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Abstract: In this study Bézer functions have used as displacement functions for frames, shells and solids.
These polynomial shape functions have many mathematic and numerical advantages. The frame, shell and solid
finite elements formed by Bézier functions are developed in p-version finite element method as non-discrete
field. The Bézier parameterization properties treat more easily the geometrical boumdary conditions or elements
connection. The stiffness matrix, mass matrix, stability matrix and load vector of an soparametric element can
be related to the physical coordinates. The conditioning of the stiffness matrix for a frame element and the
stiffness matrix forms of connected elements are presented. The numerical results converge to the exact

solutions in a faster rate than the usual fimte elements using the same number of degrees of liberty. A number

of examples are given for demonstration.
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INTRODUCTION

A great variety of approximation functions have been
used in the last decades for performing geometrical design
and mechanical analysis. Trigonometric and polynomial
functions are the most used ones. Polynomials are a
useful mathematical tools as they are simply defined, can
be calculated quickly on computer and represent an
extraordinary vanety of functions. The first approximation
polynomials are been based on Hermite or Lagrange
functions family, used in the simple or higher order finite
elements.

A new concept of a hierarchical shape functions has
been proposed by Peano (1975) using the Legendre
polynomials. These have the hierarchical and orthogonal
properties of p-order polynomials. Consequently, it is
easy to construct adaptive computations in any finite
element analysis.

The B-Spline functions are used in the analyses
of beam, plate and shell problems. The majority of
these works use a cubic spline functions so called
B3-spline functions (Antes, 1974). It 13 also possible to
expand the shape function into p-degree B-Spline series
(Kagan et al., 1998). A new approach using high — order
of splines with duplication of some knots and called

a non — discrete approach of spline finite element method
15 suggested (Fujiu, 1981). This method accelerates the
convergence of numerical results and treats easily
different geometrical boundary conditions. Tt has been
employed to analyze many static, vibration and buckling
problems of frames, plates and shells successfully.

P. Bézier in 1982 proposed a specific polynomial
curves in computer aided geometric design (CAGD) for
the car mdustry (Demengel and Pouget, 1998). The
definition of Bézier curves or Bézier functions 1s based on
Bemstein polynomials family. A Bézier function of degree
n is defined by a sequence of nt+1 control points blending
with Bemnstein polynomials. It takes full advantage of its
stability when several other polynomials interpolation
becomes increasingly ill-conditioned as the polynomial
degree n increases (Farouki, 1981 and Hermann, 1996).
The Bézier function 1s used most frequently m computer
graphics and geometric modelling; often using the
triangular Bézier patches (Farin, 1997, Barth and
Stuzlinger, 1993).

In this study we describe the mathematical properties
of Bézier functions and theiwr relations with B-Spline
functions. We develop the Bézier functions as the
displacement functions in frames, shells and solids
1soparametric finite elements. The conditioning number of
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the stiffness matrix 1s evaluated and compared to other polynomials approximation. In this study we shall consider only
one-dimensional p-version functions. The stiffness, masses and stability matrix and force vector are developed. The
global matrices and vectors are constructed by a matrix transformation procedure to satisfy displacements compatibility
along the interfaces of elements. Then the Bézier finite element approach is used to solve static, dynamic and stability
problems of frames, shells and solides structures. Several numerical examples prove that a good convergence of the
results 1s obtamed by increasing the Bézier finite element orders.

BEZIER FUNCTIONS

The Bézier functions represent a parametric function. It is written as:

fix) :ipl.Bm,l(x) with x & [0,1] M

1=1

where p, are the control points and B (x) are the blending functions called the Bernstein polynomials of degree (m-1)
with the following forms (Fig. 1):

B, (0=Cl1-0".x)7  i=lm @
where C™' are the binomial coefticients, i.e.,
ol = m-1)__ (m-Dr 3)
- i-1] (m-iDLi-1n

M=1

D1 e e e e

Fig. 1: Typical Bernstein polynomials form = 1,8

The geometrical representation of the first eight derivatives of B, (X) 1s shown m Fig. 2.

M=1 M=2

.

Fig. 2: The first derivative of Bernstein polynomials form = 1,8

The Bernstein functions have the following properties:

*  Nomrnegativity: B (x)20  ¥xe [0,1] (4a)

»  Partition of unity: i B, (x)=1 vxe[0.] (4b)
1=1

*  Symmetry: B, (x)=B__ ,(1-x) v¥xe[0,]] foralli=1m (4c)

» Interpolation: B_,(0)=38  andB_ (1)=38, (4d)
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»  Recursiverelation: B, (x)=(1-x)B_ () +x)B_ _(x) (4e)
*  Uni-modality: Max .. (B_ (X)) occursat x =0 —-1)/{m -1 (4f)
¢ Linear independence: ZIPI-Bm,l(X) =0ec =0 foralli=1,m 1 B 1: (4g)

»  Converting from power basis to Bernstein basis gives .k _ i

k
=g+ M -1
k
d

s Derivatives: &(Bm,i(x)) - m.( B, (x)— qu,l(x)) (41)

Ba, () (4h)

»  Integration: Iﬂl B_ (x)= 1 foralli=1m (47)
: m

Another advantage of the Bernstein form, of much broader significance, is its numerical stability as a representation
for polynomials over finite mtervals.

We note that the Bézier-Bernstein function are also called B-Spline function of Bézier with multiple knots which are
generated by superposing m adjoining knots of B-Splines of order m at the ends (Demengel and Pouget, 1998). We recall
the recurrence formulae proposed by Cox and De Boor for B-Splines practical evaluation (Fujii, 1982):

XX X, —X 5
Np o= N e B0 )
(th—l - x1 (th - XL'H)
starting from the initial value: N, (x)=1forx, €x=x (6)

THE P-VERSION BEZIER FINITE ELEMENT METHOD

Tn the coordinate relationships, the shape function can be specified in local coordinates (£, 1), {) and by suitable
transformations the element properties established m global system (x,v.z). All deformation-displacement, stress-
deformation relations, energy, Jacobian matrix and all representative matrices of an isoparametric finite element are
expressed in the local coordinates corresponding of global coordinates.

