Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Tournal of Applied Sciences 6 (9): 2036-2039, 2006
ISSN 1812-5654
© 2006 Asian Network for Scientific Information

A New Multilevel CPU Scheduling Algorithm

"Md. Mamunur Rashid and *Md. Nasim Akhtar
'School of Science and Technology, Bangladesh Open University, Bangladesh
*Department of Computer Science and Engineering,
Dhaka University of Engineering and Technology, Bangladesh

Abstract: The productivity of a computer solely depends on the use of CPU scheduling algorithm in a multi-
programmed operating system. In this study a new variant of priority scheduling algorithm has been proposed
to reduce the average waiting time as well as the average turnaround time of the processes. Tt is observed that
1 existing priority scheduling algorithm the average waiting time and average turnaround time 1s very lugh for
the processes, which have equal priority. But the proposed upgrading of this study can handle priority-
scheduling algorithm with much more reduced waiting time and tumaround time for the processes.

Key words: CPU scheduling, priority scheduling, burst tume, waiting time, turnaround time

INTRODUCTION

Scheduling is a fundamental operating system
function, sice almost all computer resources are
scheduled before use. The CPU 1s of course, one of the
primary computer resources. Thus its scheduling is
central to operating system design. When more than one
process 1s run-able, the OS must decide which one to run
first. That part of the OS concerned with this decision 1s
called scheduler and the algorithm it uses is called
scheduling algorithm. A CPU scheduler is the part of an
operating system responsible for arbitrating access to
the CPU (Shamim, 1998)

Tn case of multi-programmed operating systems CPU
scheduling plays a fimdamental role by witching the CPU
among various processes. The mtention of an operating
system should allow processes as many as possible
running at all times in order to maximize the CPU
utilization. ITn a multi-programmed operating system a
process 18 executed until it must wait for the completion of
some /O request. In this case the time has been used
proficiently. A number of processes are kept in memory
simultaneously and while one process has to wait another
process occupy the CPU selected by the operating
system (Silverchatz, 2002).

The last thirty years have seen an enormous amount
of research in the area of disk scheduling algorithms. The
core objective has been to develop scheduling algorithms
suited for certan goals, sometimes with provable
properties (Seltzer et al., 1990).

Being the primary resource of a computer system
CPU scheduling has to be designed centrally by an
operating system. A successful CPU scheduling depends

Load store

Add store

Read from file CPU Brust

Wait for 'O L/O Brust

Store increment
Index CPU Brust

‘Write to file

Wit for 'O 1/0 Brust

Load store]
Add store
Read from file

CPU Brust

Wit for 'O /O Brust

Fig. 1: A typical sporadic progression of CPU and I/O
burst

on process execution and /O wait. Process execution
starts with a CPU burst followed by an I/O burst and this
thing happen rapidly. The last CPU burst ends with a
system request to expire execution. Figure 1 shows the
sporadic progression of CPU and /O bursts.

Corresponding Author: Md. Mamunur Rashid, School of Science and Technology, Bangladesh Open University, Bangladesh
2036

J. Applied Sci., 6 (9): 2036-2039, 2006

The study was done at Software Laboratory of
School of Science and Technology of Bangladesh Open
University on December 2005.

CONCEPT OF A CPU SCHEDULER

The task of a CPU scheduler is to pick a process
among the processes stored in the memory that are ready
to execute. For a scheduler the CPU scheduling decision
has to take under the following state of affairs:

¢ When a process switches from the running state to
the waiting state.

* When a process switches from the running state to
the ready state.

* When a process switches from the waiting state to
the ready state.

¢+ When a process terminates.

The success of a CPU scheduler depends on an
algorithm. High-quality CPU scheduler algorithms
again m terms rely on its CPU utilization rate,
throughput, turnaround time, waiting time and response
time (Black et al., 1985).

CONTEMPORARY PRIORITY SCHEDULING
ALGORITHM

Prionty CPU scheduling algorithm decides according
to the assigned priority which of the processes (Highest
priority process) in the ready queue is to be allocated the
CPU. In this case equal-priority processes are scheduled
m FCFS (First Come First Served) order. Here the term
priority refers to some fixed range of numbers such as O to
9 (for 10 processes in the ready queue) or O to 4.095 (for
4.046 processes in the ready queue). Generally low
numbers are used to represent high priority.

For example, let, P, P,... .. P, are the set of processes
1n the ready queue with the following CPU-burst tune and

priority:

Process Burst time (milliseconds) Priority
P 10 3
Py 1 1
Ps 2 4
Py 1 5
P 5 2

So using the contemporary priority scheduling
algorithm the processes can be scheduled as the
following Gantt chart:

| » |

0 1 6 16 18 19

LIMITATIONS OF CONTEMPORARY PRIORITY
SCHEDULING ALGORITHM

Though priority-scheduling algorithm does an
enormous job for allocating the CPU to the processes but
still it has some limitations to mention:

» Indefinite blocking or starvation can happen for the
low priority processes. And this problem can be
solved by the Aging technique.

s If two processes have same priority then the tie can
be broken with FCFS (First Come First Serve) basis.
So the waiting time gradually increased for the equal
priority processes.

