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Homotopy Analysis of Slider Bearing Lubricated With Powell-Eyring Fluid
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Abstract: The analytical study of an mfimte, lubricated slider bearing consisting of connected surfaces with
Powell-Eyring fluid as lubricant is considered. Under the assumption of the order of magnitude of the variables,
it is seen that only viscous and Non-Newtonian terms have effects, where as the inertia terms are negligible.

The pressure distribution for inclined slider bearing is calculated approximately by using homotopy analysis
method. The variation of pressure and from that the load carrying capacity of the bearing is presented for a

range of fluid and bearing parameters.
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INTRODUCTION

The presence of fluid film greatly reduces the sliding
friction between solid objects. The enormous practical
mmportance of this effect has stimulated a great deal of
research both theoretical and experimental. The problem
of slider bearing with Non-Newtonian Iubricants is
difficult to analysis mathematically because of the
nonlmear character of the governing equations of motion.
Numerical methods remain available, but are some what
more costly. Yiurtisoy (2002) employed the perturbation
method to study the problem by introducing a small
parameter. In this study, we revisit the problem
and solved it approximately by homotopy analysis
method introduced by TLiao (2004). The homotopy
analysis is a powerful new analytic method that remain
valid even with strong nonlinearity and with no small or
large parameter. The method 15 successfully applied by
(Ayub et al., 2004; Hayat et al., 2003) to discuss different
problems of fluid flow. We see from our solution that
homotopy analysis method is more general than the
perturbation method. The analytical solution so obtained
subsumes Ylrisoy's results.

Some relevant studies on Non-Newtonian lubrication
i bearing have been published. Ng and Saibel (1962)
used a third grade fluid and studied the flow occurring in
the slider bearing. Buckholz (1986) used a power law
model as a Non-Newtonian lubricant in a slider bearing.
Yurisoy and Pakdemirli (1999) studied the flow of a

third grade fluid m a shider bearing and constructed a
perturbation solution. Yirisoy (2002) has mvestigated
second and third grade fluid in a slider bearing by using
perturbation technique.

Hansen and Na (1968) considered the similarity
solution of the laminar boundary layer problem of the
Powell-Eyring model.

FORMULATION OF THE PROBLEM AND FLOW
EQUATIONS

In the two dimensional bearing (Fig. 1), the plane
y = 0, moves with constant velocity U in the x-direction
and the top of the bearmg (the slider) is fixed. The
variables are Non-dimensional with respect to U and the

Fig. 1. Shder bearing
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length I, of the bearing. We consider the steady flow of an
incompressible, gravity free, Powell-Eyring fluid as
lubricant in a slider bearing. The continuity and linear
momentum equations governing the motion of the fluid

are:
divV =0 (1

divi=p 2 2)
dt

where V (u, v) is the velocity, p is the density, d/dt is the
material time derivative and T and is the Cauchy stress
tensor.

The Powell-Eyring model can be written as (Hansen,
and Na, 1968)

ou 1 10u
— 4+ —sinh (=== 3
T, =U +Bsmh (C ) (3)

where T_, 1s a shear stress, i is viscosity and B and C are
constants of the Powell-Eyring model. Introducing the
following Non-dimensional parameters

X=xL,y=yhb ,u=0/U,v'=LvbU, b'=b/b,
p'=pb, /pLU’

(h

Using (3) and (4) m (1) and (2), the appropriate Non-
dimensional equations governing the motion of the fluid
(on dropping dashes) are:

QL X (5)
ox oy
9’u
2 Nz
u@+vﬁzfl@+L%ag+&%# (@
ox dy 8ox Red oy ) B@ -
ay
d*u
LA R . %
ox dy doy & au)
B(—J +1
dy
where, the non dimensional parameters are
2
Re=PUL 4 1 :UZ, L (®
u pLBCU bC ¥ b

By assuming that § .. 1 is of order & and @ is
" Re

also of order (& = 8 7). Under these assumptions, the
largest terms n Eq. (6) and (7) are:

o'u
ap ' dy”
it S Y N E—
aX ayz Y [au}Z (9)
Bl — | +1
dy
P _, (10)
ox

0*u
2 2
gifgfw 8y2 an
Bl — | +1
dy

Equation (11) is highly Non-linear differential
equation and cannot be solved easily. On expanding the

