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Abstract: The study presents a Fault Detection and Isolation (FDI) scheme with a particular emphasis placed
on sensor fault diagnosis in nonlinear dynamic systems. The non-analytical FDI scheme 1s based on a two-step
procedure. Two methods are proposed for the first step, called residual generation, one use fuzzy sets and the
second neurcnal network. A fuzzy neural network performs the second step, called residual evaluation. Some
simulation results are given for efficiency assessment of this fault diagnosis approach.
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INTRODUCTION

The problem of Fault Detection and Isolation (FDI) 1s
a crucial issue for the safety, reliability and performance
of industrial processes.

The FDI procedure consists basically of two main
steps: generation of residuals which should be useful
fault indicators and residual evaluation which involves
decision making.

The model-based FDI approach also referred to as the
analytical approach, which has
attention, use mainly state and parameter estimation
techniques (Benloucif and Mehemmaow, 1992; Benloucif
et al., 1998; Frank, 1990; Patton and Chen, 1997). The
main drawback of the analytical approach is the
requirement of an accurate model for reliable diagnostic
decision (minimum rate of missed detections and
false alarms).

A fundamental aspect in the design of model-based
methods 15 thus concerned with the problem of
robustness with respect to model uncertamties arising in
the form of modellng errors and unknown external
disturbances. As far as linear systems are concerned, the
problem of robust residual generation may be considered
to be mature (Benloucif and Staroswiecki, 2002; Franck,
1990, Patton et al, 1997) whereas the FDI problem for
nonlinear dynamic systems has been investigated to a
lesser extent (Garcia and Frank, 1997; Tiang et al., 2001 ).

Alternately, FDI can be performed using qualitative
technmiques such as expert systems, fuzzy logic, neural
networks (Alexandru et al, 2000, Benloucif and
Staroswiecki, 2002; Chen and Lee, 2002, Evsukoff et al.,
1999; Frank, 1994; Isermanry, 1998; Schneider and Frank,
1996; Theilliol et al., 1997).

recelved Intensive

In (Benloucif and Mehennaoui, 2002), a fault
diagnosis  procedure for linear systems used a
combination of an analytical residual generator (a Kalman
filter) and a fuzzy neural networl for residual evaluation.
This paper extends this work to the nonlinear case. The
main difference 1s the problem of the identification of
non-linear model. On the other hand, we know now the
capacity of fuzzy systems (Hellendoorn and Driankov,
1997) and neural network (Norgaard ef al., 2000) to
identify nonlinear systems.

Once the model is obtained, a neural network
performs the decision-making, which consists m detecting
and isolating a fault when it occurs. This neural network
coupled to a fuzzy inference block acts as an on-line fault
classifier.

RESIDUAL GENERATION

There are several different approaches to modelling
of complex nonlinear systems. The main distinction can be
made between global and local methods.

In this study, we present the two approaches: Neural
network in the global approach and fuzzy sets in the
local one.

The residual generation procedure is depicted in
Fig. 1.

Residual generation by fuzzy sets: The fuzzy sets
methods use partitioning of the process domains into a
number of fuzzy regions. For each region m the mput
space, a rule is defined that specifies the output of
model. The rules can be seen as local of submodels of
the systems. The rules used, here in this paper, are
Takagi-Sugeno (T5) rules that give as result locally
nonlinear submodels.
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Fig. 1: General procedure of residual generation

Takagi-Sugeno model: The affine Takagi-Sugeno (TS)
fuzzy model consists of rules R, with the following
structure:

R Ifx1s A then
antecedent

yi=ax+bi=1,2,.,K (1)
consequent

where x€XcR" 18 a crisp mput vector, A 1s a
(multidimensional) fuzzy set: L (x): X—(0, 1), v, € Ris the
scalar output of the 1 th rule, a € R*1s a parameter vector
and b, 1s a scalar offset. K 1s the number of rules in the rule
base.

Given the outputs of the mndividual consequents v,
the global output y of the TS model (1) 15 computed using
the weighted (fuzzy) mean formula

¥ =2 B0y YR @

Here [3,(x) denotes the degree of fulfilment of the i th
rule’s antecedent, 3, = ().

