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Abstract: This study 1s about a kind of ANN for applications in multivariate nonlinear regression, in order to
further knowledge and understanding of discharge on an iced insulator surface and the development into a
flashover AC arcs. The propagation of local arcs 1s necessary for a flashover to occur on an ice-covered
insulator. Tt was supposed that the local AC arc extended when it satisfied the arc re-ignition conditions.
Therefore, the mimmum applied voltage for maintaining an arc burning steadily across an air gap under various
conditions is a major parameter and it is referred as arc maintenance. Although ANNs have usually achieved
good performances m several domains, those performances and the ANN traming process are directly
influenced by an appropriate choice of the network architecture. In this study an attempt has been made to
model V.= £ (I, L, x) for estimating the arc re-ignition conditions as estimator fimction of leakage current, air gap
length and insulator length using multi-layer feed-forward neural network with back propagation technique and
the Radial Basis Function (RBF) neural network with Orthogonal Least-Squares (OLS) learmng method. A
number of test results taken from the CIGELE models were simulated and analyzed and a comparison between
RBF network and BP network 15 presented. The RBF ANNs model was found to be reliable in predicting the arc
maintenance voltage, under any given set of leakage current, insulator length and air gap length. A satisfactory
agreement will be observed between the simulated and experimental results.

Key words: Arc maintenance voltage,, ANNs, ice-covered msulator, modelling, estimator function, critical

voltage, CIGELE model

INTRODUCTION

In several cold regions ice and snow accumulation
on power lines results not only m mechamcal damage
to towers and conductors, but also the iced-insulator
flashover. This problem has motivated a number of
studies in this field, particularly experimental
mvestigations made 1t possible to further the knowledge
of the different effects of ice and insulator parameters on
critical flashover voltage on ice-covered msulators by
the GIGELE researchers at the university of Quebec in
Chicoutimi (UQAC), (Farzaneh and Drapeau, 1995).
The flashover process on an artificially ice-covered
msulator string includes different stages: first, several
violet arcs appear across the air gaps, then of the AC
arcs extended along the ice surface, forming a white arc
and finally when the white arc reaches a critical length,
flashover occurs suddenly (Fig. 1). It may be noted

that this situation less similar to dry bands in series
with a wet pollution layer. There are some differences
between AC arc propagation processes on ice and
polluted surfaces. In case of pollution the arc extended
on the wet polluted surface and its length changes
according to applied voltage while m case of ice, the arc
may propagate in two ways: ice surfaces and along
the air gaps during its enlargement caused by 1ice
melting and ice falling down (Farzaneh et al., 1997,
Farzaneh-Dehkordi et al, 2004). In regard to the
understanding  discharge initiation local AC arcs
formation and the mechamsm of their development on
ice surfaces, previous publications (Farzaneh and
Zhang, 2000) were used regression methods to
establish a mathematical relationship between re-ignition
constant, leakage current I and the ice sample length L.
It was found that arc maintenance condition can be
expressed by the following Equation:

Corresponding Author: B. Zegnini, Université de Paul Sabatier, Toulouse III LGET, CNRS-UMRS003, 118 route de Narbonne,
31062 Toulouse, France Tel: +33 561 5567 17 Fax: +33 561 55 64 52
1785



J. Applied Sci., 6 (8): 1785-1793, 2006

Fig. 1: Flashover on ice-covered insulator string

it (1)
I

k and b’ re-ignition constant depend on ice sample length
L.

This Eq. 1 allows to calculate the minimum applied
voltage V, to reach an arc length of x having a leakage
current I. However this research on mathematically
expressing the non linear relationship between the arc
maintenance voltage and the air gap as well as the
insulator length and diameter needed a perfect model
which can predict this relationship for any given ice-
covered insulators parameters. In this study, new
approach using Artificial Neural Networks (ANNs) as
function estimator have been developed and used to
model accurately the critical condition of AC arc
propagation on ice-covered insulators. Recently, Artificial
Neural Network (ANNs) has gained a good success in
many power applications (Coury and Jorge, 1998),
(Aggarwal er al, 1999). Among the various ANNs
structures, the multi-layer feed forward network with
back-propagation and radial basis function RBF neural
network with OLS learning procedure are chosen for
supervised learning. The process of sampling data for
training and testing will be introduced. A number of test
results taken from CIGELE laboratory are simulated and
analyzed. It is found that the BP neural network is a non-
linear regression technique which attempts to minimize the
global error. Its training process includes the forward and
backward propagation, with the desired output used to
generate error values for back propagation to iteratively
improve the output. The BP neural network can yield very
compact distributed expressions of complex data sets.
However BP is limited partly by the slow training

performance, so RBF neural network was developed in-
stead. RBF networks may require more neurons than
standard feed-forward BP networks, but often they can be
designed in a fraction of the time it takes to train standard
feed-forward networks (Chen et al., 1991).