Iy

2
term B[auj L1 @sapower series up to O(p%), we have

dp w9l 1 ouY . 12
dx ayzwayz(l 28[33/} +O(B)} "~

The contnuity and momentum equations goverming

the motion of the flmd (after truncating the series) are:

8u+@:0

ax dy

z z :
dp 9% Lol Lgfdul ) (13
dx  dy* oy 27 gy

After some re-arrangement, Eq. (13) becomes

g, gy g
-ene i | 5

where ¥ and [ are dimensionless material constants.

du  av

LA

gx oy
4 _du, slaudu (15)
dx 9y’ ay | ay’

subject to the dimensionless boundary conditions
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w0) =1, wb)=0, v(0)=0, vib)=0 (16)

where P and R are defined as:

p= lﬂp and f{:—l BY~ (17)
1+ 2{1+7)

In the sequel, we use the homotopy analysis
technique to give analytic and umformly valid solution of
the problem.

HOMOTOPY ANALYSIS METHOD

We construct the zeroth order deformation equation,
as in reference (Ayub ef al., 2004)

(1-q)¢[i(v.a) -, (y)]=

4h iy, q) _ pf 9y, zazﬁ(%q)_@ as)
dy” dy gy’ dx

subject to the boundary conditions

i(y.q)=1at y=0 (19)
u(y.,q)=0 at y=b

where h is an auxiliary parameter, u,(y) is an initial guess
approximation and ¢ is an embedding parameter such that

qge [0, 1]
We choose the auxiliary linear operator

2
- (20)
Y

and an initial guess approximation

_1dp . _y (21)
u, (y) 2dx(y yb){l b)

which can be obtained by solving Eq. (15) with g = ¢
subject to the boundary conditions.
Setting ¢ = 0 in (18), we get

iy, 0)=u,(y), y>0 (22)
and setting g =1 in (18), we have
iy, 1) =uly) . (23)

Therefore, according to (22) and (23) the variation of
q from Oto 1 is just the continuous variation U(y.q) from
the initial guess approximation u(y) to the unknown
solution u(y) of (15) and (16).

Assume that the deformation u(y,q) governed by (18)
and (19) is smooth enough so that

o5i(y.q
uu(k) (y) _ ( )

k=1 24
aqk

namely the k-th order deformation derivative exists.
Then, in view of Hq. (24) and Taylor's formula, we
expand U(y.q) in the power series

i(y.q)=1y, (y)+i{u“(z!(y)]qk (25)

k=1

We note that the convergence region of the above
infinite series is dependent upon h (#0).
We define

(26)

Using (21), (23) and (24), we get at q = 1, the
important relationship

u(y):kiuk(Y) 27)

between the imtial guess approximation uy) and the
unknown solution u(y).

Now, differentiating the zeroth order deformation (18)
and (19) k-times with respect to q and then setting q = 0
we obtain for k>1 the kth-order deformation equation

[u ()~ %0, ()] =hR, (y): (28)
with the following boundary conditions
u, (0)=u, (b)=0 (29)

in which
” o = # s df)
R, =u] + Rzukflfj wu -(1 —xk)& (30)
1=0

and

0, k<1
-1 (31)
ke {1 k>2

H

where priumne denotes derivative with respect to y.
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First order homotopy solution: By putting k = 1 in Eq. (26) and (28), we obtained first order solution. In particular
differentiating (18) with respect to q, making use of (24) and setting q = 0, we have

2 _
ffu) < Oy, (3, | Oy, dp (32)
' dy* gy | ay' dx

Using (20) and (21) n (32), we obtained a second order differential equation of the form

dig.

ey e
dy dx dx 4 bl dx b dx dx

which after simplification 18

[ [ | ()21 2] @
dy dx 4 bl dx b dx

Now integrating (34) twice with respect to y, we get

=030 g 2.2 3 =02 3 2 = 2
o[ S e

where ¢, and ¢, are integration constants. Using boundary conditions (16) in (35), we get