Corresponding to a new local interval [-1, +1], then a simple transformation of the Bernstein polynomials is made

m— 1 1 E_’ m—1 1 E_’ 1-1 7
B, (&)= |=-=2] [z+=2 )
ni(®) [ilj(z 2} {2 2]
Thus 1soparametric finite elements of the basic one-, two-or three-dimensional types are presented mto wregular
forms as shown in Fig. 3.

as:

LD 141 G L¥171)

4 . " af DT T
t |
3 — = N et
Jr_g / L:+1) (+1,-1;+1)
]
-1,1) ' (+1,-1) cj“6-1,.1) (+1-1,1)
\YE Ye
w22 @
3 -1
o xef L X
?/___1_\(2)
Z Zg
(a} (b)

Fig. 3: Representation of the isoparametric finite elements in local and global coordinates.
a- One-dimensional element, b- Two-dimensional element, ¢- Three-dimensional element
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The isoparametric frame finite element: In the frame finite element, the axial displacement u, the transverse
displacements v and w and the normal rotation can be expressed at position £ (Fig. 3a). The displacement function {f}
is taken as summation of ‘m” Bernstein polynomials as follows:

iul 'Bmu,l (E_;)

u o u,
. Yv, B, ©) .

=0 e =[Bo. @ Bo® Bo.® Bu.®]] =[N3} )
5 ;WI.BWJ(E_,) 5

1

mZ e1 'Bm6,1 (&)

where (u,v,w,0,) are the displacement-control points to be determined and B, (£), B_, (£), B_.(£) and B_,,(E) are the
Bernstein polynomials corresponding to the frame displacements.

The Isoparametric shell finite element: In the shell finite element, the displacement is defined in local coordinates £ and
1 by membrane displacements u, v and the flexural displacement w (Fig. 3b). The displacement function 13 taken as
summation of “m” Bernstein polynomials by:

33 4B, ©B,,m
w)] | B, (E)B,, M| [0] 0] “
fi=iv =1 XX viiB,, OB, M) = [0] [ B BB, ()] [0] v, | =[N] 48
Y e [0] [0] B (OB, | |7
22 Wy Be (OB, M) : ] ©

where (u,, v,, w,) are the bi-dimensional displacement — control pomts to be determined and B,, (£), B,,(M), B,.(&),
B..,(m), By, (€) and B, () are the Bernstein polynomials corresponding to the shell’s displacements.

The Tsoparametric solid finite element: The u, v and w displacements in the solid finite element are defined in local
coordinates £, n and ¢ (Fig. 3¢). The displacement functions are taken as the summation of “m” Bemnstein polynomials
by:

mu i lu

E 2 2 u1]k 'Bmu,1 (E_')-Bnu,] (T] )-Blu, k (C)

1=1 3=l k=1

u
mv v v
{f} =1V = 2 EE V1Jk 'Brﬂ\u (E—')'an,] (T] )'Blv,k (C) =
W 1=1 =1 k=1

mw nw 1w

E E 2 W1]k 'Bmw_1 (é)BnWJ(n )Blwk (g)

1=1 =1 k=1

[Ba, ©)B,., 1B, (O] [0] [0] u,
= [0] |B,,.(&)B,, MB,, Q] [0] Ve 1= [N]{8}
[0] [0] [ By (B) By B (O] [ W

(10)
where (u,, v,,, W, are the tri-dimensional displacement-control points to be determined and B,,,(€), B,,,(n), Bl

B..2). B,,(m, B0, B,.(&), B,,M) and B, ({) are the Bemstein polynomials corresponding to the solid’s
displacements u, v and w.
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Analysis of structures: In the linear analysis of structures, the static, modal and buckling problems are studied. For
frame, shell or solid 1soparametric finite elements, the stiffness, mass, stability matrices and load vectors can be obtamed
by finite element method using energy principles. Then the typical matrix equations of each analysis are shown as
follows:

Static analysis: [K]-{d} = {F} (1
Modal analysis: ([K]-w*[M])- {8} = {0} (12)
Buckling analysis: ([K]-A-{8} = {0}) (13)

where [K], [M] and [G] are the stiffness, mass and stability matrix respectively. {F} and {8} are the load vector and the
displacement — control points vector. The constant w is the natural circular and 4 is the buckling load vector.

Therefore 1t 1s possible to choose any different polynomaial degrees for the Bezier-Bernstein displacement functions
in each local direction separately.

The details of finite element matrices are given in Appendix.

For the static analysis, the system of equations 1s solved by using banded Gaussian elimmation, without pivoting.
For the modal and buckling analysis, the eigen-value problem is solved using Householder — Sturm sequence and
Inverse iteration method.

APPENDIX

Technical details of Bézier F.E.M.
The Tsoparametric frame finite element: The strain-displacement relationship will be:

aBrﬂU 1 (é) BZBmV 1 (é) aZBmW 1 (E—’) ul
I S "o
{el=1 "= 4 =[B]48)

E’S O O aBmeJ (E_») W1

at 0, (AD)
where v, and z, are the locale coordinates of the frame’s cross-section.
The linear stress-strain relationship is: [o] = o _|E O B [C]{e] (A2)
[} 0 G (=]

where E and G are the Young’s modulus and shear modulus respectively.
Consequently of developing the total energy, the stiffness matrix [K] can be evaluated from:

Al J-+11 BB%“E ) aB“gé © 4] (0] o .
(0] ] aZBgE © angg @ 4 . Fg}]
wl=E 2 2 [0] detJ
[o] 0] LI 9 Bgvg.(é)_ 3 ng](é)_ 4
oo R
| (a3

where A, I, I, and T are the cross-sectional area, flexural inertias and tortional inertia respectively. The Jacobian
determinant det] of frame element is equal to half of its length.
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The load vector for umform loading in a Bézier-Bermstein construction 1s:

[F}=detl] [q. (9B, (0d% [q,©)B,, @ [q,@B,, @d 0]

(Ad)
The load vector for punctual loading 1s:
F1=[ QB Go) QBB QuBl, (&) [01]
{F=[Q.B.. , , ] )
Similarly the mass matrix for a frame finite element with mass per unit volume p is given by:
[B. ©)B,, (B | [0] [0] [0]
M- pA [o] B @B, 2] 0] 99| 4oty (A6)
[0] [0] [Bo, ©)B,, ©)d2] [0]
[0] (0] [0] (0]
The stability matrix corresponding to a longitudinal compressive force Nj is:
[ 9By, (2) 3B, (2) |
{j 5 -dé} [0] [0] [0]
aBmv,1 (E_') aBmv,J (E_»)
[G]=N, [ {j ok 'dé} 1 [°] det]
9B, (8) 9B, )
[0] [0] { | T .d&} [0] A7)
L (0] (0] (0] [0]]

The Isoparametric shell finite element: Tn the membrane-flexural states of shell behaviour, the strain-displacement

equation will be:
T
v aw ) [ aw) [, 9w }
dy.” Jx. dy,

atere 2] (3] (-2

where x,, y; are the local orthogonal coordinates of the finite element to be defined at an appropriate direction.

Tt is necessary to develop the chain rule using a corresponding Jacobian matrix, which can write the relations
between the isoparametric reference system (£,1) and local orthogonal coordinates (x;, v;). We must also establish a
relation between local orthogonal coordmates (x,, y;) and global coordinates (x,y,z).

The linear stress-strain relationships for the membrane and flexural finite element are:

(AZ)

{GM}:[GXX CSyy T'KY]T:[DM]'{E’M}:[DM]'[BM]'{SM} (A9)

{GF}:[MXX My MXY]T:[DF]'{SF}:[DF]'[BF]'{BF} (A10)

The strain matrices [By,] and [B;] are derived by appropriate differentiation of equation (A9) and equation (A10)
using equation (AR) respectively. The matrices [Dy,] and [Dy] are the elasticity matrices defined for membrane and flexural
behaviours respectively.

2339



J. Applied Sci., 6 (11): 2334-2357, 2006

Consequently of developing the total energy of membrane and Kirchhoff’s plate bending, the stiffness matrix [K]
can be evaluated from:

[Ku] I'O]}
K|= : (AlD)
- ! )
The membrane and bending stiffness matrices [K;,] and [K] are defined as:
[Kyl=tf [ [By] [Dy][By] detiEm)dedn
3B g o8 i ,
Pes ] [o.0%00) a "
:t_IHIH E_, an
o 9B,,,() ' 9B,,,()
o] o P m.ef®
[, 0 a, ,
D D, 0 ||la o 0 0
a, 0 a
1D, D0 0 0 o; a,
0 o, o
0 0 D;||la, o o o
|0 a, o -
[ 9B,,,.(5) |
mu,1 ] O
el |
e
det J(EM).dE.dn
[0] PO p )
aE_, nv,]
aB
[0] {Bm_l(é)-““‘]mq (A12)
am ]
j“j” [B, [ [D][B:].det &, m) d&.dn
et [ 9B € | [9B,,® VB | 3By, | [, © 3By, ]
SN H : mm)} [ B ) {B [Bm,@. - } [ e H
[ -’ 2.0, ]
[ acx, aalJ { aa3 J [ aa3 J
= ety —— | | G 2] o — . -
3 om D, D, 0
—a,’ 2a2a4 |D, D 0]_
[ da, aazJ [ B(x4 Bocq { Do, Bocq L0 0 Dy
O~ +t0,— | | Oy, 2 —+d,
at om a& om ES
i —2.00,.00, —2.06,.00 (oo + oy o) |
3B, O |
7T'an,1(n)7
| -’ o 8a1+ doy —at o aa2+ 90, —2.00,.0 ] aBmW"@)B m
1 17& an 2 8 ot 0t an Oy 0y aE Ul
—o’ [ot3 aaz3+ 4%J -’ {aj 8;2+ 4%J —2.00,.0%, Bmw,l(@% det J(E,m).dEdn
72(11&2 2.[&1.%+ 2.%} 20,0 Z[al.aaoé“+ 2%‘:}“] 2.{0,.0, + 0t aj)i {Bmw,i(g).aBgv;J(ﬂ)}
9B, (£) 9By, (M)
I
- - (A13)
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98 | [ m
{al az}_ ax, ox, -
o, o, | g [ -
dy, dy,. (Al4)

where t 13 the thickness of a shell finite element, E is the Young’s modulus and v is the Poisson’s ratio.

The equation (Al4) defines the components of the inverse of Jacobian matrix J. For an isoparametric non-distorted
shell finite element (o, «,, oo, @,) are polynomials of second degree i (£,1) and the Jacobian determinant detT is a
polynomial of first degree.

The load vector for umform or non-uniform surface leading is:

{7} =] [ B, @1, (et SEmydEan |

.4, B,., G)B,, (). det IEmdzdn |
@B @8, mdetiEmdedn] T Al15)

We note that £ is a local coordinate which is perpendicular to the coordinates of the shell element surface £ and n.
The load vector for punctual loading defined in a point with local coordinates (£, 1) is:

{F}:{[Pg-Bm(aU).Bm,J(m)] [P.B,, E)B, M)] [PC.BW,1<&D).BW,J(nD)]} 16

The mass matrix for a shell finite element with mass per unit volune p is given by:

M fo] (o]
M= ol M [o]
CENCINIYS A

The matrices [M,], [M,] and [Mw] are the mass matrices corresponding to the displacements u, v and w
respectively.