MATERIALS AND METHODS

Experimental set up and procedures: These experiments
were carried out by the GIGELE researchers at University
of Quebec in Chicoutimi (UQAC). In order to determine
the arc maintenance conditions. Different types of
industrial station post insulators were used. The ice was
formed artificially in a climate room using insulater units,
installed vertically (Fig. 2). According to required
insulator length, an electrode was placed at the desired
position. During the icing period, the temperature of the
climate room was maintained at -12+0.2°C.

A relatively uniform wind velocity of 3.3 m sec™ was
generated using a system of 12 fans placed behind a

Fig. 3: The ice sample
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Table 1: Tests CIGELE model

Test Air gap length = (cm) Tnsulator length T. (cm)
A 26 259
B 36 259
C 46 259
D 36 309
E 36 206
F 16 161

honeycomb diffusing panel for transporting the water
droplets to insulator surface. The ice was formed by
spraying super cooled water droplets on insulator surface.
This allowed the insulator to accumulated umiform ice
thickness. This thickness was checked by measuring on
a momtonng conductor 3.8 cm i diameter and rotating at
1 rpm. (Farzaneh, 1997) noted that the flashover voltage of
1ce-covered msulators decreases with the ice thickness
and tends to saturation value at round 15 mm. Once the
ice thickness on insulator reached this value, the icing
process was stopped and, then, an artificial air gap witha
given length was made near the high voltage electrode.
The ice sample and the test circuit are shown in Fig. 3.
The alternating high voltage was supplied by a 350 kV/700
kVA transformer and a 700 kVA regulator. The overall
short-circuit of the high voltage system 1s about 20 A at
the maximum operating voltage of 350 kV_ .. In order to
perform the test, the voltage applied to the ice sample,
during the melting period at 0°C, was raised at a constant
rate of 3.9 kV/s until the breakdown of the air gap
occurred and an arc was established across 1t. Then, the
applied voltage was reduced until the arc extinguished A
Data Acquisition System (DAS) was used to record the
applied voltage, the voltage on the measuring electrode
and the leakage current.

Farzaneh and Zhang (2000b) were tested different
types of industrial station post insulators in order to
determine the arc maintenance conditions. Six tests were
applied to mvestigate the effects of air gap length and
msulator length on the arc maintenance voltage (Table 1).

Multi-layers Neural Networks Back-Propagation
algorithm: Artificial Neural Network algorithm has been
used successfully in many applications, including
electrical power systems and high voltage engineering
(Khaparade et al., 1991; Ho, 1992; Foo and Ghosh, 2002;
Zegnini et al., 2004). Tt is useful because it acts as a model
of real-world system or function. The model then stands
for the system it represents, typically to predict or t
control it. ANN can model a function even if the equation
describing it 13 unknown the only prerequisite 1s
representative sample of the function from the theoretical
understanding. In this study, we have employed the
multilayer feed forward neural network approach. The

Output
Layer

Hidden
Layer

Input

Input (x,L, 1)

Fig. 4: Structure of multilayer feedforward ANN

neurons in the network can be divided into three distinet
layers: wnput layer, output layer and hidden layers. The
data for medelling V, = f (x, L, I} were obtained from
laboratory experiments (tests CIGELE model) the input
parameters are air gap length x, insulator length I and
leakage current T and the output parameter is the arc
maintenance voltage V,(Fig. 4). Each neuron of the input
layer receives a signal from all input neurons via hidden
a long connections with modifiable weights. With the use
of appropriate learning process, the connection weights
are adjusted to enable the neural network to i1dentify input
pattern vectors.