For building fuzzy models from data, generated by
poorly understood dynamic systems, the input-output
representation is often applied. The most common
structure 1s the NARX (Nonlinear AutoRegressive with
eXogenous input) model.

In terms of rules, the model is given by

R; Hy(k)is A and y(k-1)is A, ...and
yikn+1)is A and u(k) is B ; and u(k-1) is (3)
B;and ...and u(k-n,+1) is B, , then

$k+1)=Ya, ylk—j+ 1)+ b, uk —j+1)+¢,

j=1 j=1

where k denotes discrete time sample, n, and n, are
mtegers (fixed by the user) related to the system’s order
and a, b, ¢ are consequent parameters. The NARX model
can represent MISO systems directly and MIMO systems
in decomposed form of a set coupled MISO models.

By choosing the structure of the model, the
identification problem 1s transformed mto static nonlinear
regression y = F(x). The model input x 1s called the
regressor, the output y is called the regressand and
the product space of the regressor and the regressand,
Z = (X xY)<R"1s called he regression space, where n = p+1
is the dimension of this space. Recall that p is the
dimension of the regressor vector x. In this space, the
equation y = F(x) defines a hypersurface (subspace of the
dimension RF), which is called regression surface.
Geometrnically, the consequents of the affine TS model (1)
can be seen as hyperplanes mn the regression space. By
means of the antecedent fuzzy sets, the regression space
18 partitioned mto smaller regions, m which the regression
surface can be locally approximated by these hyperplanes.
The purpose of identification is to find the number,
locations and parameters of the hyperplanes, such that
the regression surface is accurately approximated. This 1s
achieved by applying a class of fuzzy clustering methods
called subspace clustering algorithms. In this study, the
Gustafson-Kessel (GK) algorithm’s 1s used.

Gustafson-Kessel (GK) algorithm: First, we have to
construct a matrix Z, of data to be clustered. This 1s
achieved by concatenating a matrix containing the
regressions vectors in its columns and a vector
containing the regressands.

As an example, consider a SISO system for which a
set of N measurement 1s available:

S={(ykul)yrk=1,2, ... N}
Postulating, for instance, a second order NARX

structure, y(k-+1) = F(y(k), y(k-1), ulk), u(k-1)), the data set
for clustering is constructed as:

y(Z) y(3) yIN-1)
y(l) y(2) y(N-2)
Z=lu2) ul) u(N-1) 4)
u(ly u(2) u(N-2)
y(3) y4) y(N)

The first four rows contaimn the regressors and the last
row the regressand. The vector in the k th column of the
matrix 7 will be denoted by z,.

The set of vectors 7,k =1, 2,..., N will be partitoned
into ¢ clusters, represented by their prototypical vectors
vi= (Vi ...,V €ERS1=1,...c

Denote V € R "*° the matrix having v; in it’s column.
V is called the prototype matrix. The fuzzy partitioning of
the data among the ¢ clusters is represented as the fuzzy
partition matrix UeR™ whose elements denoted 1, € [0, 1]
are the membership degree of the data vector z, inith
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cluster. A class of clustering algorithms search for the
partition matrix and the cluster prototypes such that the
following objective function 1s minimized

HZ:V,U) :ii(ui,k)m d*(z.v,) (5)

i=l k=l

subject to the following constraints

Yy =Lk=1..N (6)
i=1

N
0<Yu, <N=li=L..c (7)

k=1

In (5), m>1 is a parameter that control the fuzziness of
the clusters. The usual setting with m = 2 1s suitable for
most applications. The function d(z, v,) 1s the distance of
the data vector z, from the cluster prototype v,. The
constraint (6) avoids the trivial solution U = 0 and the
constramnt (7) guarantees that clusters are neither empty
nor contain all the points to degree 1.