M, ]=pt[ [[B,. @B, ] [B,, @B, 0] detIEm.dcdn (Alga)
M, ]=pt] [[B,. B, 0] [B,. B, @] detiEndidn (A18b)
M ]=pt[" [ B, @B, 0] [B,. @B, (m]detiEmnddn (Al8c)

The stability matrix corresponding to a longitudinal compressive stress g, is:

_(alz.Gu,l +
0,06, (G, , +G_ )+ [0] [0]
a,'G,,)
(a’G,, +
[Gal=to, [ [ 0] 0, (G, + Gy y)+ [0] det J(E,m).d%dn
o’ G,,)
(o G, +
[0] [0] 0,.0,.(G,, + Gy )+
i a, "G, ) | (A19)
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The stability matrix corresponding to a transverse compressive stress g, is:

(o’ G, +

a42'Gu,4)

Gy ]=to, [ ] [0]

[0]

o0, (G, + G, )t

[0]
(00, .G,, +

o,.0,.(G,,+G 0+
0"42-Gv,4)

[o]

The stability matrix corresponding to a shear stress T, is:

(o.0,G, +

a,a,G,,)

(G =2t [ [ [0]

where

[0]

o

9B,
[Gual=| 75 By

[Gus]=| Bauu @)

[Gus | =| B ©

(o0, + 0, 000G, +

[0]
(o.0,G_ +

(ot.06, +00,.00,).G, , +

a,.«,.G, )

[0]

[©0]

[0]

(0,°G,, +

a0, (G, + G, )+

a42'Gw,4)

[0]

[0]

(051.01.3.(}\”:1 +

(oo, +0.050G,, , +

oy, G,

[6,,]- P -Bm,Jm):T .[BB%Q@BM(n)}
T._Bmu,xa).aBgn'J(”)_
aBng%(n) _T [ aBg,é ) B, (n)_

det J(E,m).dE.dn

det J(E,m).dE.dn

(A20)

(A2D)

(A22a)

(A2Z)

(A2Zc)

(A22d)

Therefore the orientation of reference stresses o, 0, or T,, must be defined according to the local crthogonal
coordinates (X, y,) of the finite element.
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The Isoparametric solid finite element: In solid element, the strain-displacement equation will be:

{8}’[8 g, € T*a—u & v @‘Fi a_u+a_w a_v+a_w T
=&, ¥ - ny sz sz - ax ay aZ ay ax aZ aX aZ ay

where x. y and z are the global orthogonal coordinates.

Tt is necessary to develop the relations of corresponding 3D-Jacobian matrix [T] and to establish its inverse, which
can write the differential relations between the isoparametric coordinates (£,1,0) and global coordinates (x,y,z). Thus it
will be easy to define the strain vector from the 1soparametric coordinates.

(A23)

w[ou oy ow du v aw ou v ow |
=0T\ =2 == == 5 =~ o % 7 a7 | ~[BH8 (A24)
0 9 9f dn dn am 9L o o
where
% 0 0 a—n 0 0 % 0 0
ax ax ax
B_E_, 0 0 @ 0 0 % 0
ax ax ax
0 0 % 0 0 @ 0 0 a—C
) . ox ox ax
1 00 000000
a—E" 0 0 a—n 0 0 % 0 0
00001000 0fflay ay ay
[A'|.|'J']":000000001_0a—‘go L I S
" 010100000 dy dy dy
001000100, , & o oM o o K
00000101 0 dy dy dy
a—E" 0 0 a—n 0 0 a—C 0 0
0z Jz 9z
0 a—&' 0 0 @ 0 0 % 0
oz oz oz
0 0 g—ﬁ" 0 0 ? 0 0 g£
- “ “ ‘- (A25)
The linear stress-strain relationship for solid finite element is:
T
or=|o, o o, T, T, T, | =|D|{e}=|D|.[B]|{3
{ } [ XX vy zz Xy bié:d vz [ ]{ } [ ][ ]{ } (A26)
The matrix [D] is the elasticity matrix defined for an isotropic material.
Consequently of developing the total energy, the stiffness matrix [K] can be evaluated from:
HopHl pH
[K]=[ [, [, [B] [D][B]detiEn.0)dEdnds
(A27)
The load vector corresponding of self weight is:
|:Bmu,1(&)-Bnu,J(n)'Blu,k(C)JT [O]T |0]T qg
m=1 [o]f (B (9B, B, (O] [o]' 14, r.det 1, 0).dE dn df
[o] [o]' (B, B, B, O] &
(A2Z8)
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The load vector for uniform or non-uniform surface loading may be defined one of the faces of the solid finite
element. For example in the case of loading at a face (£ = -1), we have:

[Bnuj(n)Bluk (Q)JT [O]T [O]T q
£
+1 g+l
F=LL [o] (B, B0 [o]” 14, p-detIm,0).dn.dl
T
[o]" [o]' [BHW,J (ﬂ)-Bm,k(C)} A (A29)
In equation (A29), detJ(n,() 1s corresponding to the 2D-Jacobian of the face loaded of a finite element.
The load vector for punctual loading (P,.P,.P,) defined n a pomnt with local coordinates (£, 0, {,) is:
Bmu,l (&'D )'Bnu,] (nﬂ )'Blu,k (CD )Pé
{F} = Bmv,1(éﬂ)'an,](T]U)'Blv,k(gﬂ)'Pn
BmW,l(E-’D )'an,J (nD)Bka(CD)PQ (ASO)

In the equations (A28-A30), a loading vector (g,.q,.q,) or (PP _P,) defined in global system is transformed in a local
system (qs.q,.q;) or (PP P, respectively by application of a transformation matrix function. Tt is formed by inverse the
1soparametric shape functions.