=3 4 2.2 3 3 =02 2 3 = 2
w0 —pR Y[R DY by byl Ay v by Yy y (36)
dx || 12 8 6 24 dx 2 3 6 dx || 2b° 2b
by putting value of R . we have
- ~ 53 —~n 2 _
L0 1B fdpfyt By by’ By (dpY(y' ¥’ by| (dpY ¥y (37)
o2y ldx L1z 8 6 24 ) ldx)| 2 3 6 [dax)2v’ 2b

Second order homotopy solution: Now Differentiating (18) twice with respect to ¢, making use of (24) and setting q = 0,

% zazuuz(l)Jr2 % azuzu auiu(l) (38)
ay | dy dy | ady ady

Using (20) and (21) n (38), we obtained a second order differential equation of the form

du™ Sl Y[ L by by’ ) (Y[ v (dBYy 2 39
d)/zz(Hh)hR{[de [y Mvai +[dx] Y= +{dxj{bz]+o(8) (39)

Integrating (39) twice with respect to y and using boundary condition (19), gives

we have

2

my
tfu ) =2efu,0}+ 21{ a;‘;” 1 ]+ 7hR
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=3 4 2.2 3 3 =02 2 3 = 2
PRI RIS I U I AL AL AR (A A AL Y S A & +O[f) (40)
dx 12 3 6 24 dx 2 3 o dx )| 2b° 2Zb

Summing up the result, we write

u=u, T +#+m:uu+ul+u2+...
@3£+b2y2 by3_b37y

1B ) _y]_lsvh &)1z 8 6 U

2 dx b) 2(1+7) . @Yy ¥y by By oy (41)
dx |l 2 36 6 | |dx ) 20 2b

Yy ¥y
2b?  Zb

Substituting (41) in (5), we get

v _ d dp [y, by by’ by (42)
dy dx| 1 Bt

207 (@YY ¥ by (@Y ¥y
dx )| 2 3b 6 dx | 2b°  2b
Integrating (42) with respect to y and using the condition v(0) = 0 gives
[1 az( 3 2 2
Lapfy” by 1,0y ¥
2dx| 3 2 Zb

BY(y by by' by (43)
dc| 1 pm |lde)le0 24 24 48

2067 (Y Y ¥ by ) (Y3 ¥
dx 6 12b 12 dx | 6b*  4b

and using v(b) =0, in (43) gives

- 5 =3 -
dl 8 P [v'7dpY bap)|_ ab (44)
dx| dx 14740 dx | 2dx dx

Equation (44) is a second order nonlinear differential equation in P with variable coefficient b(x) subject to the
boundary conditions

B(0) =5(1)=0
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PRESSURE DISTRIBUTTON
We rewrite (44) with h = -1 as:
~ . 5 7 =3 ~
djsdp _[_1 BY b (dpy  dp||_ db (45)
dx| dx 2{1+7) | 20| dx dx dx
or
- 5 5 ogmnd -
da de_P,ﬁ bfdp +bd_P :6@ (46)
dx|  dx 20| dx dx dx
Integration w.rt x, yields
d_Rdp_Ro'(dp)_6 A, “7)
dx b dx 20| dx b* b

where A, 1s constant of mtegration
Again we wish to solve (47) for P by using homotopy analysis technique. We construct the zeroth order
deformation equation as in (18),

~ _ dp, R dp, Rb*(dp,Y 6 A
1=, [ q) =P, (x) |~ qn| Po - R 4B _Rb'[dBy Y6 A, (48)
-4, [ i) -, (x) | q{dx v el Il
subject to the boundary conditions
Px.q)=0 at x=0 (49)
p(x,q)=0 at x=1
taking the initial gauss approximation as:
_ 6x(b—r ox(l-x+mx—r
oo b ) Gx(1xim )
b*(1+ 1) (1-x+m) (1+1)
where
b(x)=(1-x+1x), r:% (50)
1
im which b, 18 the maximum value of b and b, 1s the minimum value of b.
Defining the linear operator as:
g=4 (51)
dx
and an embedding parameter ¢ such that g € [0, 1].
Setting q = 0 1n (48), we get
p(x.0)=P,(x)., x>0, (52)

setting ¢ =1 in (48), we get
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B(x1)=5(x) 53
Therefore, according to (52) and (53), the variation of q from 0 to 1 15 just the contimuous variation p(x,q) from the

initial guess approximation p,(x) to the unknown solution p(x) of (48).
Assume that the deformation p(x,q) governed by (48), (49), (52) and (53) 1s smooth enough so that

