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Abstract: Fermentation 1s a complex phenomenon well studied which still provides challenges to brewers. In
this study, artificial neural network, precisely multi layer perceptron and recurrent one were utilised for
modelling either static (veast quantity to add to wort for fermentation) or dynamic (fermentation process)
phenomena. In both cases, the simulated responses are very close to the observed ones with residual biases
mferior to 4.5%. Thus, ANN models present good predictive ability confirming the suitability of ANN for

industrial process modelling.
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INTRODUCTION

Fermentation processes are among the more
challenging ones to control, due to the complexity of the
biological raw materials and the use of yeast as
processing agents (Linko, 1998). Brewing, that is the most
well studied processes in food domain, occurs according
two main phases: wort production and fermentation
(Trelea et al., 2004).

The wort production starts with crushing the malt
into coarse flour, which is then mixed with water. The
resulting porridge-like mash is heated to a selected
temperature that permits the malt enzymes to partially
solubilize the ground malt. The resulting sugar-rich
aqueous extract, wort, is then separated from the solids
and boiled with hops. The wort 18 then clarified and
cooled. The main fermentation process starts with
aerating the cooled wort and inoculating yeast to it. The
yveast consumes the nutrients contained in wort for
growth. At the same time, the yeast produces alcohols
and other compounds (CO,, esters, acids, etc.). This first
phase called primary fermentation occurs during around
a week. It is followed by a secondary fermentation, or
lagering phase, where some undesirable compounds are
further converted. Most of the yeast i1s recovered once
the main fermentation ends and is re-used in another
batch (Marin, 1999).

Nevertheless, although well studied, the process still
provides challenges to brewers, particularly for industrial
scale fermentation. Thus, the ability to predict the
duration of the fermentations or to detect fault would be
useful (Gopal ez al., 1993; Johnson et al., 1998), in order to
make corrective action.

The purpose of this study is to monitor an industrial
scale fermentation using artificial neural networks, that are
mathematical estimator based on biological neural network
functioning. Their use in increasingly complex dynamical
control systems under sigmficant uncertainty is very
attractive. The main reasons are their ability to learn to
approximate functions and classify patterns. During the
last decade, application of artificial neural network in
identification and control has been increased
exponentially (Hunt ef al., 1992; Widrow and Lehr, 1990).
The wide spread of application has been due to the
following attractive features:

» Artificial neural networks have the ability to
approximate arbitrary nonlimear functions;

¢ They can be trained easily by using past data
records from the system under study;

¢ They are readily applicable to multivariable systems;

»  They do not require specification of structural
relationship between input and cutput data.
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The artificial neural networks are often viewed as
black box estinators, where there 1s no attempt to mterpret
the model structure (Ungar ef al., 1996).

MATERIALS AND METHODS

Two aspects of brewery;, yeast inoculation and
fermentation are considered. Indeed, brewery occurs
correctly when the yeast added to wort are m sufficient
quantity and good quality (viability and vitality). In
mdustrial scale, this phase, badly performed can cause till
71.20% (Traore, 2002) of non conformity (cells quantity
different to the admitted one), leading to time and
economic disadvantages. The study firstly propose to
control this phase and secondly to model the fermentation
process.

Inoculation step: In order to momitor correctly moculation,
using neural network, the variables studied were:

*  Yeast quantity (Y) mn kg to add to wort

¢ Compacity C (yeast concentration for a defined
volume m Cells mL ™)

«  Wort volume (V) in hectolitre;

¢+ Wort mean density (D).

*  Imtial yeast population P, : Two imtial populations
were studied (beer A: 32.10° cells mL ' and beer B:
40.10° cells mL.™)

These variables were followed for two kinds of beers
(beer A and beer B). Concerning the former, two tank
volumes (1.e., 1400 and 2300 hL) were studied, while for
the later only one tank of about 650 hl. was used. The
purpose was to find out a function linking the different
variables: Y =f(C, P,, V. D). A multi layer perceptron with
an architecture 4-3-1, as presented by Fig. 1, was used.

Data set, from industrial brewery (417 individuals),
was divided into three subsets: Traimng subset (50% of
records), cross-validation subset (25% of records) and the
test one (25%) used for future calculations. The training
subset 13 used for computing and updating the network
welghts and biases. The emror on the validation set 1s
monitored during the training process. The validation
error will normally decrease during the mnitial phase of
training, as does the traimng set error. However, when the
network begins to overfit the data, the error on the
validation set will typically begin to rise. When the
validation error increases for a specified number of
iterations, the training is stopped and the weights and
biases at the mimmum of the validation error are returned.
This method for improving generalization 1s called early
stopping (Widrow and Lehr, 1990; Sudheer and Jain,
2004). The test set error 13 not used during the tramning,
but 1t 15 used to compare different models.

