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Efficient L.oad Flow Method for Radial Distribution Feeders
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Abstract: This study presents a simple and efficient solution of load flow m distribution systems characterised
by their radial configuration and laterals. This iterative method, based on Kirchoff laws, have the mert to
evaluate for each node both the voltage root mean square (rms) value and phase-angles. The phase-angles
although of weak values become necessary in the reactive energy optimisation problem. To solve the lines with
laterals, a simple techmque of determmning nodes belonging branches is given. The method, requires a few
computational time and have solved successfully several line examples. The results obtained for the voltage
magnitudes and deviation-angles are compared to those of authors having worked on the subject.

Key words: Radial lines, load flow, distribution feeders, voltage

INTRODUCTION

The increasing of the electric energy needs has
forced the power suppliers to pay more attention to the
analysis of the distribution mnetworks. Generally,
distribution feeders have a high R/X ratio and their
configuration is radial. These reasons make that
distribution systems are ill-conditioned and thus
conventional method as Newton Raphson (Tinney and
Hart, 1967), fast decoupled load flow (Stott and Alsac,
1974) and their modifications (Amerongen, 1989) to
(Haque, 1993) are unsuitable for solving load flow for
most cases and fail to converge.

Literature survey shows that several non-Newton
efficient algorithms based on backward and forward
sweeps are reported (Haque, 1996) to (Rargan and Das,
2003). Haque (1996) has developed a method for radial and
mesh networks. In the mesh networks the loops are
opened and in the loop break point a dummy bus is
added. The power flow through the branch that makes the
loop 18 sumulated by myection of the same power mn the
dummy bus. The method uses the backward and forward
sweeps with initial voltage of all the nodes assumed to be
equal to that of the source bus which 1s took as reference.
No algorithm for determining automatically the nodes
after each branch is given. Ghosh and Das (1999) also
uses backward and forward sweeps with an initial voltage
of all the nodes put to be equal to 1 per-unit (p.u). In the
solution methodology Ghosh and Das (1999) gives an
algorithm for identifying the nodes beyond the line
branches. The method involve the evaluation of algebraic
expressions. It only permit the calculation of the nodes

voltage rms values. Nanda et al. (2000) solves the load
flow problem by going up and down the line and but it
assumes a voltage of 1 p.u only at the end buses of the
line (main feeder and laterals end buses). The
convergence criterion 1s this case based on the voltage
at the supply node. If the difference between the source
voltage calculated and specified is within a certain
tolerance, the solution 1s reached. Aravindhababu et al.
(2001) proposes an iterative method m which the nodes
voltage are assumed to be the voltage of the source. It
first form the branch to node matrix for than calculating
the loads and branches current; the branches voltage
drop and the nodes voltage. The convergence criterion 1s
based upon the voltage difference of two consecutive
iterations. Mekhamer et al. (2002) uses the equations
developed by Baran and Wu for each node of the feeder
but with a different procedures. In this methoed, the load
flow problem is solved by considering the larerals as a
concentrated load of the main feeder. Once the voltage
of the main feeder calculated, the first node voltage of
each lateral is put equal to the voltage of the same node
of the main feeder. The nodes voltage of the laterals are
than calculated using Baran and Wu equations. The
convergence criterion 1s made upon the active and
reactive power fed through the terminal nodes of laterals
and main feeder. Afsari et al. (2002) also uses the Baran
and Wu equations. In their method Afsari et al. (2002),
imitially estimate the voltage of the terminal nodes which
are used as an 1mtial values in the backward sweep
instead of a flat start value of 1 p.u. Any lateral is
assumed to be replaced by the total lateral load on the
main feeder. The authors method gives both voltage rms
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values and voltage phase-angles. Ranjan et al. (2003)
presents a method based on the load flow algorithm
developed by Das which is modified to mcorporate a
composite load models. This method also apply the
bacloward and forward sweeps with an initial values of the
nodes voltage assumed to be of 1 p.u. Ranjan and Das
(2003) method uses the basic principal of circuit theory
but first, the authors have developed an algorithm for
determining the nodes after each branch of the network.
However the method gives only the voltage magnitude of
each node on the basis of algebraic equations. As
convergence criterion of the algorithm, author have
proposed the difference of the active and reactive power
at the sub-station end of two successive iterations. If this
difference 1s less than 0.1 kW and 0.1 kvar; the solution 1s
reached.

