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Abstract: In 1950, Szasz proposed a generalization of the well-lknown Bernstein’s polynomials extending it to

the infimite interval. Many authors such as, Hermann in 1977, studied its use in the approximations of functions
on an unbounded mterval. The actual construction of the Szasz-Mirakjan Operator, say S,(fx), requires
estimation per infinite series, which apparently restricts its practical usefulness from the computational point-of-
view. In 1980, Grof introduced “Modified Szasz-Mirakjan Operator” which was a finite “partial sum’ curtailment
of 5,(f;x) and studied it. In 1984, Heinz-Gerd Lehnhoff, in particular, proposed for f and x € C [0, 1] another

‘Modified Szasz-Mirakjan Operator’: S (f;x) = [e-nxkin{(nx)k k13 f(k/n)] - We have proposed and studied a

statistically motivated improvement of the Lupas Operator modified analogously. The study 1s supported and
illustrated by the following empirical simulation study aimed at bringing forth the potential improvement

numerically for some standard types of function.
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INTRODUCTION

There has been an intermittent interest in polynomial
approximation following Weierstrass (1885). For the
readers not much aware of polynomial approximation, it
might be a deswable orientation for this study to be
perused with the references: Carothers (1998 and 2000),
Grof (1980), Hermann (1977), Hedrick (1927), Lorentz (1986)
and Weierstrass (1885). For the similar orientation for a
numerical analysis and computing context, helpful
references would be Cheney and Kincaid (1994),
Hartley and Wynn-Evans (1979) and Polybon (1992). In
the context of this study Szasz (1950) proposed the
following generalization of the well-known Bernstein’s
polynomials extending it to the infinite interval:

S, (fix) = [e_"xi{(nx)k /K1 (k/n)], for all fe C,[0,00]

k=0
Heinz-Gerd (1984), in particular, proposed Modified
Szasz-Mirakjan Operator’

3,.x)= [i T/ n))/[exp(nx)], forf € C[0,1],x e C[0,1]

k=n

Where T, = (e)%k!, Yk =0,...n.

Several Modifications of Lupas Operator have been
proposed and studied, e.g. by Sahai and Prasad (1985).
Motivated by the above modification, we have proposed
analogously, though slightly differently, a Modified
Lupas Operator’, as follows:

ML[n]= E( PR Ak + n)/i( PR (1)
k=0 k=0

The aforesaid “Modified Tupas Operator’ ML [n] will
approximate the function f (x) using its values at the
‘knots” m the mterval [0, 0.5]. Therefore, if we approximate
the function f (2x) in the interval [0, 0.5], virtually we
would be able to approximate the function f (x) in the
interval [0,1].

Further, we have proposed and studied, in what
follows, a computerizable “Tterative Algorithm” with the
motivation of having improved approximation by the
aforesaid operator “ML[n]”, using the same ‘information’,
namely, the values of the function at the stipulated
“knots’.

Corresponding Author: Angela Shirley, Department of Mathematics and Computer Science, The University of the West Indies,

St. Augustine, Trinidad and Tobago

1798



J. Applied Sci., 6 (8): 1798-1801, 2006

MOTIVATING OBSERVATION AND
THE ITERATIVE ALGORITHM

Before we take to the detailing of the ‘Tterative
Algorithm’ for improved approximation by our ‘“Modified
Lupas Operator, ML[n]’, we observe the motivating fact
seminal to its proposition. Whereas, all the approximating
polynomials are concerned with the Knots and the weight
functions defined over these knots; none of them
completely uses the mformation available about the
unknown function (targeted for the Approximation),
through the known values of the function at these knots.
Such
constructing/modifying the weight function, possibly
gainfully.

In fact, as per the Statistical Perspective, such an
wnformation should be used gainfully m all the Estimation
Problems, And the Approximation Problem is an

information could well be wed in

estimation problem per this perspective, as we are
essentially estimating the unknown function through our
weight function, defined at the chosen Knots for the
approximation operator, at hand.