Y .
Fig. 1: Feedforward multi-layer perceptron
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Fig. 2: Recurrent multi-layer perceptron

Fermentation control: In order to assess the learming
machine method in the prediction of fermentation, a
recurrent feed-forward network, whose structure was 4-4-4
(4 nodes in mput layer; 4 in the lidden one and 4 1n the
output layer), as shown in Fig. 2, was used to control the
industrial scale fermentation.

Parameters as, alcoholic production rate (%), wort
density, suspended yeast quantity (cells mL™") and pH
were considered.

Data used in this study, were recorded daily.
Therefore, the sampling time was 24 h. Fach day, 20
fermentation batches were studied. As mndicated earlier,
data were divided mto three subsets.

The training was performed using a back propagation
algorithm provided by Matlab R14 (MathWorks Inc,
Natick, Massachusetts, USA) software.

In both cases (inoculation step and fermentation
control), artificial neural network calculations were
repeated 150 times and the best result was stored.

RESULTS AND DISCUSSION

Yeast quantity prediction: Analysing the Table 1, it
appears that weights differ according to the volume of the
tank concerned and the type of beer. Thus, for instance,
when tank volume 1s 2300 hL, weights range from -1.294 to
1.972, whereas weights concerming volume of 1400 hL
vary from -1.870 to 2.323 in hidden layer. In addition,
biases that are a neuron prediction error are in all cases
different to 0.
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Table 1: ANN weights matrices

Product type and volume Node number Bias Weight

Beer A

W T V=1400hL Hidden layer
4 -0.5276 0.6655 -0.5296 23232 -0.2427
5 -0.4727 0.9956 -0.7957 0.1241 -0.0249
3] -1.8881 0.2577 -1.8702 -0.9623 -0.5081
Output layer
7 -0.6909 0.1421 -0.3667 -0.2271

Beer A

WTV=2300hL Hidden layer
4 1.4165 -0.4207 0.2693 -0.6477 0.6265
5 0.6401 -1.2943 1.9724 1.3162 0.2777
[ -1.8538 -1.2031 1.2977 0.0414 -0.3692
Output layer
7 0.1333 -0.0983 0.7326 0.6573

Beer B

W T V=650hlL Hidden layer
4 -1.8204 1.5446 0.0809 -0.3203 0.5667
5 -1.1290 1.6552 -0.9559 0.2625 0.1539
3] -1.9810 -0.5763 0.7444 0.5352 -0.2891
Output layer
7 0.9668 0.3165 0.5430 0.0170

W T V: Wort tank volume
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Fig. 3a: Regression plots of the models for Bear A with
a tank volume of 1400 hL
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Fig. 3b: Regression plots of the models for Bear A witha
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Fig. 3¢: Regression plots of the models for Bear B with a
tank volume of 650 hL

The weights obtained with ANN method do not
represent the strength (impact) of a variable in response
determination. Indeed, before traimng step, weights are

randomly mitialised. During traiming, they are sequentially
adjusted till a mimimal final prediction error. It 1s a reason
why ANN methods are classified in the so-called black-
box methods. The training error obtained ranging from
7.6107°10 3.17.107", is very low, indicating therefcre the
good ability of the model to estimate accurately the
quantity of yeast to add to wort. In order to confirm or
infirm this assertion, predicted values are represented
according to experimental ones (Fig. 3a-c ). It appears that
determination coefficients R? are superior to 0.965. This
coefficient is an indicator of the less or good accuracy of
prediction. Indeed, more its value is higher more the
response predicted values are closer to the experimental
ones. The highest R?> value is obtained when the tank
volume is 1400 hl, (0.989). These results point out the
relative good ability for prediction of artificial neural
network (ANN) models with correlation coefficients
higher than 0.982 (square root of 0.965). The mean
prediction error was estimated to around 1.73%.

The processing of these same set of data by using a
logarnthmic model led to a prediction error ligher than
20% (Traore, 2002).

Fermentation control: The validity of the model obtained
15 hghlighted by Fig. 4a-d, respectively for alcohol,
density, suspended yeast and pH evolution. On all these
figures, is represented a fermentation example (randomly
chosen) that was not used for training the identification
of the model coefficients.