Tn the present study, our main aim is the development
of an efficient method for solving radial distribution
feeders with laterals. A fast and easy to understand
algorithm for determining nodes after branches based on
the study presented by Augugliaro et al. (2001) is given.
Other benefits of the method lies in the evaluation of the
voltage phase-angles which becomes necessary if the
load flow solution 1s used in the capacitors sizing
problem. The tests carried out on several feeders with
laterals shows that our method takes few time to reach the
solution. The results obtamed by our method are
compared to those of some authors cited above.

Node and branch numbering: The numbering scheme is
not required for the proposed load flow solution of radial
distribution networks. However and for convemence, to
perform the numbering scheme we consider the example
line of Fig. 1.

First, we number the nodes of the main feeder. The
source node 18 numbered as bus number 0. The node just
ahead the source node is labelled node 1 and so on until
the end-node 4 of the main feeder. Thereafter, the nodes
of the main feeder are explored for laterals. The lateral that
branches out from the bus nearest to the source bus 1s
chosen and their buses are numbered from 5 to 6 as
shown in Fig. 1. Similarly, the bus numbers of the next
lateral (lateral out from node 3 n Fig. 1) are numbered
following the end-node of the previous lateral (7 to 8) and
so on until all the laterals nodes are numbered. For the
branch numbering, we give each branch the same number
of its receiving end-node. The feeder commectivity of
Fig. 1 15 presented in Table 1.

Node after branch determination: To determine the nodes
after each branch of the feeder, we first construct the

I - - T -

| 1 I_ I_ 1
51 7
——5 17
[61 81
-6 18

Fig. 1: Nodes and branches numbering scheme

Table 1: Feeder connectivity

Branch Sending-end [SE(i)] Recieving-end [RE(1)]
1 0 1
2 1 2
3 2 3
4 3 4
5 2 5
3] 5 6
7 3 7
8 7 8

branch-to-node incidence matrix IM. In IM the rows
indicate the identification numbers of branches and
the columns the identification numbers of nodes. The
generic elements TM(4, j) are assumed to have the values
sigmification of which are given below.

+1  if j isthereceivingend of branch i
-1 if j isthesendingendof branch i

0 otherwise

For the feeder example of Fig. 1, the branch-to-node
incidence matrix is:

1 0 0 0 0 0 0 0

-1 1 0 0 0 0 0 0

0o -1 1 0 0 0 0 0

Mo 0 0 -1 1 0 0 0 0
0o -1 0 1 0 0 0

0 0 0 0 -1 1 0 0

0 - 0 0 0 1 0

0 0 0 0 0 o -1 1

From the branch-to-node incidence matrix, we deduce
the node-to-branch incidence matrix G by simple inversion
of IM. In the node-to-branch incidence matrix, the rows
numbers are the nodes identifiers and the column
numbers identify the branches numbers. For the feeder of
Fig. 1, the node-to-branch incidence matrix G is:
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For the branch 1(column 1), the nodes which belong
it are all the rows of a non-zero values 1e., 1, 2.....8. For
the third branch (column 3), the rows of a non-zero values
are 3, 4, 7 and &, this means that after branch 3 we count
nodes 3, 4, 7 and 8.

On the basis of what have been just said and from the
(G matrix we can construct the matrix BR the rows of which
mndicate the branches number and the generic elements
indicate the nodes belonging each branch. For the line
example of Fig. 1, the construction of BR gives:

BR=

o el el ol
=R el o BN o o T o R |
[T o T oo B oo B o B oo N o BN o)

00 -1 Oy A B W M) —
[ B = T - N S S JUR W
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R =T R S B R
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The total number of nodes after branch i is noted
by M(i). M(i) is of a great utility owing to the fact that it
allows a saving in computing time by avoiding
calculation for the BR(1,3) equal to zero.

MATHEMATICAL FORMULATION

Assumptions: It i1s assumed that the three-phase radial
distribution network is balanced and thus can be
represented by its one-line diagram. Distribution lines are
of medium level voltage then, the shunt capacitance are
small and thus ignored. The single-line equivalent diagram
of a such line is shown in Fig.1.

Mathematical models: The load flow of radial distribution
network can be solved iteratively from two sets of
recursive  equations. The first set concern the
determination of the branches current by going up the
line (backward sweep). The second one allow us to
determine the nodes voltage by gomg down the line
(forward sweep).