The optimization problem defined by the functional
(5) subject to the constraints (6) and (7) can be solved by
different nonlinear optimization techmques. The most
popular one 1 the so-called fuzzy c-means algorithm
(Bezdec et al., 1987). Gustafson and Kessel extended the
c-means algorithm for an inner-product metric norm

d*(z,,v,)=(z, —v, )" M,(z, —v,) (8)

where M, ia appositive definite matrix adapted according
the actual shapes of the individual clusters, described
approximately by the cluster covariance matrices F,

2(“‘1_1; )m (Zk A )(Zk -V )T
_ k=l

i ©)
Z(“‘l,k )

E

The distance inducing matrix M is calculated as the
normalized inverse of the cluster covariance matrix

M, =det(E ) E™ (10)

In the iterative optimization scheme of the GK
algorithm below, the subscript (1) denotes the value of a
variable at the | th iteration.

Gustafson-Kessel fuzzy clustering algorithm: Given the
data matrix Z, choose the number of clusters 1<c<N, the

weighting exponent m>1 and the termination tolerance
0. Initialize the fuzzy partition matrix U" randomly, such
that 1s satisfies the conditions (6) and (7).
Repeatfor1=1,2,...

Step 1: Compute the cluster prototypes (means):

il
Dz,
vk 1<i<e (11
>
k=l

Step 2: Compute the cluster covariance matrices

N
1- 1 1
Z(Mf_kl))m (Zk - Vf ))(Zk _Vi())T
_ k=1

N
PR
="

F d<i<e (12)

Step 3: Compute the distances:

1
&}, = (z, v [detE P E iz, —vP), (13)
1<i<¢cl1<k <N

Step 4: Update the fuzzy partition matrix:

ph =1/ (d , /d,, Y™ 1<i<c 1<k <N (14)

1=l

ifd,=0forsomei1=s,setp,=landy,=0vi#s
until HU(‘) _yen H <e

This algorithm simply loops through the estimates of
the cluster centres V, the covariance matrices F and the
fuzzy partition matrix U. We explain, now, how to derive
fuzzy models from these matrices.

Estimation of consequent parameters: There are several
methods to obtain the consequent parameters. Simnce the
model should serve as numerical predictor, we use the
global least square approach, whuch gives the least
prediction error.

In order to obtain an optimal global predictor, the
aggregation of the rules should be taken into account.
When using the fuzzy mean defuzzification (2), which is a
convex linear combination, a global least squares problem
can be solved to obtain the consequent parameter
estimates.

The membership degrees B3, = n.(x,), representing
the degree of fulfilment of the i th rule of each data point,
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can be obtained from the fuzzy partition matrix U. Recall
that each row of U contamns a point-wise defimition of
the membership function for the data in the product space
Xx Y. In order to obtain the membership function A, in the
regressor space X, the 1 throw of U, denoted Uy, must be
projected onto regressor space

Bi,k =proj :1:1 (u (1)) (15)

where proj(.) is the point-wise projection operator.

The result of the projection step 1s that a set of data
vectors with repeated regressors x, are assigned the
maximum membership degree from this set. in order to
write (2) ina matrix form for all data (x,, i), 1 <k<N, denote
B, a diagonal matrix m R™ having the normalized
membership degree v;as its k th diagonal element. Finally
denote X’ the matrix in R™™ composed from matrices
produces of B, and X, as:

X =[BX); BX) .. (BX)][ (16)
Denote 6 the vector in R**"" given by
6°=10,"6,....,6]" (17)
where 6,= (3, b)) for 1 <i<ec.

The resulting global least square problem X*(07)=y
has the solution

6 = [CO)X XYy (18)
From (17) the parameters a and b; are obtained by

a =[0

1

a0
b, =16, kq=0-1ip -

U

(19

Deriving antecedent membership functions: The fuzzy
partition matrix u projected onto the antecedent space
defines the membership functions point-wise, for the
available data. In order to obtain a prediction model, the
antecedent membership functions need to be expressed in
a form that allows one to compute the membership
degrees for any mput data. This can be achieved by using
an inverse of the distance function of the clustering
algorithm 1n the antecedent product space.

