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A Strong Convergent Stochastic Algorithm for the Global
Solution of Autonomous Linear Equation in n-spaces
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Abstract: In this study, we proposed the method of response surface exploration for approximating the global

equilibrium of the autonomous differential equation

duit) -
e +Ault) =0

u(0)=u,,ue R*,teR

It 13 shown that the gradient type stochastic approxmmation sequence arising from this method converges
strongly to u'eR", where the initial value problem attains its global equilibrium.
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INTRODUCTION

Tt is well known that for any continuous linear
operator A in a Banach Space X, the ordinary differential
equation

d—u+Au:0 u(0) =u, (1)
dt

1s solvable uniquely. At the poimt where

du_ (2)
dt

the trajectory U(t) through T(0) approaches a single
point (1solated point), say, ¢ as t tends to infimty. ¢ is in
fact the equilibrium pomt of the system. An early
fundamental result in the existence of global solution of
autonomous differential equation, due to (Martin, 1970)
states that the imtial value problem (1) 15 solvable
umquely on [0, «) if A 1s a continuous accretive operator.

Examples of how such initial value problems (1) arise
are found in models involving either the heat or wave or
the Schrodinger equation.

Considerable efforts have been devoted to
developing constructive techniques for the determination
of the equilibrium of the system (1) (Chidume, 1997).

Closely related to this problem in R"1s the solution of
systems of linear equations

E agu, =b, (3)

Several significant problems where (3) arise are found
in models involving autonomous differential equations in
n-Spaces (Ladde et al.,, 1992)

Observe that a real n * n matrix A = {a;} defines a
linear operator on R" so that 1f (A u, u)20 for any ue R"
then f(u) = 1/2(Awu)-bu is a convex, real valued function,
which satisfies the growth condition f{u)-< as || u/|-<. It
follows that f assumes a minimum

<u* : aLu*) —b>
du

which comcides with the equilibrium point of the system

du

—+Au=b, uw(0y=u
& (0)=u,

and also with the solution of (3). More over any
minimizing sequence of f converges to

<u,, : 'y _ b>
du

Hence the problem of determining the equilibrium
point ¢ of (1) when A = {a;} and b = 0, reduces to that of
locating the point u” at which f attains its minimum.

Iterative methods for the solution of (3) have been
studied extensively by various authors (Blum, 1972).

The purpose of this study to present a stochastic
sequence that converges strongly to the solution (1). This
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is a modification of the method used by (Okoroafor and
Ekere, 1999) in approximating the orbit and attractor of a
dynamical system.

The advantages of this algorithm are not only its
speed of convergence, compared with some other known
methods, but also its precision and its ability to overcome
the problem posed by sparcity in A.

PRELIMINARIES
x'x and

Our R" has the usual Buclidean norm |x|* =
mnner product

1
- ijyj
1=1

where x denotes the transpose of x € R".

For a fixed a £ R® and random vectors z,, z, € R", ||z|,
{z, Z:), {a, 2, are random variables in the usual sense.

Moreover, we assoclate with each random vector
z € R the expectation operator E such that E, defined by
the requirement that Ela, z,} = (a, Bz} if B|z| <.

For any x € R*let

£(x) = %(AX, x) - (b, %)

Since fis differentiable at x, then, by Taylor’s expansion,
there exists x, on the line segment between x and X such

that

4

where H(x) 1s the Hessian of at x_ so that for D(f) = {x ¢ R™:
[(x) <} + ¢ if we set

y(x))

eD(b forafixedkandj=1, ...,

= f(xk + tj)

- f(xk),

m,n+2<m<ln(n+1)
2

where t; = (t;, ...,

t,;) € R then (1) is identifiable with:

Af(x")

yx) - [af(’” J DML

1111

+()(5)

y(x), for each j 1s the outcome of an observation
corresponding to the trial point x, € E" so that y(x,),..., y(x,)

are real-valued independent observable random variables
performed on x,, %,, ...., %, for a fixed x"

e(x,),e(x,),....e(x,)

are non-observable random errors.
We can show in the foregoing that if t; € R" is chosen
such that (Pazman, 1987)

itu o and L th =1i=1,2,. (6)