In fact, if we particularly confine to the polynomial
approximation by Positive Linear Operators, we could well
observe the fact that the weights being interpretable as
probabilities, in the context of using the Operator, say
O (D)(x), the desirable/well known Statistical Property of
Asymptotic Unbiasedness ensures that the Mathematical
Expectation (the value
approximating polynomial, namely the estimate O,(f)(x)

‘on an average’) of our

must approach the function, as the number of knots used,
namely n becomes very large: E{O,(£)(3)} —1(x), as n —ee.

In the above context and using the aforesaid
Statistical Perspective of the approximation bemg an
estimation problem, the estimated error could well be
mterpreted as the estmated Bias. As such, therefore, 1f we
adjust this bias, to keep the estimate better, we are not
only ensuring the asymptotic unbiasedness of the
estimate, but we are eventually accelerating the
asymptotic convergence of the approximating polynomial.
This very desirable attempt has been seminal to the
proposition of our Tterative Algorithm, targeting at
umproving the approximating polynomial.

This will be feasible, inasmuch as we would be
reducing the Hrror in approximation at each iteration,
using the currently available estimate of the error to bring
the approximating polynomial closer to the (unknown)
function.

Now, we denote Error by E and we have:
E(x) = ML[n](£)(x)- f(x).

However, E(x) is unknown inasmuch as f(x) is so.
Therefore, essentially we have to estimate it and we do so
by wusing the same Modified Lupas polynomaial
ML[n](f)x). The only difference, apparently, would
consist in the fact that we have E in place of f and
analogously the values of this unknown Error Function
E(x) are readily available through the difference between
the Known and the Estimated values of the function at
these knots: (l/n), respectively.

Hence, if we define the resultant estimating
polynomial (apparently of degree n, at the most) by
E[n](f)(x), (keeping in mind implicitly that ML [n](f)Xx) is the
approximating polynomial, without complicating the
notations by explicit incorporation of this fact in our
notation), we have:

E[n](f)(x) = ML[n]{ML[n}(D)-} )
= ML[nJ(D(x)-ML[n](£)x).

Also, as we use this polynomial as an Estimated Bias
and proceed with the correction, the resultant Tmproved
Lupas approximating polynomial, at the first go/iteration,
say 1(1) ML [n](f)(x) will be:

1) ML[nJ(£)(x) = ML[n]()(x)- B[n](H(x)
=2 ML[n]())(x)-ML[n](f)(x)
= [I- (I-ML[n]yY(D)(x) (2)

Apparently, if we proceed exactly analogously for the
Improved Lupas’ Approximating polynomial at the second
iteration, we will be led to

1(2) ML[nJ(£)(x) = (1) ML[n](£)(x)
- ML[n]I(1) {ML[n]()(x) - ()}
=2 ML[n](f)(x) - ML[n](H(x)
-2ML[n{(H)(x) ML [n[(H(x)
AML[nJ(H )
=3 ML[n](f)(x) - 3 ML[n](D)(x)
AML[J (D)) = [T - (I - ML) ()(x) (3)

Thus, m general, if we proceed exactly analogously
for the Improved Lupas approximating polynomial at the
kth iteration, we will be led to:

T(k) ML[n]()(x) = [T - (T - ML[n]*")))(£)(x).
k= 0(1).... ()
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Now, we note that whereas it is intractable
analytically to assess the achieved improvement in
Approximation by the Modified Lupas Operator ML[n]
through the aforesaid Iterative Improvement Algorithm,
we resort to an Empirical Simulation Study to have the
numerical flavor of the goodness of the Algorithm, as
m the following section. It could well be noted that
the Algorithm 1s evidently Computerizable for its
execution.