The ANN uwsed in this work employs the back
propagation learming algorithm to facilitate the leamning
process (Rumelhart-Hinton et al, 1986). The back
propagation learning algorithm is a generalization of
the Wodrow-Holf error correction rule (Wirdrow and
Holf, 1986) is most popular method in training ANN. This
learning algorithm is represented here brief. For each
neuron in the input layer, the neuron outputs are given

by:
0, = net, (2)
Where net, 15 the mput of neuron 1 and O, output of
neuron 1.

Again, for each neuron i the output layer, the
neuron inputs are given by:

netk = Ewij] k=1...... ’Nk (3)
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Where wy; is the connection weight between neuron j and
neurcn k and N,, N, are the number of neurons in the
hidden and outputs layers.

For each neuron in the output layer, the neuron
outputs are given by:

1
i exp[i(neté‘ . ek)}

0

Q, =

=f, (net,.0,.8,) )

Where 0, 1s thresheld of neuron k and the activation-
function f, a sigmoidal function.

For the neuron in the hidden layer, the input and the
output are given by the relationships similar to those
given in the Eq. 3-4, respectively. The connection weights
of the feed forwards network are divided from the input-
output patterns n the training set by the application of
generalization delta rule. The algorithm is based a
mimimization of the error fumction of each pattern p, by the
use of the steepest-descent method (Wirdrow and Holf,
1986). The sum of squared errors which 1s the error
function of each pattern is given by:

_ - (%)
EP ) Z(tpk Opk )

k=1

Where t, and O, are target and calculated outputs
for output neuron I, respectively.

The overall measure of the error for all the mput-
output patterns is given by:

NP

E=YE (6)

p=

Where N, is number of input-cutput patterns in the
traming set. When an mput pattern p with the target
output vector t, is presented, the connection weights are
updated by using the equations:

AW (p) =8, 0, + aAw, (p-1) (")
Where 1 is leamning rate and & the momentum

constant. Now, &, is defined in two different ways.
For each neuron m the output layer:

8pk = (tpk - Opk)'opk a _Opk) (8)

And for each hidden layer neuron;

Hy,
8, =0,(1-0y ); Bp W ©)

The training accuracy of ANN is measured with the
help of Root Mean Square Error (RMSE). Once the
network 1s trained it 1s tested using test data patterns and
the efficacy 1s judged on the basis of %MAE (Mean
Absolute Error). In this applied work on feed forward
neural nets extensive studies have been carried out to
choose the best combination parameters of conventional
learning algorithm on the convergence rate of the learning
process. Using the property of function approximation of
neural networks, the arc maintenance conditions on ice-
covered insulators can be expressed as a nonlinear
function in terms of the three independent variables the
leakage current, msulator length and along air gap. The
network weights can be adjusted offline to get the
network model by providing a set of traimng patterns then
applying the well known algorithm, back-propagation, to
adjust these weights so the output of the network a given
input matches its corresponding target. We have written
a script file using the powerful MATLAB 6.5 software
(neural network toolbox) and the Levenberg-Marcuardt
algorithm for training which is a modified baclk-
propagation algorithm with adaptive learning step and
momentum which have a very significant effect on the
convergence rate (Demuth and Beale, 1998).

The algorithm 1s summarized as follows:

Step A: Give the traimng set (mnput/target) pairs,

Step B: Pre-processing: Input/Output normalization.
Step C: Feed forward Neural networl construction: Create
a neural network structure (mumber of layers, number of

neurons, activation function).

Step D: The training parameters (learning rate, momentum
coefficients iterations)

Step E: Traimng.
Step F: Simulation of the networl.

Step G: Then test the generalization of the net by
supplying new data as input to the network then compare
with the desired output.

RBF neural network model and learning procedure:
Radial Basis Functions (RBF) are the simplest class of
functions. Theoretically they can be used in different
models (both linear and non-linear) and different networks
(multilayered and single-layered). Traditionally the term
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Fig. 5: RBF architectural Neural Network

‘RBF-networks’ 1s associated with radial basis functions
in single-layered networks with the structure as shown in
Fig. 5.