Py Vu riHx, | A
—> =
Q. Q
Puy Qi P, Q

Fig. 2: Branch One-line diagram

Branches power and current: From the branch electric
equivalent shown in Fig. 2 we can write the set of the
above equations.

BR(i,1) BR(,2)
P= 2 P+ 2 ploss,
k=BR{,M{% k=BR(i;M(i})
(1
BR(i,1) BR(,2)
Q= 2 Q.+ E gloss,
k=BR{1,M({1])) k=BR(1,M{1))

where:

s M(i): is the total number of nodes belonging branch
1.

*  BR(1); 1 <3< M1): 1s the set of nodes beyond branch
1.

s+ P, and Q. are the active and reactive power of the
load at node k.

s Py is the active power fed through bus i. Tt is equal to
the sum of the active power of all the loads beyond
node 1 (node 1 included) plus the sum of the active
power loss in the branches beyond node i (branch i
not included).

» ;18 the reactive power fed through bus 1. It 1s equal
to the sum of the reactive power of all the loads
beyond node i (node i included) plus the sum of the
reactive power loss in the branches beyond node i
(branch i not included).

¢ ploss, is the active power loss in the kth branch.

» gloss, 1s the reactive power loss in the kth branch.
The active and reactive power loss are given by:

2 2

ploss, :Lszrk
L (2
B+ Q

gloss, =—-—=EX,

k
where :

o 1 (X)) isthe resistance (reactance) of the kth branch.

The current flowing through the ith branch 1s given
by:
P _i
1 _1Q1 (3)
Vi

F=
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Fig. 3: One-line 12-node feeder (Rajan and Das, 2003)
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Fig. 4: one-line 33-node feeder (Rajan ef al., 2003)
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Fig. 5: One-line 69-node feeder (Rajan and Das, 2003)

If the complex voltage at the node 1 s

V. =V.(cosq, + jsing,) - (3) can be expressed as:

P cosq + Qsing, . Q, cosq —Psing, (4)
v = v

i i

E =

The d and q components of the current (4) are:

_Pcosg +Qsing,

Fcli V
o (5
r . Qoosq —Bsing,
Wy

1

Nodes voltage: For the voltage and regarding our
numbering scheme, we can write the following complex
expression.

V(RE()) = V(SE(D)) ~[1(RE()) + jX(RE())].
[F, (REGi) - jF, (RE(1))]

(6)

the d and q components of which are:

VL (RE(1)) =V, (BE() - r(REA)E,(RE(D)
— X(RE({NE, (RE®{)

V,(RE(1)) =V, (BE{1)) - X(REGADE, (REG))
+ 1(RE(D))F, (RE(Q))

(7)

where:

»  RE(i): is the receiving-end of the branch i.
s SE(i): is the sending-end of the branch i.

For the first branch the d and q components of
sending-end of the branch one are respectively equal to
1.0 pu and zero. This correspond to the source node
(node 0) which is also the reference node.

The voltage rms value and phase-angle of the
receiving-end of the branch i are given by:

VREG)) = VZ(RED) + V; (REG)
V. (REG)) ®)

@e(RE(1)) =atan V,(REG)

SOLUTION METHODOLOGY

To determine the voltage at each node of radial
distribution networks, the proposed method can be
summarized mn the following algorithm.

Step 1: Read the line data.

Step 2: Determine the nodes beyond each branch and
their total number (matrix BR and M(1)).
Initialize the voltage of all the nodes to 1p.uand
phase-angle to zero.

Perform the backward sweep to obtain the
current i each branch by using Eq. (1) to (5).
Perform the forward sweep to calculate the
voltage rms value and phase-angle at each node
by using Eq. (7) and (8).

If the voltage at each node for two successive
iterations is within a certain tolerance (10™'p.u)
the solution is reached go to step 7 else, repeat
step 4 to 6 until the convergence criterion is

reached.
Read the results.

Step 3:
Step 4:

Step 5:

Step 6:

Step 7:
APPLICATION
To check the validity of the proposed method, an

algorithm was implemented in Matlab. Several tests
were carried out to verify its accuracy and convergence
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behaviour. Three sample radial lines; 12-node system
(Das, 1994) of Fig. 3, 33-node system (Ranjan and Das,
2003) shown m Fig. 4 and 69-node system (Raman ef al.,
2003) represented n Fig. 5.