The mass matrix for a shell finite element with mass per unit volume p 1s given by:

[M,] o] (o]
(MI= o] [M] [o
o] fol (M) )
The matrices [M,], [M,] and [Mw] are the mass matrices corresponding to the displacements u, v and w
respectively.
M= [ B @B, B, O] [B,. @B, M)B,, (0] det iEn. .8 dndg (A324)
M =p [ [T [Bo ®B,, B L0 [ B, BB, M)B,, O | detiEn Ddidndg (A320)
M= [ [ [Bu @B,y (0B, (O] [B,.. (B, B, ()] detJ(EN. .4 dndl A
The stability matrix corresponding to a compression stresses 0, 0., 0, are respectively: )
o, 0]
a, 0
T T T T T T T T | % 0
(Al [A] [A] [0 [ [o] [o]" fol [o] o « o
[Gul=o [ [ 1o (o] [0 [AJ [A] [AJ° [of [of [o] o o o]
[oI" [o [of [ [of [o [A] [A] [A]7]]0 @ O
0 0 o
0 0 «a
L0 0 oy
(AT [o] o] |
[A.]" o] [o]
(A o] [o]
@ o o 0 0 0 o o o] [0 [A] [o]
0 0 0 o o o 0 0 0 [0] [AS]T [0] |detI(Em,0hdEdndl
O 0 0 0 0 o o o [0] [Aﬁ]T [0]
[o] [0l [A[]
o Do) [af s
Clol [l [As]
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o, .
(e 8 0
o, 0
AT (AT (AT [I" [l [oI [T [ [ |0 « o
Gy =o [ o ol o (AT (AT (AT 7 [o] [of o o« o)
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The stability matrix corresponding to a shear stresses T,,, T,.. T,, are respectively:
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aBmu 1(&') aBnu](n) aBlu k(C)
A= - B.. B, €L A, =B, &) ——B, (0, A, =B_, (C)B,, . -
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Results of integration in bernstein basis functions: The numerical integrals appearing in calculus matrices and vectors
are easily performed using directly the algebraic scheme of Bernstein polynomials corresponding for 1soparametric one
dimension finite element. Then it is easy to establish “exact’ integrals results applied in the components of matrices and
vectors. The results of these integrals are as follows:
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The structural analysis programs are written in double-precision floating point with 16 digits.
The stiffness matrix is positive defined. All the matrices are symmetric.

Boundary conditions and general constraints: For simply supported and clamped conditions, one extreme Bermstein
polynomual and two extreme Bernstein polynomial are eliminated respectively whereas none 1s eliminated for the free end
conditions.

In a composed structure, some elements may be connected back to each common interface: a common joint in frames
elements, a commen side 1n shells elements or a common surface 1n selids elements. This commection defines the
continuities of displacements in mterfaces. A transformation of the global stiffness matrix 15 done to satisfy this
displacement compatibility conditions. Consequently the global stiffness matrix form is modified as shown in Fig. 4. Then
the mass matrix [M] and the stability matrix [G] and the load vector {F} are be subjected to the same numerical
transformation.

® ® ©

Fig. 4: Filling of the stiffness matrix before and after connection’s transformation
a-Frame finite elements, b-Shell finite elements, c-Solid finite elements

NUMERICAL EXAMPLES
Initially, a conditioning number analysis 1s done for a simple beam to show a well-conditioned system of Bezier-

Bernstein functions. Numerical solutions for several beams, shells and solids systems with various boundary conditions
are given below to prove convergence.
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Frame finite element systems

Conditioning number of one dimensional p-version
functions: The conditioning number influences numerical
round-off errors of linear problems. Among the various
p-version approximations in current use, those based on
Legendre, Legendre-Rodriguess, Chebyshev, Bézier-
Bernstein, Lagrange, B3-Spline and sinusoidal
polynomials are most common. Consider a simple finite
element of length two units in the natural coordinate
system § with simply supported ends in the two cases of
axial and bending loading. The Bézier-Bernstein function
has an interesting result. The element conditioning
number increases for higher degree of functions (Fig. 5).

Axial-bending convergence of a simple beam: A simple
beam clamped at one end and free at the other with
simultaneous axial and perpendicular trapezoidal loading
as shown in Fig. 6 is studied. To compare the efficiency
of the Bézier element, it is observed that a fourth order is
needed in an axial displacement function and a sixth order

1E+113 —— Legendre-Classic »

1E+10d4 —¢— Legendre-Rodriguess s
—4— Chebyshev /

1E+9 =0 Bezier-Bernstein *

1E+83 —m- Lagrange e

1E+74 —&— B3-Spline

1E+6d & Sine

1E+5 /

1E+4
1E+3
1E+2

3

Condition number of [K]

1E+1
1E+0

Function order

(a) Axial case

1E+127 —— Legendre-Classic
1E+114 —¢0— Legendre-Rodriguess ,/’
1E+104 —* Chebyshev A
-0~ Bezier-Bernstein /
L9 - Lagrange /
1E+83 _g— B3-Spline

Condition number of [K]

Function order

(b) Bending case

Fig. 5: Element conditioning number vs. function order
for axial and bending cases

in bending displacement function, as shown in Fig. 7. This
result is obvious when considering the type of applied
loading.