=1 11

then

Theorem 1

Let {e(x)} be a sequence of identically distributed
random variables satisfying EHe(x)) = 0 for each j and
Xi...., %, are chosen in the neighbourhoed of x* such that
t;= x, - x" for a fixed k, then, the relationship between y(x))

andt for j =1, ..., m is adequately represented by
af(xk)
y(xj) = < P t)t e(xj),
Proof
Assume

N R

15 adequate to represent the relationship between
y(x) and t. Then the least square estimates of

af(xk) 18
0x

d(xk) =

M Yy(x) (7)

where M = it]t; so that

i=1

Ed(x*) =M~ Yt Ey(x,)

=1
af(xk)
dx

Assume the contrary, then by Taylor’s expansion

yx) = {Bf(x)

1111

n k
J 13, 28 eix,)
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So that
. _af(xk) | R T ,azf(xk)
Ed(x )7 - +5M ‘; > {zlti.tij e
_af(xk) 1. azf(xk) mo
T o9x +EM1 o o 0x 9% Etjt”

by Fubini’s theorem

_of(x")
 9x

by Eq. (6) and (Box and Wilson, 1951)

K
Hence under Eq. (6) we can estimate af(x ) with least

0x

square error under the assumption that f i1s a linear
function at x*. Hence the result.

THE ITERATIVE SCHEME
Let
d* =d(x™)

k
and af(x ):fk we assume further the so called
9x

Gauss-Markov condition:

Ee(xj)e(x )=8ij,ij=1..1n

1

where 0 is usually unknown and 0 < ¢° < «.

Thus for each k < is a random vector and { d&* } is a
stochastic sequence.

It follows that the sequence {x*} defined by p* < «.

(x)=x" —p'd" &)
1s a sequernce of independent random variables and

E(p(xk) —xE pkfk

Ello(x") ~E(x")| = p*E|a* - 7] =0

Elio(x") - Bo(x)|* = p™ E[d" - £ ©

=M ¢’ p* <« foreachk

CONVERGENCE THEOREM

Theorem 2
Suppose £ R” ~ R 1s defined as in where x" Ax > 0 for
any x € R*and {f’k} is a real sequence satisfying

)

Then the sequence {Xk}“’ generated by x' ¢ R
=

o
@(x") = ¥ - p°d converges with probability one to the
unique minimum point x* of f a.s.

Proof
Let TF = p"df ¥ so that {T*} is a sequence of

independent random variable such that

Et* = 0 foreach k

Then by Eq. 9

i

B 7

Tk

Ngk

= M"ngﬁ <o
= =

=
1

Hence by the strong law of large numbers (Whittle, 1976)
T* - 0 as. and then |x~p*d"-(="p"*)| -0 as.

so that {@(x"} and {E@(x")} converge to the same limit
point x*

But {E@(x")} is a minimizing sequence of £,

af (x*)

so that if {x*: _0} then x* = E @(x*) and

lim H cp(xk ) fx*H =0

ke
Thus the result.
Remark; Theorem 2 remains valid if

" is replaced by p*
Such that

f(x*-p™ d) = min f(x*-pd")
so that,
*2%e

p Ll gy

Hence

k=1
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Thus for the sequence satisfying

fix* —p™*d*) =minf(x* —pd*) . {p*]"

generated by
XD = Rn’ (p(Xk) — Xk 7pkdk
converges to the unique minimum point

x offas.

The choice of

*k

P

for each k optimizes the sequence
P
Consider the iterative scheme
M = cp(xk) =x"—ptd* (10)

Tt is easy to see that the trajectories of (1) can be
associated with the asymptotic behaviour of Eg. 10.
So that

Corollary
Beginning at some initial condition x°, the sequence

of paths produced by {(p(xk)}m , through its definition
£=1

by successive iteration on the function ¢ is associated
with the trajectory of the mitial value problem (1) and
converges strongly to the global solution of the
autonomous linear differential equation.

Starting at a given initial condition x" a search for the
solution x* is conducted along the line

= %" - pfd* as follows:

* Compute as —
X

f(x*) ~d* m(7)
»  Compute 3" such that
fx"— prda) = min f(x* — pd*)
s Py
Yes. Thenx' =x
Ifno setk =k+1 and retun to 1.

Here, the search for the global solution x* 18 along the
mimimum error gradient direction which is supposed to
lead to the solution faster.
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