The degrees of fulfilment of the rules are computed
by evaluating the distance fimction, Eq. (8), only for the
regressor x and the regressor part of the cluster prototype
v, using the corresponding partition of the cluster
covariance matrix

F=[fl.1<ij<p (20)

The inner product norm then measures the distance
of the antecedent vector from the projection of the cluster
center to the antecedent space. Then the inner product
norm can be evaluated as

dix,, v =(x —v*) F(x —v]) 21)

and transformed mto the membership degree (degree of
fulfilment), using some kind of inversion. One possible
choice is to use the same formula as in the clustering
algorithm

1
Bi (x,)= E
k M ldx,, v/ dix,, vie (22)

which takes into account all the rules and computes the
degree of fulfilment of one rule relative to the other rules.
the sum of the membership degrees also equals one as
with clustering, hence v, = B..

Summary of the identification procedure. The
identification procedure can be summarized m the
following steps:

Step 1: Design identification experiments and collect a set
of representative measurements.

Step 2: Choose the model structure, Eq. (3)
Step 3: Cluster data by using GK algorithm.

Step 4: Generate the rules by computing the consequent
parameters and the antecedent membership functions.

Step 5: Validate the model.

Residual generation by neural network: Tt is relevant to
use the high potential of neural networks for nonlinear
system modelling in the context of fault diagnosis of
nonlinear dynamic systems. The most commonly used
neural network architecture is the multilayer perceptron
(MLP) network (Norgaard et al., 2000).

Its implementation goes through the following steps:

s+ Off-line construction of a database using expert
knowledge of the process characteristics under
different operating conditions.

¢ Selection of the neural network structure: The
NNARX model is recommended (Chen and Lee, 2002;
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Fig. 2: Two-layer neural network

Norgaard et al., 2000) when the system under
consideration is deterministic or weakly noisy. The
NNARX model may be represented by the general
form:

y(k) = glok)) (23)

the regression vector and the nonlinear function
@ ) =(yk-D.yk-n,ulk—d. uk-d-m)) 1is the
regression vector and the nonlinear function g can be
realized by a suitable MLP network.

A multivariable NNARX model can be adequately
imnplemented as a feedforward two-layer perceptron
network having one hidden layer and an output layer as
shown in Fig. 2.

The vector ¢p(k) of delayed outputs and inputs of
the system 1s applied to the network inputs. (n,,....n,
m,,...,m,d) are the structural indices also referred to as
the lag space of the neural model. The mput delay d 15
generally taken as one.

The hidden layer includes a sufficient number nh of
sigmoid units (nh must be specified experimentally) and
the output layer contains linear units.

W= (W1 W2) is the weight matrix relating the inputs
to the ludden layer units and 7 1s the weight matrix
relating the hidden layer units to the output units.

The neural network outputs are given by:

¥l :ufl(iz,]h](k)ju z,)i=1...n (24)
h, (k) = 0,03 W, (k) + w,, )i =1, (25)
1=1

where j are sigmoid type activation functions and 1\, are
linear type activation function and (w;,, z,) are the biases.

Network training: The network weights and biases
(randomly initialized) are adjusted using a suitable
minimisation algorithm of the following mean square error
criterion;

E, :§2<y(k) —SE) vk -y (26)
k=1

where N 1s the length of the tramning data set. The
Levenberg-Marquardt algorithm is recommended to use
as pointed out in (Norgaard et al., 2000).

Network validation: In this stage the resulting neural
model is evaluated to decide for its adequate
representation of the system. This is done by testing the
trained network using a data set different from the one
used for traimng. If the trained network 1s judged
unsatisfactory after the validation tests then it is
necessary to go backwards in the procedure by retraining
the network with different weight mitializations, or by
generating additional training data, or by modifying the
network structure (by redefining the regression vector
and the number of hidden units).

As m the case of residual generation by fuzzy sets, all
these steps are accomplished off-lme. When the neural
networl is validated, it may be utilized for online residual
generation.

RESIDUAL EVALUATION

The task of residual evaluation can be achieved by a
fuzzy neural decision scheme (Alexandru et al., 2000,
Benloucif and Mehennaoui, 2002) as represented in
Fig. 3.

