the incidence matrix, the notions of paths,
cyclic paths and acyclic paths of PN theory. In incidence
matrix, places are represented by its columns and
transitions are represented by its rows, so it 13 possible to
identify both initial and final nodes of an ECPN.

ECPN is a directed graph constituted by a sequence
of nodes forming paths, where each node 1s either a place
or a transition in an alternate way. If a cyclic path 1is
found, then it may produce an infinite rule triggering.

A path R is a sequence of pairs (r, ¢) which are
obtained from the incidence matrix of the ECPN, where r
and ¢ are meidence matrix indexes.

The sequence of pairs (r, ¢) describes the connection
between places and transitions as follows: (t1, pl), (tl,
p2). (12, p2), ..., (tn-1, pu-1), (tn, pn-1), (tn, pn). The first
pair 1s formed by the transition t1 and its wmput place pl,
following the path, the next pair is formed by the same
transition tl and its output place p2, the third pair is
formed by the same place p2 that now is the input place to
transition t2 and so on.

Paths search starts from the coordinate of (t1, pl) and
then a positive integer is looked for in the row
corresponding to tl, finding the coordinate to (tl, p2).
After, a negative integer is looked for in the column
corresponding to p2, finding the coordinate to (12, p2).
Then another positive integer 1s looked for in the row
correspondmng to t2 and so on, until either a terminal node
or an existing node 1n the path 1s found. A cyclic path CP
15 a path R where the last pair (r, ¢) has been already
found. An acyclic path AP is a path where the last pair
(r, ¢) 1s different from each other in AP. If all the paths, in
the ECPN, are acyclic then the termination is guaranteed.
If there is at least one cyclic path CP in the ECPN, the rule
triggering may not finish. But it does not mean that
whenever exist a cyclic path CP the rule triggering does
not terminate; there are other facts that should be taken
into account. For example, in ECPN model, the priority, the
condition and the composite events of ECA rules are
considered, so they can have an impact on the termmation
analysis problem. The composite events that affect the
termination analysis are: Negation, conjunction, any and
sequence. The conditions 1, 2 and 3, given below,
correspond to them. The condition 4 concerns the rule
condition belonging to a cyclic path

Condition 1: Tf a cyclic path CP contains an inhibitor arc
l.e., a composite event negation 1s included mn CP, then CP
finishes 1ts rule triggering.

Condition 2: For composite events conjunction, sequence
and simultaneous, if any of its constituent events is not
generated by the action of a rule belonging to CP then the
rule triggering fimshes.

Condition 3: If composite event any (m, el, e2, ..., en) 1s
a part of a cyclic path CP and if k constituent events of
the composite event any are not generated by the action
of a rule belonging to CP and n-k < m then the rule
triggering fimshes.

Condition 4: If the condition of a transition t1 €4t | (t, p) €
CP} is always false according to the event produced by
the action of previous rule, then the rule triggering
finishes.

Algorithm of the priority: The following algorithm shows
the impact of the rules priority on the termination analysis
for a set of rules modelled by an ECPN.

Step 1: Convert a base of ECA rules into an ECPN
Step 2: Create the meidence matrix from the ECPN
Step 3: Search all the paths of ECPN

Step 4: Create a set Rset of paths R

Step 3: If Rset contains no cycle.

Then returns “the termination is guaranteed”

Else explore the paths in Rset one by one according to

the priority of rules:

termine — false
Repeat for each path R
If R is acyclic
Then termine — true
Else ™R 18 cyclic*/
If R satisfies the conditions given above
Then termine - true
Else consider the next path
End
End
Until the end of the paths exploration or termine=true
If termine = true
Then returns “the termination 1s guaranteed”
Else returns “the termination is not guaranteed”
End
End

Ilustrative example: To show the impact of the rules
priority on the termination analysis in an ECPN, we
consider the example given above. The incidence matrix
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generated from the ECPN of Fig. 2 (which corresponds to
the example) 1s presented in Fig. 3. It can be observed that
there are two paths constituted by the elements: (0,0),
(0,13, (1,1), (1,2), (2,2) and(2,5) for the first one and the
elements: (0,0), (0,1), (1,1), (1,3), (3,3), (3.,4), (44, (4.1)
and (1,1) for the second one which includes the cycle.
Nevertheless, as R3 has priority than R2, this cycle is not
considered and the termination of the set {R1, R2, R3, R4}
is guaranteed according to the algorithm. The path to
which belongs R3 (represented by the transition T2) is
acyclic.

IMPLEMENTATION ISSUES

In order to implement an ADBS, the architecture of a
(passive) DBMS has to be augmented by new
components like an ECA rule editor, an analyzer of rules,
a rule manager, an event detector for primitive and
composite events and a rule execution component.