The RBF neural network 1s different from BP with
sigmoidal activation functions utihizing basis functions in
the hidden layer, which are locally responsive to input
stimulus. These hidden nodes are usually implemented
with a Gaussian kemel. Each hidden node m an RBF
neural network has a radially symmetrical response
around the center vector and the output layer is a set of
linear combiner with weights. A common learning strategy
1s to randomly select some network input vectors as the
RBF centers, effectively fixing the network hidden layer.
The weights in the output layer can then be derived
by using the least-squares (I.5) method. However,
performance of the RBF neural network critically depends
upon the chosen centers, which may require an
unnecessarily large RBF network to obtain a given level
of accuracy and cause numerical 1ll-conditioming. The OLS
learning procedure chooses appropriate RBF  centers
one-by-one from the traiming data until a satisfactory
net-work is obtained, greatly reducing the network size
(Freeman and Saad, 1996). The RBF network has a
topology  of one-hidden-layer. The input and output
dimensions of the network are denoted by and
respectively and is the number of hidden nodes. Each
output node is a linear combiner defined by:

Migien,

fl(X):i(IJJHXfCJH.B (10)
j=1

Where XeR™ is an input vector CeR™ are RBF
centers, H H denotes the Euclidean norm and 6; are

weights the nonlinear @(.) has a radially symmetric shape.
Although there are a variety of choices, the Gaussian
function was chosen in this study.

That 1s
or) exp(Y—Z] an
(]

Where 0 15 a real constant and O(y)—0 as y—o
The overall input-output mapping of the network is

FOO: RMR™

The method cannot guarantee adequate performance
owing to the requirement that the centers should suitably
sample the mput domam. The OLS leaming procedure
Eq. 14 was proposed m this paper to select centers so that
adequate and parsimonious RBF networks can be derived.

While Eq. 10 delineates the input-output relationship
of the RBF network, the OLS procedure can be
implemented by introducing an error term and Eq. 10 can
be rewritten as:

d,(X) = 2 @ [x-cle,+ e iae, (12)
j=1

Where d; 15 the 1 th node value in the output layer.

The task of network learning is to choose appropriate
centers C; and determine the correspending weights 6 ;
based on a given set of training inputs and outputs. To
avold nonlinear learming, the RBF centers are to be
selected from training data and it 13 a problem of subset
model selection. The full model 13 defined by considering
all of the tramming data {X(1),.....(N)} as candidates for

centers. Using matrix form, Eq. 11 can be expressed as

D =0HE (13

The parameter matrix ® can be solved by using the

Least Squares (L.S) principle. An  orthogonal
transformation can be performed by de composing ®©

O =W.A (14)

Where

W= {wl, ... Wy) (15)

wW,o=W. 1#] (16)

Eq. 13 can be rewritten as
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D=W.G+E (17)

With orthogonal least squares (OLS) solution

S e e Sin,

And the 1.8 solution satisfies @ the triangular system
ABO=C (19

The standard Gram-Schmidt method may be used to
derive A and G. Thus can be solved from Eq. 19.

Since the error matrix E 1s orthogonal to W, the error
reduction ratio due to can be found by:

g T
err], = 2 MWy
[ ]k { ;gb J trace (DT D)

Based on this ratio, the significant regressors can be
selected by OLS m a forward regression procedure. At the
kth step, a candidate regressor is selected as the kth
regressor of the subset network if it produces the largest
value of [err], from among the rest of the N-K+1
candidate. The selection is terminated when

1<k<N (20)

lfni [eIr]k<p (21)

Where 0{p{1 is a chosen tolerance.

In the context of a neural network, the OLS learning
procedure chooses the radial basis function centers C,,
ST Cy as a subset of training data vectors X (1), X
2),....XMN)

Where nth<N, which may greatly reduce the network
size. The centers are determmed one-by-one mn a well-
defined manner, following the Gram-Schmidt
orthogonalization procedure until a network of adequate
performance 1s constructed.

The process of sampling data for training and testing
will be introduced. Basing on some set of experimental
‘input-output’ data, under complete uncertainty as to the
form of possible functional dependence between input
and output data an attempt 1s made to guess this
dependence: nonparametric regression, function fitting,
prediction .....etc, of V,=f ([, L, x). In neural networks it is
called supervised or associative learning. It means that
every sample of the traimng set contains independent

variables (inputs) and corresponding dependent variables
(outputs). The goal of the leaming is reduced to
optimizing 1n accordance with some criterion the
parameters of the system that does the required ‘mput-
output’ transformation. Tn our case we choose the integral
square error criterion for the given training set can be
used for this purpose. For this algorithm«OLS orthogonal
Least Square», our choice therefore fell on the kernel
Gaussian seen its characteristic asymptotiques. Radial
basis functions can be related to kernel density functions
used to estimate probability density functions which
depends on parameters of tlus last one and the size of
available samples. Our judgement is left at the time of
the application of these estimators. Let’s retumn to the
RBF-network adjustment. If we presume that the
parameters of function (bias ¢ and radius r) are fixed, 1.e.,
are already some how defined, then the problem of finding
the weights and how to choose a number of neurons in
the hidden layer in order to minunize the integral square
ITOr.