A fuzzy neural network is based on the association of
fuzzy logic mference and the learming ability of neural
networls. The fuzzy neural approach is a powerful tool for
solving important problems encountered in the design of
fuzzy systems such as: determining and leamning
membership functions, determimng fuzzy rules, adapting
to the system environment. The main points of the
residual evaluation procedure are described below:

Residual fuzzyfication: It consists in converting the
numerical values of residuals into linguistic variables.
Each mput (residual) may be described by three linguistic
variables (Negative, Zero, Positive). Each linguistic
variable 1s represented by a membership function, which
has generally a triangular or trapezoidal shape. The
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Fig. 3: Neural fuzzy decision scheme

Fig. 4: Example of RN used for residual evaluation

lingwistic variable zero defines the range where the
residual may be considered to be unaffected by a fault.
The linguistic variables Negative and Positive define the
residual amplitude ranges indicating the presence of a
fault. The corresponding membership functions give the
extent to which a residual is or is not affected by a fault.

Neural network structure: For fault diagnosis, it is
desirable to use a neural network to model the nonlinear
relationship between the fuzzyfied residuals and the fault
decision functions. A multilayer perceptron network is
therefore a good candidate. Moreover, to account for
memory i the decision process it 1s necessary to use a
recurrent neural network (RNN). The RNN may be
umplemented as a NNARX model described by:

D, (f) =gi(plk) 27

Dyf)1=1...n; are the fault decision functions also
referred to as fault indicators and fi are the faults acting
on the process. The regression vector ¢(k) contains the
fuzzy residuals Rj(k) j = 1.n, and the delayed decisions
D, (fy1=1...nf Because of the feedback introduced, the
recurrent NNARX model may be realized by a three-layer
MLP. Thus 1s illustrated by the example given m Fig. 4,
which shows a residual evaluation scheme processing
three residuals (11, 12, 13) to diagnose three faults (f1, {2,
f3).

The corresponding neural network has the following
architecture: an input layer with 12 units representing all

possible states of the fuzzy residuals together with the
past decisions, a hidden layer having 4 units and an
output layer with 3 units each assigned to a decision
function. The use of this RNN architecture ensures
reliable dynamic decision-making (Alexandru ez al., 2000,
Benloucif and Mehennaoui, 2002; Evsukoff ez al., 1999).

Training: Prior to on-line use, network training is
performed for all possible fault scenarios. During training
a residual pattern corresponding e.g. to fault f, is applied
to the network input and a one is assigned to the
corresponding output. The network weights are then
adjusted by an appropriate algorithm thus enabling the
neural networlk to learn the imposed input-output pattern.
The wse of the back propagation algorithm is
recommended (Evsukoff et al., 1999). The ultimate goal of
the training is to achieve the extraction and selection of
the necessary parameters defining the if-then inference
rules.

NUMERICAL RESULTS

Simulation results are next presented to assess the
capacity of this diagnosis approach based on neural and
fuzzy techniques to detect and isolate sensor faults in a
nonlinear process. The nonlinear process considered here
is composed of three identical tanks having section Q,
connected in series by a pipe of section g, with outlet at
height H. The system outputs are the three tank levels
y, = h; i=1... 3 satisfying the condition h,>h,>h,>H=>0.

This system is governed by the following nonlinear
differential equations:

b, =-b- h17h2+(%g)-u
h, =b-Jh, —h, —b-fh, —h, (28)
h,=b-y/h, ~h, ~b-y/h,-H

b=—3d__ q=0196m’ Q=78.54m’ H=3m.gis the
Q28

gravity constant and u = 1.222 m’ sec™" is the constant

input flow. This simulation study is carried out with a

sampling time Ts = 10 sec and with initial conditions:

h,,=69m,hy=55m, h,=4.3m.