B, _'p(xq) =1 (54)
o a k
q
g=0

namely the k-th order deformation derivative exists.
Then, according to (54) and Taylor's formula, we have

= - S|P (9) | 55

Plx.a) =Py (x)+ X =~ Ja (55)

P !
Defining
. B, (x) (56)

Using (53), (55) and (56), we get at ¢ = 1, the important relationship

:iﬁk(x) (57)

k=0

between the initial guess approximation p,(x) and the unknown solution.
Setting q = 0 1n (48), gives

p(x.0) =P, (x)- (58)

In particular, differentiating (48) with respect to q, making use of (54) and setting q = 0 we have

= =, Sy s g 83
gl{f,um}_h{dm_Rdm_Rb[dm} _6_1%} (59

d< b dx 20| dx b* b
6(xtm1)(r-1) R [6(xtm- D)
é’l{ﬁnm}:h (1*X+I‘X)3(1+I (1-x+1x L(l X+1x) 1+r) (60)
CR{m—x 1) 6(xrx-1)(r-1) ) 6 A
20 | (1-x+m)'(1e1) C(xox+1) (xox+1)
Using equation (51) we obtain
6(r71)x(x+rxfl)_6ﬁ(r71)x(x+m71)
dp," (r+1)  (mx-x+1) r+1) (mx-x+1) 1)
dc | 206R(r-1) (x+m-l) 6 A

20(r+1)3 (1‘}(—>(+1)7 (IX—X+1)2 (IX—X+1)3
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Integrating (61) with respect to x, we have

B 6 o ’x-x+1 R ><2r2)<72xfr+2
(I'—l)(l'+1) (I'xforl)z (r—l)(r+1) (I'X.*X+1)4
9R
+ 3 [}
25(r+1) (r -1){mx —x+1)
B, =h| (30m¢ —30% —15r+12r% —3r® + 30x% —10x’ —15rx? +18r’x —30r'x (62)

x| +12r'x — 60r’x® + 30r’x’ + 30r’x? + 30r'x? - 30r'x® —15r°%?
+10r°%* +10

6 N A,
(r-1)(mx-x+1) 2(r-1)(rx-x+1)

+ +A

z

A, is an integration constant.
Using the boundary conditions ${0)=p(1) =0, we have

77r — 91x —100rx — 32r° + 790" +117x°
—65x" +13x" — 75rx” + 1360 x+1421x”
. —8rix —44rx’ + 63r'x - 54r°x* - 109r'x’
B, = —%x hR(rj_l)(X_l)Xﬁ x| —48r°x* + 59r°x" +112r°%° — 271 (63)
(X oot 100 s8 T
+59r' % +34r°x" — 44’ %t +13r" %]

+13r'x* + 26

There fore, the final pressure distribution would then be

6x(1-x+1x 1) . 2f7h . (r-1){x-1)x
(1*X+I‘X)2(1+1‘) 25(1+7) r(r+1)3(rxfx+l)ﬁ

77r —91% —100rx —32r° +79r° +117x* —65%° +13x*

—75rx? +136r'x+142x” —8r'x — 44rx* + 63r'x-54r'x’ (64)
x| —109r'x° — 48r°%° +59r° %" +112r'x” - 27r'x* —s56r'x"

—127r'% 870 %7 +59r'x” + 34r°%” — 44r° x +H13r"%

+13r'x* +26

p(x)=P, + D, =

forh = -1, we get the pressure equation as:

B(x) 6x{(l-x+mx-1) 2 . Bi(x-1)(r-1)x
(1*X+I‘X)2(1+1‘) 25(1+7) r(rJrl)j(rxfx+l)6
T7r —91x% —100rx —32r° + 79r° +117x* —65x%° +13x"
—75rx” +136r°x 142" —8r'x — 44rx* + 63r'x (65)
x| =34r’x* —=109r’x’ —48r'x* + 59’ x* +112r°x
=27r'%” = s6r°x 127 +87rx” + 59r'x!