ECA rules are defined by ECA rule editor. After ECA
rules are converted into an ECPN, ECPN 1s saved into

is used by ECPN rule manager which calls the event
detector for detecting events, the rule execution
component for evaluating the condition and executing the
action of rules. Tt calls also the termination analyzer
compoenent to cheek no-termination problem in ECPN rule
base. This last component includes an incidence matrix
generator, a paths generator, a cyclic paths detector and
an analyzer of paths which take into a count the priority
of rules. As the implementation of our passive DBMS is
an object-oriented implementation and in accordance to
the idea “to stay m the same world and exploit its
advantages”, we built the rule structure by means of
object-oriented features (Atkinson et af, 1989). In our
model, the ECA rules are represented by transitions of
rule type, the conditions and the priorities of rules are
attached to these transitions. The events and the actions
are modelled by places which are inputs and outputs of a
transition respectively. The rule firing corresponds to
transition firing. So we need four main classes named:
PLACE, TRANSITION ARC and TOKEN.

All places are instances of a class PLACE with

ECPN base as places, transitions and arcs. ECPN rule base attributes  index, event-name, event-body, list-rules,
T_RULE CONDITION
Rule-name: string Condition-body: string
Ewvents: PLACE 7 ¥
Cond: CONDITION:
L Act PLACE T_COMP T COPY
Priority: integer
— 7 _—
Delete-rule TRANSITION
Active-rule Index: integer
Modify-priority Name: string
Evsluate-condition ~  Arc-In: {ARC}
\ [ Arc-Out: {ARC}
Insert-transition
PLACE Delete-transition
Index: integer
Event-name: stl:ing ARC
Eyent-body: string l— Indice-P: PLACE
L1 List-rules: {T-RULE} Indice-T: TRANSITION —
——  List-tokens: {TOKEN} Tnsert-arc
Dot s oo
elete-place i i
Modify-list-rules Modify Iodies ¥
ARC IN ARC OUT
P COPY Y
— copy-of: PLACE, P_PRIMITIF ARC INHIB
P_COPMPOSITE P_COMP
- Composed-by: {PLACE} Operator: seq, sim
Interval: INTERVALS ] ; =
TOKEN P VIRT
| MDY INTERVALS
Color: Colors Tnitial-date; Date Operstor: AV
L1 Place: PLACE Final-date: Date
—P»_ Time:Date | [ Tnscrtintorval |
Insert-token Delete-interval
Delete-token

— : Reference link

—>» : Inheritance link

Fig .4: Class hierarchy
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list-tokens  and methods insert-place, delete-place,
modify-list-rules and modify-list-tokens. The index is an
mternal number assigned by the system. The event-name
15 the event name. The event-body is the content of the
rule event part. The list-rules is the list of references
to objects of class T-RULE which are triggered by this
event. The list-tokens 15 a list of references to objects of
class TOKEN,; these tokens represent the actual marking
of the place. Class PLACE is the super-class of the
subclasses P-COMPOSITE (which includes the attributes
composed-by and interval), P-PRIMITIVE and P-COPY
(which includes the attribute copy-of). composed-by
helds the events (single or composite) that comprise the
event. interval refers to objects of class INTERVALS
(1.e., refers to time intervals). copy-of holds the event for
which we have made copies.

Each transition is an object of class TRANSITION
with attribute index, name, arc-in, arc-out and methods
mnsert-transition and delete-transition. The name 15 the
transition name. The arc-in 1s the list of references to
objects of class ARC (the set of the input arcs). The
arc-out is the list of references to objects of class ARC
(the set of the output arcs). Class TRANSITION 1s the
super-class of the subclasses T-COMP, T-COPY and
T-RULE. The last one regroups all transitions of rule
type; it includes attributes rule-name, events, cond, act,
priority and methods msert-rule, delete-rule, activate-rule,
modify-priority, evaluate-condition. rule-name represents
the rule name. events represents the rule event; it refers to
an object of class PLACE. cond represents the rule
condition; it refers to an object of class CONDITION. act
represents the rule action; it refers to an object of class
PLACE. priority is a number reflecting the importance of
the rule.

Also we define a class ARC with three subclasses:
ARC-IN (mmput arcs), ARC-OUT (output arcs) and
ARC-INHIB (inhibitor arcs). Class ARC has as attributes
indice-p and indice-t, the value of which are the
appropriate place and transition indexes (in relation to the
attribute index of classes PLACE and TRANSITION).

The attribute time in the class TOKEN (the class
which regroups all the tokens of an ECPN) indicates the
time when we put the token on a place. The Fig. 4
presents the class hierarchy of our metabase with more
details.

CONCLUSIONS

The approach presented in this study, is based on
the Petri net model to analyse the termination of a set of
rules. In this PN named Extended Coloured Petri Net
(ECPN), the different components of the rules are

presented such as their events, conditions, actions and
priorities. ECPN can model both primitive and composite
events. Furthermore, not only composite events can affect
the active rules termination, but also the rules priority. Our
approach is better than those presented in related work
section because the ECPN 15 a good model for modelling,
analysing and simulation of active database systems. Tt
does not perform a simple analysis of cyclic paths but
analyzes each element of the graph to determine if the rule
triggering m a cyclic path fimshes or not. This approach
is general and can be applied not only in the database
area but also m others applications which need
event detection.
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