1

Method using fuzzy sets

Residual generation: The structure of the fuzzy model 1s
selected by using the insight in the physical structure of
the system as follows:

Output 1: n,y, =1, n,,= 1, n,,, =0, u;= 1
Output 2: n;, = 1, n,,= 1. 0,5, =1, u,,= 0
Output 3: n,;, = 0, n,5,= 1. 0,5, =1, 1= 0
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Table 1: Cluster centers (output 1)

Rule vi(k-1) yalk-1) u
1 7.87 6.12 1.23
2 8.91 6.93 1.22

Table 2: Cluster centers (output 2)

Rule yik-1) yolk-1) yak-1)
1 8.18 6.36 4.66
2 8.91 6.94 4.97

Table 3: Cluster centers (output 3)

Rule ¥alk-1) yak-1)
1 5.99 4.46
2 6.92 4.96

As example, the degrees selected for the output 1
state that the level h; depends on hl, h2, u, but not on h3
(Eq. 28).

The number of clusters 1s ¢ = 2, then the number of
rules are also 2. The fuzzy TS models obtained are:

Output 1:

Ry Ifyk-1)1s Ajand y,(k-1) 158 Apanduis A,
Then y,(k) = 0.96 y,(k-1 +0.05 y,(k-1)+0.13u-0.07
Ry Tfy, (k-1) is Ay and yo(k-1) is Ay anduis Ay
Then v1(k) = 0.97 y,(k-1+0.04 y,(k-1+ 0.12 u-0.08

The cluster centers are regrouped in the Table 1
The antecedent membership functions obtained are
represented by the Fig. 5.

Output 2:

Ry If v(k-1) is Ay and y,(k-1) is Ay, and ys(k-1) Ts Ajs

Then v,(k) = 0.035 v, (k-1) + 0922 v,(k-1) + 0.05 y,(k-1)-
0.002

Ry Ifyk-1)is Ay and yAk-1) is A and yik-1) is A

Then y,(k) = 0.037 y,(k-1)4+0.926 v,(k-13+0.036 y.(k-1)
+0.006

For the second output, the cluster centers are
summarized in Table 2 and the antecedent Membership
functions: They are depicted by the Fig. 6.

Output 3:

Ry Ify,{le-1) is Ay and yo(k-1) is Aj;. Then
yy(k) = 0.03 y,(k-1)+0.907 v,(k-1+0.144
Ry Ky, (k-1) 18 A and yy(k-1) 15 A, Then
yi(l) = 0.04 v,(k-1)+0.920 y,(k-1+0.121

For the third output the cluster centers are
summarized in Table 3 and the antecedent Membership
functions are depicted by the Fig. 7.

After validation, this NNARX fuzzy model is used to
generate the residuals: rk) = vi(k)-yi(k)1=1...3. In normal
operation, the residuals are near zero as shown in Fig. 8.
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Table 4. Inference table

N° N, Z; P N, Z, P, Ny, Z; Py Dy D, Dy
1 0 1 0 0 1 0 0 1 0 0 0 0
2 0 0 1 1 0 0 1 0 0 1 0 0
3 1 0 0 0 0 1 1 0 0 0 1 0
4 1 0 0 1 0 0 0 0 1 0 0 1
5 0 0 1 1 0 0 0 0 1 1 0 1
6 1 0 0 0 0 1 0 0 1 0 1 1
7 0 0 1 0 0 1 1 0 0 1 1 0

Residual evaluation: The linguistic variables describing
the fuzzyfied residuals are defined by the following
Membership Functions (MF):

* Nt negative residual with trapezoidal MF,
»  Z:zero residual with triangular MF,
»  P: positive residual with trapezoidal MF.

The membership functions for each residual are given
below:

Résidu 1; N, =(-0.5-0.4-1¢-3-8¢-4),
7,= (-1e-3 0 le-3), P,= (0.5¢-3 5¢-3 2.5 2.5)

Résidu 2: N, = (-1-0.6-9¢-3-3¢-3),
Z,=(-5¢-3 0 5e-3),P,=(le-34e-311)

Résidu 3: N;= (-1-0.5-le-3-6e-4),
= (-8e-4 0 le-2), P,=(.5e-2 1e-2 1.5 2)

The RNN used in this simulation study is shown in
Fig. 4. Its training is based on the rules summarized in
Table 4, which have been obtained after many simulation
tests.

The learning operation realized by the back
propagation algorithm converged after 3266 iterations
with a mean square error E = 0.001.