Free vibration of a stepped beam: Consider the free
vibration of a stepped beam as shown in Fig. 8, clamped
at one end, free at the other and with simple support at
each section of discontinuity in cross section. A Bézier
finite element is used in each span. Only axial and bending
displacements in one plan are considered. Table 1
shows the highest four first period of free vibration. It is
observed that results are accurate to the seventh order of

qv2=8.0kNm '

qvl1=2.0kNm*

7
/<—<—<—<—<—<—<—<—<—<—<_<_ .
/qu1=2.0kNm_‘ qu2=2.8kNm

L=80m

Cross-section of element: 0.40x0.40 m*
Young's modulus: E=2,10" kN m *

Fig. 6: Beam clamped-free ends

§ 1E-3

5 1E-45

Gt

=4

8

£

o

o

2 E] ‘

= 1E-9g Axial-function order (mu): N\

# 1E-103 ——mu=2 \
1E-112 ——mu=3 \
1E-123 —e-mu=4 —
1E-13> ; , | .

3 4 5 6 7

Bending-function order (mv)
Fig. 7: Convergence of energy relative error

Table 1: The highest four first period of stepped beam shown in Fig. 8
Free vibration periods (sec)

Orders No. of

m,, m Dof T, T, Ts T,

4 17 0.05500 0.01389 0.01016 0.00526
5 23 0.05521 0.01389 0.01150 0.00823
6 29 0.05523 0.01389 0.01152 0.00825
7 35 0.05523 0.01389 0.01153 0.00828
8 41 0.05523 0.01389 0.01153 0.00828
h-FEM 236 0.05523 0.01389 0.01153 0.00829
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Bézier fimte element. The conventional fimte element
method has the same accuracy with more than six times of
dof’s number. Hence the Bézier finite element is more
efficient.

Buckling of clamped-simply supported beam: In order to
study the rate of convergence of the buckling load factor
of members, the Bézier finite element method has been
applied to a clamped-simply supported beam (Fig. 9). The
results are compared with the Buler buckling loads factors.
It is observed that in order to achieve an error of less than
1% for the fourth first buckling loads factors, the 11th
order of Bézier finite element are required. For the 14th

order, the relative error decreases to 1.107°, as shown in
Table 2.

y Span 1 Span 2 Span 3
——30m —DL— 30 m—tL—S.O m —il

Cross-section of span 1 and 3; 0.4x0.40 m’
Cross-section of span 1 and 3: 0.4x0.40 m’
Mass per unit volume P =250tm °
Young's module: E=2.10° kNm *

Fig. 8 Stepped beam clamped-free and with intermediate
simple supports

7
7 N
Z .
/]
le 80m JI

Cross-section: 0.40x0.40 m*
Young's moudlus: E = 2.107 kN m’
Poisson's ratiorv= 020
N=1000.0kN

Fig. 9: Clamped-simply supported beam with mtermediate
simple supports

Table 2: The lowest four first buckling load factor of beam shown in Fig. 9
Buckling load factor

Order m, A Az As Ag

4 1999999 3199.998 - -

5 13.94578 71.38750 3199.998 -

[ 13.52384 4395395 175.8554 3199.999
7 13.46287 40.64799 9539440 362.49461
8 13.46061 30,79632 83.43067 176.13758
9 13.46048 3978683 7998489 144.92428
10 13.46047 30,78683 7939119 134.95862
11 13.46048 39.78635 7927867 132.62035
12 13.46048 30,78632 7926778 132.01190
13 13.46048 39.78632 79.26659 131.92069
14 13.46048 30,78633 79.26657 131.90653
Theory 13.46048 39.78634 79.26657 131.90520

Shell finite element systems

Membrane and flexural behaviour of square plate with
simply supported edges: A square plate with simply
supported edges as shown in Fig. 10 is analyzed. The
loading 1s defined both normal to the plane and at the in-
plane of the plate. It is loaded by a triangular loading in
x direction, withamaximum of 10 kN m ™ at the right side.
The results of displacement and forces at the selected
point A (a plate centre) shows that the relative error 1s
less than 1% for a 7th order of Bézier fimte element in each
direction of the element, as shown in Table 3.

_T;___I
1

1

\

1

1

1

1

1

1

1

1

1

1

1

1

1

[

40m ——*

je——b

€ a=40m >

Young's modulus: E=2.10° kN m *
Poisson's ratio:v=10.30

Fig. 10: Simply supported square plate

Table 3: Convergence of membrane and flexural behaviour
Membrane behaviour Flexarral behaviour

My, Ny

m,, i, Ug Nea W M,
My, O, (.107°m) (KNm™) (.10*m) kNm"Y
3 21065 0.000 3.1023 2.954
4 21650 1.884 3.1023 2.954
5 2.0555 1.596 3.5803 4,001
[ 2.0499 1.676 3.5803 4,001
7 2.0462 1.667 3.5487 3.831
8 2.0454 1.679 3.5487 3.831
9 2.0452 1.674 3.5488 3.831
10 2.0451 1.677 3.5188 3.831
11 2.0451 1.675 3.5489 3.831
12 2.0451 1.676 3.5189 3.831

Flexural free vibration of square plates and skew plate of
various boundary conditions: A number of square plates
with various boundary conditions and a skew plate were
analyzed using a single fimte element with various Bézier
orders mn both directions. Table 4 shows the results for
the lowest six natural frequencies. For the square plate

2351



J. Applied Sci., 6 (11): 2334-2357, 2006

Table 4: Natural frequencies of square plates and skew plate with various boundary conditions