CONCLUSIONS

In tlus study, a simple and efficient load flow
solution has been proposed for determining voltage
rms  values and phase-angles of radial distribution
feeders. A simple to understand method to number the
nodes beyond each branch was put ahead. If the
number of iterations is relatively great in our case,

Table 2: 12-nodeload flow solution, tolerance 107*

the time to reach the final solution is weak although
compared to authors cited in this study, in our study we
have considered the phase-angles calculation (Table 6).
From the results point of view (Table 2-5), the values
obtained for the rms values are comparable to those
given in references (Das, 1994) for the 12-node system
{(Table 7) (Ramyjan and Das, 2003) for the 33-node system
(Ramjan et al., 2003) (Table 8) and for 69-node system
(Table 9). The deviation in the results are between [0; 29
10°%] if the tolerance is of 107~ puand [0; 9107 %] if
the tolerance is of 107 "p.u for the 12-node system. The
results deviation is between [0 ; 10.62 107°%] for the 33-
node system and [0; 2.18 107 %] for the 69-node system.

Node n° Vinp.u @ inrd No. of iterations Cpu_in (sec) Total power losses
0 1.000000 0.000000

1 0.994332 0.002029

2 0.989030 0.003899

3 0.980578 0.007020

4 0.969823 0.010973 Active:

5 0.966536 0.012181 13 0.031 20.714 kW

6 0.963750 0.013236

7 0.955311 0.017652 Reactive:

8 0.947281 0.021681 08.041 k'VAr
9 0.944470 0.023004

10 0.943578 0.023417

11 0.943379 0.023541

Table 3: 12-nodeload flow solution, tolerance 1077

Node n° Vinpu pinrd No. of iterations Cpu in (sec) Total power losses
0 1.000000 0.000000

1 0.994332 0.002029

2 0.989030 0.003899

3 0.980578 0.007020

4 0.969823 0.010973 Active:

5 0.966536 0.012181 21 0.047 20.714 kW

6 0.963749 0.013236

7 0.955309 0.017652 Reactive:

8 0.947277 0.021681 08.041 kKVAr
9 0.944461 0.023003

10 0.943563 0.023417

11 0.943354 0.023540

Table 4: 33-node load flow solution

Node n° Vinp.u pinrd Node n° Vinp.u pinrd No. of iterations Cpu in (sec)  Total power losses
0 1.000000 0.000000 17 0.903915 -0.012124

1 0.997014 0.000238 18 0.996486 0.000049

2 0.982882 0.001673 19 0.992908 -0.001120

3 0.975373 0.002827 20 0.992204 -0.001458

4 0.967946 0.003999 21 0.991567 -0.001813

5 0.949468 0.002356 22 0.9792%96 0.001132 Active:

6 0.945944 -0.001688 23 0.972625 -0.000417 19 0.062 210.986 kw
7 0.932288 -0.004367 24 0.969300 -0.001179

8 0.925956 -0.005668 25 0.947539 0.003045 Reactive:

9 0.920100 -0.006789 26 0.944975 0.004025 143,127 kVAr
10 0.919233 -0.006660 27 0.933533 0.005473

11 0.917722 -0.006456 28 0.925314 0.006833

12 0.911552 -0.008083 29 0.921758 0.008671

13 0.909273 -0.009485 30 0.917599 0.007197

14 0.907862 -0.010157 31 0.916689 0.006793

15 0.906503 -0.010573 32 0.916414 0.006657

16 0.904486 -0.011951
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Node n° Vinp.u ipinrd Node n° Vinpu ipinrd No. of iterations Cpuin (sec)  Total power losses

0 1.000000 0.000000 35 0.999919 -0.000052

1 0.999067 -0.000021 36 0.999747 -0.000164

2 0.999933 -0.000043 37 0.999589 -0.000206

3 0.999840 -0.000103 38 0.999543 -0.000218

4 0.999021 -0.000323 39 0.999541 -0.000219

5 0.990086 0.000860 40 0.998843 -0.000410

6 0.980794 0.002113 41 0.998551 -0.000491

7 0.978578 0.002413 42 0.998512 -0.000502

8 0.977445 0.002567 43 0.998504 -0.000505

9 0.972447 0.004045 44 0.998405 -0.000536

10 0.971347 0.004372 45 0.998405 -0.000536

11 0.968187 0.005293 46 0.999789 -0.000134

12 0.965265 0.006101 47 0.998544 -0.000917

13 0.962368 0.006909 48 0.994699 -0.003344

14 0.959500 0.007711 49 0.994154 -0.003690

15 0.958967 0.007861 50 0.978543 0.002418

16 0.958088 0.008108 51 0.978533 0.002421 Active:

17 0.958081 0.008111 52 0.974659 0.002949 25 0.078 224.946 kW

18 0.957620 0.008260 53 0.971416 0.0033%6

19 0.957326 0.008357 54 0.966942 0.004017 Reactive:

20 0.956851 0.008513 55 0.962574 0.004628 102,139 kVAr

21 0.956853 0.008516 56 0.940100 0.011549

22 0.956792 0.008541 57 0.929041 0.015084

23 0.956646 0.008593 58 0.924763 0.016498

24 0.956486 0.008648 59 0.919740 0.018321

25 0.956428 0.008671 60 0.912344 0.019527

26 0.956457 0.008699 6l 0.912059 0.019574

27 0.999926 -0.000046 62 0.911476 0.019438

28 0.999859 -0.000082 63 0.909782 0.019951

29 0.999762 -0.000037 o4 0.909219 0.020045

30 0.999745 -0.000029 05 0.971290 0.004392

31 0.999661 0.000011 66 0.971289 0.004393

32 0.999457 0.000106 67 0.967857 0.005399

33 0.999228 0.000244 68 0.967856 0.005399

34 0.999161 0.000262

Table 6: Speed comparison (results from (Ghosh and Das, 1999)

Method CPU time (5) No. of iterations

Mekhamer et . (2002) 0.05 (9-node network) 1

Ghosh and Das (1999) 0.09 (33-node network) 3
0.16 (69-node network) 3

Renato load flow 0.14 (33-node network) 4

using forward sweep 0.33 (69-node network) 4

Kersting load flow 0.16 (33-node network) 4

using ladder technique 0.37 (69-node network) 4

Proposed method 0.047 (9-node network) 13
0.062 (33-node network) 9
0.078 (69-node network) 25

Table 7: 12-node line data (Das, 1991)

Branchn® Sending- end Receiving-end r (ohms) X (ohms) P at RE(i) kW Q. at RE() KVAr

1 0 1 1.093 0.455 60 60

2 1 2 1.184 0.494 40 30

3 2 3 2.095 0.873 55 55

4 3 4 3.188 1.329 30 30

5 4 5 1.093 0.455 20 15

6 5 6 1.002 0417 55 55

7 6 7 4.403 1.215 45 45

8 7 8 5.642 1.597 40 40

9 8 9 2.890 0.818 35 30

10 9 10 1.514 0.428 40 30

11 10 11 1.238 0.351 15 15
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Table 8: 33-node line data (Ranjan and Das, 2003)

Branch n® Sending- end Receiving-end r (ohms) X (ohms) P at RE(i) kW Q. at RE(i) KVAr
1 0 1 0.0922 0.0477 100 60
2 1 2 0.4930 0.2511 90 40
3 2 3 0.3660 0.1864 120 80
4 3 4 0.3811 0.1941 60 30
5 4 5 0.8190 0.7070 60 20
6 5 3] 0.1872 0.6188 200 100
7 [ 7 1.7114 1.2351 200 100
8 7 8 1.0300 0.7400 60 20
9 8 9 1.0400 0.7400 60 20
10 9 10 0.1966 0.0650 45 30
11 10 11 03744 0.1238 60 35
12 11 12 1.4680 1.1550 60 35
13 12 13 0.5416 0.7129 120 80
14 13 14 0.5910 0.5260 60 10
15 14 15 0.7463 0.5450 60 20
16 15 16 1.2890 1.7210 60 20
17 16 17 0.7320 0.5740 90 40
18 1 18 0.1640 0.1565 90 40
19 18 19 1.5042 1.3554 90 40
20 19 20 0.4095 0.4784 90 40
21 20 21 0.7089 0.9373 90 40
22 2 22 0.4512 0.3083 90 50
23 22 23 0.8980 0.7091 420 200
24 23 24 0.8960 0.7011 420 200
25 5 25 0.2030 0.1034 60 25
26 25 26 0.2842 0.1447 60 25
27 26 27 1.0590 0.9337 60 20
28 27 28 0.8042 0.7006 120 70
29 28 29 0.5075 0.2585 200 600
30 29 30 0.9744 0.9630 150 70
31 30 31 0.3105 0.3619 210 100
32 31 32 0.3410 0.5302 60 40

Table 9: 69-node line data (Ranjan et ., 2003)