Sensor fault diagnosis of the three-tank process: Various
simulation tests have been performed in order to validate
the efficiency of this diagnosis scheme and the results are
quite conclusive. For illustrative purposes only two fault
scenarios summarized in Table 2 and 3 are discussed.

Case 1: Bias type faults are injected in sensors 1 and 2 as
described in Table 5. The corresponding residuals are
shown in Fig. 9.

The fault f, on sensor 1 affects positively the residual
r, and negatively the residuals r, and r, at time t = 12000 s,
whereas the fault £2 on sensor 2 affects positively the
residual r, and negatively the residuals r, and r, at
time 9000 s.
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Table 5: Case 1

Sensor N° Fault time Fault magnitude
1 12000 0.7
2 9000 0.6

Table 6: Case 2

Sensor N° Fault time Fault magnitude
2 13000 0.3
3 10000 0.5
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Fig. 11: Residuals by fuzzy sets (case 2)
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Fig. 12: Decision functions (case 2)

The obtained decision functions allow to well detect
the faults f; and f, as shown in Fig. 10. It was possible by
use of fuzzytied residuals and the training network
operation,

Case 2: This fault scenario in sensors 2 and 3 is described
in table 6. The corresponding residuals are shown in
Fig. 11.

The fault £, on sensor 2 affects positively the residual
1, and negatively the residuals r, and r, at time t = 13000,
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Fig. 13: Residuals by neural network in normal operation
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Fig. 14: Residuals by neural network (case 1)
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Fig. 15: Residuals by neural network (case 2)

whereas the fault f; on sensor 3 affects positively the
residual r, and negatively the residuals r, and r, at time
t=10000.

As shown in Fig. 12, the fault indicators detect and
isolate successfully the faulty sensors.
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Method using neural network

Residual generation by neural network: A NNARX
model having the architecture shown in Fig. 2 has been
used with the following parameters:

n=n,=n,=-m=1d=1,n,=4mn,=4

Traming of this network was done by the Levenberg-
Marquardt algorithm and the mean square error reached
at 500 iterations is E = 2.36510. After validation, this
NNARX model is used to generate the residuals:

1) = yi(k)-¥(k) i = 1...3. In normal operation, the
residuals are near zero as shown in Fig. 13.

Residual evaluation: Tn this case, the membership
functions are given as follow:

Résidu 1: N1 = (-1-1-0.09-0.085),
71=(-0.1500.15),P1 = (0.050.061 1)

Résidu 2: N2 = (-1-1-0.05-0.040),
72 =(-0.08 00.08), P2 = (0.045 0.0551 1)

Résidu 3: N3= (-1-1-0.04-0.030),
73=(-0.080025),P3=(0150211)

We use the same RNN shown in Fig. 4. Tts training is
based on the rules summarized in Table 4. We notice that
1s the same logic decision for both methods.

Sensor fault diagnosis of the three-tank process:

Case 1: Bias type faults are injected in sensors 1 and 2 as
described in Table 2. The corresponding residuals are
shown n Fig. 14.

We notice that effects of faults on this residuals are
similar with those on the residuals obtained by the
method of fuzzy sets.

Also with this method, the decision functions isolate
the two faults and we obtain the same function decision
shown in Fig. 7.

Case 2: This fault scenario 1s the same as that described
i Table 3. The corresponding residuals are shown
Fig. 15.

With  this method, the faulty semsors are also
1solated successfully and we obtamn the same decision
functions shown in Fig. 12.

CONCLUSIONS

A fuzzy neural scheme for on-line fault diagnosis was
presented. A NNARX model is used for residual

generation. This NNARX model can be obtained either by
fuzzy sets or neural networle. A recurrent fuzzy neural
network performs the residual evaluation task. Fault
diagnosis is achieved by training the network to recognize
the pattern of the fault signatures. Preliminary simulation
results show the efficiency of the developed scheme
for detecting and isolating sensor faults in a nonlinear
system. The applicability of tlus qualitative diagnostic
approach to the case of system actuator and component
faults 13 currently under study.
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