RESULTS AND DISCUSSION

Using the test method mentioned above, the arc
maintenance condition is the minimum applied voltage for
maintaining an arc burning steadily across the air gap can
be determined by analyzing the waveforms recorded by
the Data Acquisition System (DAS). Once the arc was
established, V was reduced and when a certain value was
reached, the arc extinguished and the leakage current
tended to zero. The peak value of V in the last half cycle
before arc extinction, at t,, 1s the arc maintenance voltage,
V., (Fig. 6).

In this investigation Va = f(x, L, I) medelling has been
attempted based on ANN istead of any empirical
approach. The proposed ANN modelling has been carried
out using 84 input/output data sets collected from the
simulated test CIGELE laboratory model. Out of 84 data

[ &)
1
b e

PR ——r
——— e

e

Fig. 6: Typical waveforms of voltages and leakage current
versus Time
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Table 2: Normalization schemes.

Scheme

No. Input Output MAE (%)
1 Max Max 512
2 Max Max min 4.97
3 Max Mean and ST 3.66
4 Max min Max 4.60
5 Max min Max min 9.04
6 Max min Mean and SD 5.66
7 Mean and SD Max 6.85
8 Mean and SD Max min 2.85
9 Mean and SD Mean and SD 2.91

Table 3: The effect of different values of and on the convergence rate of the
learning method

n o MAE (%)
0.2 0.7 6.75
0.2 0.8 4.30
0.2 0.9 5.40
0.25 0.7 2.95
0.25 0.8 3.34
0.25 0.9 2.85
0.3 0.7 6.38
0.3 0.8 6.33
0.3 0.9 4.41
0.35 0.7 5.21
0.35 0.8 4.18
0.35 0.9 4.47
0.4 0.7 5.09
0.4 0.8 3.34
04 0.9 4.77

Table 4: Calculated %MAE for different numbers of nodes in hidden layer
No. of nodes in hidden laver MAE (%)
4.59
323
2.85
8.46
9.54

MOO00 ~1 O LA

Table 5: The effect of numbers of hidden layers on the convergence rate of
the training process.

No. of No. of nodes

hidden layers in hidden layers RMSE MAE (%)
1 7 0.0743 2.85

2 .7 0.0199 1919
3 7,77 0.0197 26.06

Table 6: Optimized parameters for ANN

ANN parameters Optimized parameters
Input-output patterns 31

Input Normalization Mean, SD
Output normalization Max, Min
Learning rate 0.25
Momentum constant 0.9

Hidden layer 1

Nodes in hidden layer 7

sets, 74 sets of input/output patterns are used as traiung
data set in training process and 10 data sets were
selected as test data patterns and not included in the
traiming set. The ability and efficiency of ANN to model
the arc mamtenance voltage condition was gauged basing
on the percentage of Mean Absolute Error (%MAE)
between the test and predicted data. The scaling of the

input and output data has a significant effect on the
convergence of the learning process. To avoid saturation
of the sigmoidal activation function, the input and output
parameters must be scaled and normalized to withun O
and 1. Nine normalization schemes were tested by
(Ghosh et al., 1995). For the conventional learning
algorithm with the choice of recommended combmation
n = 025 and ¢ = 0.9 can yield good results for most
problems (Rumelhart e# al., 1 986) and seven hidden layers
nodes, (Table 2). The number of iterations used in the
traiming process 1s 1000, It was found that for mput
parameter normalized referenced to the mean value and
standard deviation (Mean, SD) reading and the output
parameter normalized according to Max, Min yielded the
best % MAE at about 2.85%.

Most works on feed forwards neural nets use
constant values of leaming rate 1 and momentum
constant . But there is still no consensus as to what
these values should be used in the learming process;
rather, the optimal values of 1 and @ may be problem
dependent. In this research, 15 combinations of and were
studied and the resultant % MAE for each combination
was determined. It 1s evident from Table 3 that the best
2MAE 1s obtained with for 1= 0.25and ¢ = 0.9.