3457 — 44k H130% % H13r"xt + 26

Using Eq. (17) in Eq. (65), we obtaimn the lubricated pressure distribution 1 shider bearing as:
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p(x)=(1+7)x

6x(1-x+1x 1) 2 BY(x-1)(r—1)x
(1—x+rx)2(l+r) 25 r(r—kl)3(rx—x+l)6

77r —91x —100rx —32r% + 791% +117x2 — 65x°

+13x* = 751x? +136r>x+142rx> — 8r’x — 44rx* (66)
x| +63r'x —54r’x* —109r’x> — 48r’x* + 59r°x*

+112r°x° - 27r'x? - 56r’x* - 127r'x° +87r°x?

+59r*x* +34r°x® — 44r°x+13r°x > + 13r°x* + 26

NUMERICAL RESULTS

In this section, the pressure distribution in the
bearing is determined for various values of the parameters
¥, P and clearance ratio r.

Figure 2 indicates variation of the pressure with
respect x when B = 0 and ¥ is varied. For ¥ = 0, the
unbroken line shows the pressure distribution in the
Newtonian fluid. For ¥ = 0.3 and ¥ = 0.5, the circles and
dots, respectively show the effect of Powell-Eyring
model. Tt is seen that the pressure increases with
increasing ¥ which means higher loading capacity
for the bearing. Lubricant possessing higher ¥
values of the Powell-Eyring model bears higher load
capacities.

Figure 3, shows the manner in which pressure varies
with ¥, when P is held fixed at some nonzero value. As
before, increasing ¥, (circles and dots show the graphs
for ¥ =03 and ¥ = 0.5, respectively) increases pressure,
also can see the reverse effect of p which is clear
from Fig. 4.

In Fig. 4, for different B, ¥ is fixed (line circles and
dots show the graphs for § = 0.2, f = 0.4 and § = 0.6,
respectively). It is seen that when ¥ >0 the pressure

1.5+ ﬂ
4 ..o
1.254
..'. O°° ..
... oo *
14 K ao .
-
.'.. o"coc ooo.-
S & o,
a 0.75 ..o oor:° <,
.-';o"oo ‘o
i o ° on
0 .5 ..;:°°° q.
»0 |0
K .
0.25- _33’ 3
0 T T T
0 0.25 0.5 0.75 1

Fig. 2:1=0.5,$=0,[ ¥ =0(Newtonian), ¥ =0.3, ¥ =0.5]

decreases with increasing B, which means lower loading
capacity for the bearing. Lubricant possessing higher 3
values of the Powell-Eyring model bears lower load
capacity.

In Fig. 5, for p = ¥ =0.01, the dimensionless length
versus dimensionless pressure is plotted for different
clearance ratios (line circles and dots show the graphs for

1.5

Fig. 3: r=05,[=0, ¥ =0(Newtonian), f=0.01, ¥ =0.3;
B=001,7 =0.5]

1.59

1.257

Fig. 4:r=0.5, ¥ =0.1, [ =0.2, 0.4, 0.6]
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-0.5-

Fig. 5: =% =0.01,[r=0.3, 0.5, 0.7]

r =03, r=05and r = 0.7, respectively). Similar to
Newtonian behavior, in the Non-Newtonian case pressure
build up in the bearing for lower clearance ratios.

CONCLUSIONS

In this study, the homotopy analysis technique,
proposed by Liao (2004), is used to give an approximate
analytical solution of Non-linear differential equation
arising in slider bearing. As a result, we obtain a family of
solution expression (41). In this study we don’t need the
so called small parameter assumption at all, which is
necessary in perturbation method. That is the homotopy
analysis method is independent of any small or large
quantities. Also the homotopy analysis method provides
us with great freedom to choose initial approximation, the
auxiliary linear operator and the auxiliary parameter h.
Thus we need to focus on choosing proper initial
approximation, auxiliary linear operator and proper values
of h to ensure that solution series converge. Therefore, it
is this kind of freedom that establishes a cornerstone of
the validity and flexibility of the homotopy analysis
method. Thus from the above discussion we conclude
that the analytical method used in this study is to be

useful for the analysis of lubrication theory and also for
solving nonlinear problems with strong nonlinearity and
with no small or large parameter. (Incidentally there
appears to be an error in reference (Yirusoy, 2003). The
term yb*/3 of Eq. (21) in his study should be read as
yb*/48).
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