THE EMPIRICAL SIMULATION STUDY

To illustrate the gain in efficiency by using our
proposed Tterative Algorithm of Improvement of Modified
Lupas Polynomial Approximation, we have carried out
an Empirical Study. We have taken the example-cases of
n=24,7and 10, l.e,n+1=3,5 8and 11 as knots ) in
the empirical study to numerically illustrate the relative
gain m efficiency in using the Algorithm vis-d-vis the
Modified Lupas Polynomial in each example- case of the
n-value.

Essentially, the empirical study is a Simulation
Empirical Study, because we would have to assume that
the function being tried to be approximated, namely f(x)
(by taking f(2x), as detailed in the first section in the
paper: the reason being that it will then be approximating
the function f(x) i the interval [0,1], {the standard
‘Conventional” mterval for the ‘Approximation of the
function f(x)"} )being known to us.

Once again, we have confined to the illustrations of
the relative gain in efficiency by the Iterative Improvement
to the approximation of the following four illustrative
functions in the interval [0, 1]:

f(x) = exp(x), In(2+x), sin(2+x), 107

So that for our purposes, as detailed n the ‘First’
section of the paper our target fimctions in the proposed
“Empirical Simulation Study” would be:

f{2x) = exp(2x), In(2+2x), sin{2+2x), 10*

These would be approximated in the interval
[0, 0.5] by the Modified TLupas Operator ML[n] and
subsequently also approximated by using the
Computerizable Tterative Improvement Algorithm

To illustrate the POTENTIAL of improvement with
our proposed Iterative Algorithm, we have considered
THREE Iterations and the numerical values of four
quantities, namely three Percentage Relative Errors (PRE)
corresponding to our Improvement Iterations (# =1, or 2,

or 3), (PRE I(#)ML[n]) and the Modified Lupas
Polynomial (PRE ML[n]). Also, we consider the
corresponding three Percentage Relative Gains (PRG) by
using our Proposed Iterative Algorithmic Modified Lupas
Polynomial subsequent upon the approxunation by
Modified Lupas Polynomial, (PRG_I(#ML[n]; # = 1(1)3).
Now, these quantities are defined, as follows.

The Percentage Relative Error using Modified Tupas
polynomial with n intervals in [0, 0.5], i.e., [(k-1)/(Jctn-1),
k)] = 1(1)n:

1jf(x)dx - jML[n](f)(x)dx
PRE ML[n]=" L

1

[ixax

»x 100

The Percentage Relative Error usmg Improvement
Iteration; I # 1, or 2, or 3 on Modified Lupas Polynomial
using n intervals in [0,0.5], ie [(k-1)/(Jtn-1), k/Jctn)];
k=1(1)n:

[£x)dx — [ 1ML dx
PRE I(#ML[n] =" .
[tixdx

%100,

#=1Lor2or3

The Percentage Relative Errors respective to the
Modified Lupas Polynomial and respective to the First,
Second and the Third Algorithmic Tmprovement Tteration
Polynomials have been tabulated respectively, for each of
the examples and the number of approximaton
Knots/Intervals. Also the Percentage Relative Gains by
using the proposed Algorithmic ITmprovement Tteration: I#
(e.g. 1, or 2, or 3) Polynomials with the n intervals in [0,0.5]
over using solely the Modified Lupas Polynomial for the
approximation of the (targeted) function, f, are given in the
Table (1-4).

Table 1: Algorithmic improvement efficiency [f(x) = exp(2x)]

n —e

Model + 2 4 7 10

PRE ML[n] 15.718293  9.948736 6.537999 4.906638

PRE I(1H)MIL[n] 6943140 4.169742 2.602362 1.894311

PRE I(2)ML[n] 5.769793 3.096123 1.831332 1.311473

PRE _I(3)ML[n] 5.611988 2.483332 1.491115 1.058251

PRG I(1)ML[n] 55.827644 58.087722 60.196350 61.392862
PRG I(HMIL[n] 63.292493  68.879235 71.989408 73.271436
PRG I(3HML[n]  61.296452  75.083714 77193106 78432242