The ethanol production (Fig. 4a), lower m the first 24
h increases slowly till at 96 hours where it increases
exponentially to reach a value of 3.7% at 192 h and then
remams constant. This third phase 13 marked by a plate
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Fig. 4a: Ethanol (%) as a function of time
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Fig. 4b: Wort density as a function of time
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Fig. 4c: pH as a function of time
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Fig. 4d: Yeast quantity as a function of time

around 3.72%. Therefore, the ethanol production appears
generally as an S like curve. When comparing the

predicted and observed ethanol values, it appears that the
ethanol production is predicted reasonably well with a
mean bias of 3.99% (Table 1). But, at 120 and 144 h,
mismatch between predicted and observed values appears
more clearly. These discrepancies can be explained by the
fact that ANN models were developed taking account the
scatter of the experumental data; several fermentation
batches were used for modelling. On Fig. 4b, depicting the
wort density evolution, it appears contrary to alcohol one,
that when this later proportion is lower, the wort density
15 higher and vice-versa. Indeed, alcohol being lighter
than water, its presence m the medium reduces the
wort density. In addition, during fermentation, sugar is
consumed by micro-organisms for alcohol and CO,
production. The comjugated action of both phenomena
{decrease of sugar and the alcohol increase) decreases the
wort density. Therefore, density evolution during
fermentation process appears to be a reverse S function.
This parameter (wort density) is also well predicted with
a mean prediction error of 3.43%.

Concerning pH values (Fig. 4c¢), as the wort is acidic,
they start around 5.8 This acidity increases during
fermentation decreasing consequently the pH till a limit
value sensibly equal to 4.4. This pH decrease 1s related to
the production of organic acids (i.e., lactic, acetic and
tartaric acids) by S. cerevisae uvarum during fermentation
process. Figure 4d analysis shows that biomass evolution
can be decomposed in 4 phases, with the 3 first already
found with other parameter evolution. Indeed, it is
observed a first phase during which yeast number remains
constant around 75.10° cells mL™": the lag-phase. After 72
h, the second phase 13 characterised by an exponential
increase of suspended yeast number that reaches, at
120 h, 178.10° cells mL " active phase. In the third phase,
the yeast quantity remains static and fails m the fourth
phase to 40.10° cells mL ™. These different phases were
already extensively described in literature: the lag-phase
during where micro-organisms adapt themselves to the
culture medium; the active phase or exponential phase
during which the yeasts multiply in an exponential way,
consuming sugar and producing alcohol. The decrease of
yeast number in suspension is due to their fall down in
fermentation tank confirming therefore, the lower
fermentation type of S. cerevisae uvarum. As shown
earlier, in this parameter (i.e., suspended yeast) case, the
prevision obtained is also good. The residuals between
observed and predicted values (from 0.003 to 4.51%),
inferior to 5%, can be negligible.

The global analysis of prevision depicted in
Fig. 4 a-d points out the good ability of ANN models for
prevision. Indeed, the ANN models obtained give values
very close to the observed ones, whatever the parameter
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concemed. Therefore, they permit a quite precise control
of industrial scale fermentation process. Thus, one can
predict, for example, the end of the process when knowing
the imitial conditions (wort sugar content, mitial yeast
population, so on and so for). In addition, if in the
calculations a limit constraint is introduced, one can
detect fault m fermentation process, a fact that will be
very useful in non-quality reduction.

CONCLUSIONS

This study aimed to determine the quantity of yeast
to add to wort for brewing purpose, respecting the beer
type constraint (e.g., initial population of yeast). This
determimation depends also of other parameters like wort
volume, yeast compacity. It was proved elsewhere that, in
industrial scale, non conformity can reached 71.20%.
Thus, the control of this important step prior fermentation
18 IeCesSary.

The Artificial Neural Network (ANN), precisely the
Multi Layer Perceptron (MLP), used for this purpose, has
shown their ability to predict the quantity of yeast to
moculate with error less than 1.73%. In addition, plots
between simulated values and observed ones show
determination coefficients R? higher than 0.965, confirming
the suitability of ANN for static phenomenon modelling.

In the other hand, a recurrent ANN was used to
control the fermentation process. The mathematical
models obtained enable the prediction of alcohol quantity,
wort density, pH and suspended yeast quantity evolution
with error inferior to 4.5%. Therefore, these sigmoid
functions can permit the determination of end of
fermentation when knowing the initial conditions.
Moreover, they can enable fault detection during the
Process oceurring,
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