Natural frequencies 3 _, a2, foh/D

Mode sequence Ay Ag A Aa As Ag
3-8-8-8 square plate:
Leissa (1973) 19.74 49.35 49.35 78.96 98.70 98.70
Warburton (1954) 19.74 49.35 49.35 78.95 98.69 98.09
Finite strip method (Cheung and Cheung, 1971) (80 dof) 19.74 49.32 49.34 78.91 98.64 98.68
8 pline finite strip method (Fan and Au, 1984) (112 daf) 19.74 4936 49.38 78.98 98.80 99.21
Spline finite element method (Leung, 1990) (64 dof) 19.74 49.36 49.36 78.98 98.95 98.95
Bézier finite element method (m=n =9, 49 dof) 19.74 4935 49.35 78.96 98.71 98.71
F-S-F-S square plate:
Leissa (1973) 9.03 1613 36.73 38.95 46.74 70.74
Warburton (1954) 9.87 1717 3812 3048 48.45 74.02
Finite strip method (Cheung and Cheung, 1971) (80 dof) 987 16.91 38.11 39.49 47.72 T4.03
Spline finite strip method (Fan and Cheun, 1984) (144 dof) 9.80 17.02 37.90 39.38 48.03 72.82
3pline finite element method (T.eung and Au, 19907 (80 dof) 9.63 1614 36.74 38.97 46.76 T0.78
Bézier finite element method (m=n =8, 48 dof) 9.63 16.13 36.73 3895 46.74 70.74
C-C-C-F square plate:
Leissa (1973) 24.02 40.04 63.49 76.76 80.71 116.80
Warburton (1954) 24.60 41.50 &1.50 77.99 83.53 119.30
Finite strip method (Cheung and Cheung, 1971) (80 dof) 24.11 40.66 63.61 77.32 81.77 118.60
3pline finite strip method (Fan and Cheung, 1984) (98 dof) 24.35 40.66 63.90 7741 81.66 118.20
Spline finite element method (Leung and Au, 1990) (48 dof) 23.95 40.03 63.35 76.85 80.70 116.90
Bézier finite element method (m=n =29, 35 dof) 23.93 40.01 63.28 T6.73 80.62 116.70
Commner supported square plate:
Leissa (1973) 712 1577 15.77 19.60 38.44 44.40
Spline finite strip method (Fan and Cheung, 1984) (135 dof) 7.11 15.77 15.77 19.58 38.43 44.37
3pline finite element method (T.eung and Au, 19907 (79 dof) 711 1577 15.77 19.60 38.43 4437
Bézier finite element method (m=n =8, 60 dof) 7.11 15.77 15.77 19.60 38.43 44.37
8-8-8-8 skew plate (5 =45°, a/b =1.0):
Liew et al. (1998) (p =14, 120 dof) 3533 66.27 100.50 108.40 140.80 168.30
Hierarchical F.EM.(Bardell, 1992) (m =n = 14,144dof) 35.04 60.28 100.30 107.60 140.80 168.20
Beézier finite element method (m=n =12, 100 dof) 35.33 66.28 100.40 108.30 140.80 168.30
cases, the results are compared with those given by Table 5:  Buckling coefficients (K) of plates subjected to compression and
Leissa (1973), Warburton (1954), the finite strip solution shear Buckli Fici
LUCKLINEZ COE] icients
by Cheung and Cheung (1971), the spline finite strip 120V (b
solution by Fan and Cheung (1984) and spline fimte K, =KII{TE2.EI(h} }
element method by Leung and Au (Leung, 1990). For the
skew plate’s case, the results are compared with those Longitudinal compression Shear
given by Liew (1998) .and .B.ardell (1992). Hence . 1t 1s No. of No. Simply Simply Clamped
observed that the Bézier finite element method i1s as  Beziersorder  of supported supported supported
efficient as the other methods. {m,.n,) DOFs  (@b=1.00) (@h=1.00) (ab=500)
4 4 5.307 9.354 21.151
5 9 4.786 8.677 10.337
Buckling of rectangular plate with various boundary & 16 4.695 8294 7.010
conditions: A few simple examples are used to investigate 7 25 4.019 7.918 5.061
. 8 36 4.000 7.918 5.858
the convergence of the buckling loads of plates o 10 4000 7 868 5 667
using Bézier finite element method with increasing the 10 & 4.000 7.868 5.562
Bézier-Bernstein’s orders. Some rectangular plates with 11 8l 4.000 7.867 5.546
. . 12 100 4.000 7.807 5.532
simply supported and clamped edges are subjected to Spline F.S.M
uniform longitudinal compression or shear. The resulting (Lau et al1986) 156 4.001 7.889 5.550
{Bulson, 1972) 4.000 7.880 5.500

local buckling coefficients K are set out in Table 5 and
are compared with the values given in Ref. 24 and 25
(Lau et al, 1986 and Bulson, 1972). The buckling
coefficients converge rapidly when the order number on
Bézier finite element i1s mcreased. For the case of
longitudinal compression, the relative error 1s less than
1% when the Bézier’s order is equal to 7. For the case of
shear, the convergence is slower; the relative error is less
than 1% when the Bézier’s order is equal to 10. Compared

to the spline finite strip method, the Bézier finite element
method gives good agreement.

Continuity requirements: It is interesting to observe the
effect of the variation of the Bézier finite elements degrees
on the continuity of displacements across mterfaces. This
problem is treated by a parametric analysis of Bézier finite
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E=210kNm “andv=0.20
Loading: q = kKN mL™"

Fig. 11: A square plate with linear loading

%

E=2.107kNm *andv=0.20
Loading: P=10 kN

Fig. 12; A square shell with punctual loading
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Fig. 13: Relative error of displacement (u,) with various orders of two finite elements
element degrees in then membrane case and flexural case and element (1) is slave; a large relative error is shown

respectively as shown in Fig. 11 and 12. In the case of a  when the difference of the order’s finite clements
plate with an in-plane loading, if the element (2) is master increases. The precision improves when the orders of the
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Fig. 14: Relative error of displacement (w,) with various orders of two finite elements

Fig. 15: Tear in plate shown in Fig. 11
(Case m,n (2)<m,n(1))

Fig. 16: Tear in shell shown in Fig. 12
(Case m,n (2)<m,n(1))

two finite elements increase. If the element (1) is master
and element (2) is slave and the orders of the second
element is superior to the first element, we remark that the
relative error is large as shown in Fig. 13 and a
discontinuity of displacements in the interface as shown
in Fig. 15. The same results are collected in the case of
flexural state as shown in Fig. 14 and 16. We can
conclude that the orders of the master finite element must

Free end

Fixed end (1x1 m)

0.0 m, Load: P=10 kN
J0° KN m %,v=0.30

(]
—_ N

Fig. 17: A 3D-view of a fixed-free beam

be superior to the orders of the slave element to
preserving the continuity of displacements.