The number of nodes in the hidden layer was also
varied in this optimisation process. In this study different
numbers of hidden layer nodes were studied and it was
found that a net with 7 nodes m the hidden layer yield the
best MAE as indicated in Table 4.

Table 5 compares the effect of number of hidden
layers on the convergence rate of the traming process. It
found that using one hidden layer has better effect on the
convergence rate than when two and three hidden layer
nodes.

The optimized parameters found for is the arc
maintenance voltage conditons On  Ice-covered
Insulators given leakage current, air gap length and
insulator length as input can be summarized as in Table 6.

Moreover, experimental and modeled data of the arc
maintenance voltage conditons On  Ice-covered
Insulators V., using the best combination of ANN
parameters, are plotted against leakage current T for
different air gap length x and msulator length L in Fig. 7.

The modeled output of the test data computed with
the help of the best combination of modifiable parameters
are tabulated in Table 7 against the target output, that 1s,
the 3 selected test data. The mean absolute error %MAE
of the model output 1s found to be 2.85%.

Several experimental procedures and methods,
proposed various empirical mathematical models by
applying regression analysis to the test results and there
were some different conclusions suggested by different
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Table 7: Comparison of Actual against Computed test data

Parameters Actual Computed
Air gap length = (cm) 36 36
26 26
16 16
Insulator length L (cm) 206 206
259 259
161 161
Leakage current T (A) 0.4 0.385
0.45 0.435
0.05 0.048
Arc maintenance voltage V, (kV) 255 254.56
180 177.13
145 144.06
MAE (%%) 2.85%

researchers. The will need to established on a realistic
approach to generate this problem by RBF neural network

measured with the adjustment of OLS parameters; based
on minimization of the mean absolute error.

The ability and efficiency of ANN to model the arc
maintenance voltage condition was gauged basing on the
percentage of Mean Absolute Error (%MAE) between the
test and predicted data.

For the adjustment of Parameters OLS, we took the
following parameters:

A base of 84 data tests, with maximum number of
neurons is 18 and the number of neurons to add between
displays 1s 24.

Step (a) kernel Gaussian

Step (b) Given them are standardized on [0, 1] and center-
reduced by the average and the standard deviation of the
base of training.

Step (¢) It receiving field is taken equalizes to 0.98.

Step (d) Tt criterion of stop of Akaike with seuil 0.01.

A number of test results we are simulated and
analyzed. This algorithm is employed in the traming
process; it i1s found that the ANN modeling 1s very
effective and accurate.

The traming accuracy of ANN is measured with the
help of Root Mean Square Error (RMSE). Once the
network is trained it is tested using test data patterns and
the efficacy is judged on the basis of “%MAE (Mean
Absolute Error). In this applied work on feed forward
neural nets extensive studies have been carried out to
choose the best combination parameters of conventional
learning  algorithm on the convergence rate of the
learning process.

Simulation results of the trained RBF networks for
modeling AC arc maintenance on iced-covered msulators
are presented m Figure 8. It was found that the RBF neural
networks model can be trained using a random set of data
collected from CIGELE tests using training procedures
with OLS algorithm are fast and the accuracy of the
trained models with a %eMAE of 1.90% was achieved.

CONCLUSIONS

This study presents the use of radial basis function
networks for AC arcs mamtenance modelling to predict
the flashover on iced-covered insulators. It has shown
that an RBF neural networks model can be trained faster
than a multilayer feed forward BP. It has also been shown
that the proposed RBF neural networks with OLS
algorithm have satisfactory level of accuracy to recognize
the arc maintenance voltage conditions on ice-covered
insulators basing on insulator parameters, air gap length
x, insulator length T. and leakage current T have been
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established. Modeling of the complex non-linear function
V, =f (%, L, 1), the equation which is unknown, has been
successfully accomplished. Furthermore the effectiveness
of RBF medeling a system from any unknown relationship
is measured with the adjustment of OLS parameters;
based on minimization of the mean absolute error %MAE.
The model simulates the experimental results quite
accurately and allows reliable applications to optimize the
AC arc maintenance voltage conditions on ice-covered
insulators.
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