Let us consider the following processes with equal
priority:

Process Burst time (milliseconds) Priority

P, 10 2

P, 9 2

P; 1 2

P, 1 2

P 1 2

So the Gantt chart for the above mentioned
processes:
P, P, | P, | P, | P, |
0 10 19 20 21 22

The waiting time for the processes are as follows and

the average waiting time is (0+10+19420+21)/5 = 14 ms.

Process Waiting time (milliseconds)
P, 0
P, 10
P, 19
P, 20
P 21

Again the turnaround time for the processes is as
follows and the average tumnaround time 1s
(10+19+20+21+22)/5 = 18.4 ms. according to algorithm
described in literature (Silverchatz et al., 2002).

Process Tumaround time (milliseconds)
P, 0+10=10
P, 10+9=19
P 19+1 =20
P, 20+1 =21
P, 21+1=22

2037

J. Applied Sci., 6 (9): 2036-2039, 2006

PROPOSED PRIORITY SCHEDULING
ALGORITHM

In our proposed priorty-scheduling algorithm we
have combined the working principle of SIF (Shortest
Job First) scheduling algorithm along with the
contemporary priority-scheduling algorithm. Here one
thing should mention that SIF is a special case of the
general priority-scheduling algorithm. OQur proposed
algorithm works as follows:

Step 1: Assign priority to each of the processes m the
ready queue.

Step 2: Allocate the CPU to the process that has the
highest priority.

Step 3: If two or more process has equal-priority then
{
Allocate the CPU to the process that has shortest
job (mimmum burst time).
i

Step 4: If two or more process has equal-priority and
equal burst time then
{
Allocate the CPU to the processes according to
FCFS (First Come First server) basis.

}

IMPLEMENTATION AND COMPARISON OF
PROPOSED ALGORITHM

To implement the proposed algorithm we have used
a multilevel stable sorting technique. Some commeon stable
sorting technique like Bubble sort, Selection sort etc. can
be used for this purpose (Zahorjan and McCann, 1990).
We have also designed a compare function and swapping
function so that our algorithm can work with multiple
criteria.

Now to show the comparison let consider the same
processes, which have been implemented for the existing

algorithm:

Process Burst time (milliseconds) Priority
P, 10 2
Py 9 2
P, 1 2
P, 1 2
Ps 1 2

So the Gantt chart for the above mention processes
using propose algorithm:

P, P, P,

The revised waiting time for the processes are as

follows and the average waiting time 18 (12+3+0+1+2)/5
=3.6ms.

Process Waiting time (milliseconds)
P, 12

P, 3

P 0

P, 1

P, 2

Again the revised turnaround time for the processes
15 as follows and the average tunaround time is
(22+124+1+243)/5 = 8 ms. according to our proposed
algorithm.

Process Turnaround time (milliseconds)
P, 12+10="22
P, 3Ho9=12
P, o+1=1
P, 1+1=2
Ps 2+1=3
Thus if we consider our proposed priority

scheduling algorithm to that of the existing one then we
find that our algorithm reduce ((14-3.6)/14) * 100 = 74.25%
waiting time for the above mentioned example. The
comparison can be understood well from the following
Fig. 2.

25 o —@— Existing alogrithm ‘Waiting time
—— Proposed alogrithm

& 20+
E 154
& 101
[H]

8 s

0 L] T
P, P, P, P, P,
Process
25 o —4@— Existing alogrithm Turn around time
Proposed alogrithm
5 204
i
E 10+
£
0 T 1 T T 1
B, P, P, P, P,
Process
Fig. 2 Comparison of proposed algorithm with existing

algorithm

2038

J. Applied Sci., 6 (9): 2036-2039, 2006

CONCLUSIONS

From the above experiment and comparison of
proposed algorithm with existing algorithm it 1s clear to us
that the exiting algorithm tasks significantly more time to
execute the more processes listed above 18.5 ms. But
using our algorithm the waiting time as well as the
execution of processes decrease drastically that s,
average turnaround time is 8 ms.

RECOMMENDATIONS

It is recommended that any kind of simulation for any
CPU scheduling algorithm has limited accuracy. The only
accurate way to evaluate a scheduling algonthm to code
itand has to put it in the operating system. Then a proper
working capability of the algorithm can be measured in
real systems. As our proposed algorithm has been
justified with code (In C++ environment) so it can be an
mnovative move in case of CPU scheduling.

REFERENCES

Black, D.L., 1985. Scheduling support for concurrency and
parallelism in the mach operating system. Computer,
23:123-126.

Seltzer, M., P. Chen and J. Ousterhout, 1990. Disk
scheduling revisited i USENIX. Wmnter Technical
Conference.

Shamim, H.M., 1998. Operating system, DCSA-2302.
School of Science and Technology. Bangladesh
Open University, Gazipur-1705.

Silverchatz, G.G., 2002. Operating System Concepts. 6th
Edn., John Wiley and Sons, INC.

Zahorjan and C. McCann, 1990. Processor scheduling in
shared-memory multiprocessors. Proceedings of the
Conference on Measwement and Modeling of
Computer Systems, pp: 12-18.

2039

	JAS.pdf
	Page 1