Solid finite element systems

A static analysis of a fixed-free beam: A fixed-free beam
submitted to a punctual load at the free end as shown in
Fig. 17 is studied. It is observed that for transverse orders
n and | greater than 2, the relative error of energy is less
than 1% for a longitudinal order m greater than 8. The
convergence is faster in the transverse direction from the
third order.

A flexural free vibration of thin and thick square plate
and skew plate with various boundary conditions: A
number of square plates with various boundary
conditions and a skew plate were analyzed using a single
solid finite element with various Bézier orders in three
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Table 6: Natural frequencies of square plate and skew plate of various boundary conditions (v =0.30)

Natural frequencies A =@ a.Joh/D

Mode sequence A A As Ay
S-C-8-C thin square plate (I/a = 0.05):

Liew et al. (1998) (p = 14, 120 dof) 26.65 49.06 59.12 78.69
Bézier finite element method (m=n=10,1=4, 912 dof) 26.46 47.94 58.77 77.01
C-C-C-C thick square plate (h/a = 0.20):

Liew et al. (1998) (p = 14, 360 dof) 26.46 46.14 46.14 61.94
Bézier finite element method (m=n =10, 1=4, 768 dof) 26.98 47.27 4727 61.96
S-F-S-F thin skew plate (f =45°, a/b=1.0 (b/a = 0.05)):

Liew et al. (1998) (p = 14, 120 dof) 15.15 18.71 36.94 52.24
Bézier finite element method (m =n =10, 1 =4, 960 dof) 14.49 18.76 3722 53.54
C-C-C-C thick skew plate (B =45°, a/b= 1.0 (b/a = 0.20)):

Liew et al. (1998) (p = 14, 360 dof) 41.05 58.25 74.44 76.89
Bézier finite element method (m=n =10, 1=4, 768 dof) 42.15 59.99 71.97 76.82

directions. The simply supported boundary is defined by
restraining the displacement-control point corresponding
to the lower edge of plate. For the fixed boundary, all the
displacements-control point of the boundary’s face are
restrained. Table 6 shows the results of the lowest six
natural frequencies. For the thin and the thick plate’s
cases, the results are compared with those of
Kirchhoff and Mindlin theories respectively given by
Liew (Liew, 1998). Liew’s results are determined by a
p-version finite element method with 14th degree. Good
agreement is observed in the selected cases knowing
that two different approaches are used. The 4th
transverse (1) order is sufficient for a good convergence.

A free vibration of a column-beam frame: A composed
frame system (column-beam) is analysed. The system is
modelled as three solid finite elements: column, node and
beam as shown in Fig. 18. The second solid finite element
‘node’ is defined as master in the constraint declarations
since it is common to both other finite elements. The
ration length/cross section dimension is greater than 10.
In the analysis, the transverse orders (n,l) are varied first

F.E. (3): 0.40/0.50 m

FE. (2): 0.40/0.40 m Congh=40m

Height = 0.50
"

E=2e7kNm
v=0.20
Density =2.5

EE. (1): 0.40/0.40 m
Length=3.0m

A fixed face;

Fig. 18: A column-beam frame
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Fig. 19: Convergence of 5th lowest circular frequencies-
of Bézier F.E.M. and classical F.E.M.

and the Ilongitudinal orders of beam and column
(m) are then varied in second. It should be noted
that the second finite element ‘node’ have the same
orders in three directions (m = n = ) necessary for a
correct continuity of displacement already described
in 4.2-d. A fast convergence of the results of natural
circular frequencies is observed for transverse orders
n and | from 4 and longitudinal order from 10. The
3D-view of the first 5 modes of free vibrations is shown in
Fig. 20.

These results are compared with those of classical
F.E.M. using an eight node finite element mesh. The
Fig. 19 shows a rapid convergence of the Bézier F.E.M. for
the 2nd mode, the relative error is less than 0.1% from
2646 dofs for the two methods. For the 1st mode, the
relative error is less than 0.1% from 1632 dofs for the
Bézier F.E.M. and from 79380 dofs for the classical F.E.M.
For the other modes, the relative error is less than 0.1%
from 2880 dofs for the Bézier F.E.M. and from 109512 dofs
for the classical F.E.M. Thus compared to classical F.E.M.,
the Bézier F.E.M. is more powerful.
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Fig. 20: 3-D view of free vibrations of the lowest fifth natural circular frequencies

Buckling of a clamped-free column subjected to
compression: order to analyze the efficiency of the Bézier
finite element method, the rate of convergence of the
buckling stress is considered. The stability of a simple
column, with the clamped-free ends and which is
submitted to a longitudinal normal stress o,,, is analyzed
(Fig. 21). The longitudinal orders (m) is varied with each
cross-section orders (n,l). The Fig. 22 shows that from the

@Gﬂ=-l.00

Cross section: 1x1 m
E=2eBkNm*
v=10.30

10.0 m

1'%

; A fixed end

Fig. 21: A clamped-free column
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(m=m,=m,=m,n=n,=n=n,l=L=0=1)

Fig. 22: Convergence of Euler buckling stress of column

third order for n and | is sufficient to model the transverse
deformation. From a 10th longitudinal order, a
convergence is shown with an asymptotic value of
relative error of Euler buckling stress equal to 2%. In
comparison with the one-dimensional model, this shift is
due to the three-dimensional behaviour of the element.

CONCLUSIONS

In this study an implementation of a p-version FEM
constructed from Bézier-Bernstein functions basis is
presented. All numerical tools of isoparametric frame, shell
and solid finite elements are established for elastic linear
static, modal and stability analyses.

The Bézier-Bernstein functions properties bring to the
FEM advantages: flexibility, an efficient
smoothing, a good conditioning, a simple boundary
conditions construction, a simple construction of C* and
C' continuous function of displacement between two
finite elements, an exponential convergence by increasing
the Bézier finite element order and a good accuracy.

Future work will include the implementation of an
adaptive multi-level optimum-displacement algorithm.

several
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