1800



J. Applied Sci., 6 (8): 1798-1801, 2006

Table 2: Algorithmic improvement efficiency [f3) = sin(2+2x)]

n —
Moadel # 2 4 7 10
PRE_ML[n] 22281402 14.074188 9.269027 6.947331
PRE I{1)ML[n] 10.053345 5.819850 3.388898 2.320825
PRE I(2)ML[n] 7.910855 4157418 2.157609 1.428652
PRE I{3)ML[n] 7.575087 3.120199 1.562034 1.103813
PRG I(1)ML[n] 54.880106 58.435612 63.438490 66.464455
PRG I{DML[n] 64.495705 70.460689 76.722383 79.435963
PRG I(3)ML[n]  66.002647 77.830342 83.147814 84.111693
Table 3: Algorithmic improvement efficiency [fix) = In(2+2x)]

0 —p
Model * 2 4 7 10
PRE_ML[n] 10.339364  6.108482 3.762205 2.718718
PRE I{1)ML[n] 4.333963 1.541269 0.605614 0.413721
PRE I()ML[n] 1.669836 0.508464 0377975  0.204215
PRE I{3)ML[n] 0.666215 0.424826 0.322721 0.235773
PRG I(1)ML[n] 58082882 74.768375 83.902698 84.782484
PRG I{DML[n] 83.849719 921.676101 89.953352 89.178170
PRG IG)MLI[N] 93556521  93.045316  91.421747 91.327775
Table 4: Algorithmic improvement efficiency [f(x) = 10 %]

n —p
Model * 2 4 7 10
PRE ML[n] 27.062782  20.03825 14.809442  11.890574
PRE _I(1)MLI[n] 20.109165 13.322666  8.853231 6.639897
PRE I{2)ML[n] 19.713509  10.512656 6.616282 4.837491
PRE_I(3)MLI[n] 19.051423  8.919115 5.588074 3.418436
PRG I{1)ML[n] 25.694391 33.513807 40.219013  44.158311
PRG I(2)MLI[n] 27156384 47.537041 55323897  59.316392
PRG I{(3)ML[n] 20.602866  55.480542  62.266820  71.250871

RE ML[n]-PRE I(#ML[n]

PRG _I{(#)ML[n] = d PRE ML[n]

=100,

#=1Lor2or3

CONCLUSIONS

These aforesaid Seven numerical quantities have
been computed using Maple V Release 3, for all the four
illustrative functions mentioned in the preceding Section
3, for four values of n, namely n = 2,4,7 and 10. These
values have been given in Table (1-4). Table 1-4 contain
these quantities when the function f(x) has been taken as
exp(2x), In(2+2x), sin(2+2x) and 10%, respectively.

The Percentage Relative Error (PRE’s) for our
Algorithmic Iterative Polynomial Approximations are
PROGRESSIVELY lower with each subsequent iteration,
as compared to that for the Modified Lupas Polynomial
Approximation, for all the illustrative functions.

Consequently, the Percentage Relative Gams (PRG’s)
due to the wse of our proposed Algorithmic Tterative
Polynomial Approximations vis-a-vis the Modified Lupas
Polynomial  Approximation are also increasing
PROGRESSIVELY with each subsequent iteration, for all
the illustrative functions.
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Lastly, it is very heartening to note that when we use
TEN (n 10) intervals, i.e., ELEVEN KNOTS for
polynomual approximation, Percentage Relative Gamn (PRG)
becomes quite sigmificant for third iteration. Otherwise
also, the speed of convergence is highly accelerated by
the Tterative Algorithmic improvement in the Modified
Lupas Polynomial, using the statistical perspective
reducing the Bias in the Estimator/Approximating
Polynomial. Tt is worth noting again that the Modified
Lupas Operator is nothing but the weighted average of
the data, 1.e. the known values of the unknown function
fat the n +1 knots.
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