Branch n® Sending- end Receiving-end r (ohms) X (ohms) P at RE(i) kW Q at RE() KVAr
1 0 1 0.0005 0.0012 0.0 0.0
2 1 2 0.0005 0.0012 0.0 0.0
3 2 3 0.0015 0.0036 0.0 0.0
4 3 4 0.0251 0.0294 0.0 0.0
5 4 5 0.3660 0.1864 2.6 2.2
6 5 [ 0.3811 0.1941 40.4 30.0
7 [ 7 0.0922 0.0470 75.0 54.0
8 7 8 0.0493 0.0251 30.0 22.0
9 8 9 0.8190 0.2707 28.0 19.0
10 9 10 0.1872 0.0619 145.0 104.0
11 10 11 0.7114 0.2351 145.0 104.0
12 11 12 1.0300 0.3400 8.0 5.0
13 12 13 1.0440 0.3450 8.0 5.5
14 13 14 1.0580 0.3495 0.0 0.0
15 14 15 0.1966 0.0650 45.5 30.0
16 15 16 0.3744 0.1238 60.0 35.0
17 16 17 0.0047 0.0016 60.0 35.0
18 17 18 0.3276 0.1083 0.0 0.0
19 18 19 0.2106 0.0690 1.0 0.6
20 19 20 0.3416 01129 114.0 81.0
21 20 21 0.0140 0.0046 5.0 35
22 21 22 0.1591 0.0526 0.0 0.0
23 22 23 0.3463 0.1145 28.0 20.0
24 23 24 0.7488 0.2475 0.0 0.0
25 24 25 0.3089 0.1021 14.0 10.0
26 25 26 0.1732 0.0572 14.0 10.0
27 2 27 0.0044 0.0108 26.0 18.6
28 27 28 0.0640 0.1565 26.0 18.6
29 28 29 0.3978 0.1315 0.0 0.0
30 29 30 0.0702 0.0232 0.0 0.0
31 30 31 0.3510 0.1160 0.0 0.0
32 31 32 0.8390 0.2816 14.0 10.0
33 32 33 1.7080 0.5646 9.5 14.0
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Table 9: Continued

Branch n® Sending-end Receiving-end r (ohims) X (ohms) P at RE (i) kW O at RE (i) KVAr
34 33 34 1.4740 04873 6.00 4.00
35 2 35 0.0044 0.0108 26.00 18.55
36 35 36 0.0640 0.1565 26.00 18.55
37 36 37 0.1053 0.1230 0.00 0.00
38 37 38 0.0304 0.0355 24.00 17.00
39 38 39 0.0018 0.0021 24.00 17.00
40 39 40 0.7283 0.8509 1.20 1.00
41 40 41 0.3100 0.3623 0.00 0.00
42 41 42 0.0410 0.0478 6.00 4.30
43 42 43 0.0092 0.0116 0.00 0.00
44 43 44 0.1089 01373 3922 26.30
45 44 45 0.0009 0.0012 3922 26.30
46 3 46 0.0034 0.0084 0.00 0.00
47 46 47 0.0851 0.2083 79.00 56.40
48 47 48 0.2898 0.7091 384.70 274.50
49 48 49 0.0822 0.2011 384.70 274.50
50 & 50 0.0928 0.0473 40.50 28.30
51 50 51 0.3319 01114 3.60 2.70
52 7 52 0.1740 0.0886 4.35 3.50
53 52 53 0.2030 0.1034 26.40 19.00
54 53 54 0.2842 01447 24.00 17.20
55 54 55 0.2813 0.1433 0.00 0.00
56 55 56 1.5900 0.5337 0.00 0.00
57 56 57 0.7837 0.2630 0.00 0.00
58 57 58 0.3042 0.1006 100.00 72.00
59 58 59 0.3861 01172 0.00 0.00
60 59 60 0.5075 0.2585 1244.00 888.00
61 60 6l 0.0974 0.04%96 32.00 23.00
62 &l 62 0.1450 0.0738 0.00 0.00
63 62 63 0.7105 03619 227.00 162.00
64 a3 o4 1.0410 0.5302 59.00 42.00
65 9 65 0.2012 0.0611 18.00 13.00
66 a5 66 0.0047 0.0014 18.00 13.00
67 10 67 0.7394 0.2444 28.00 20.00
68 67 68 0.0047 0.0016 28.00 20.00
REFERENCES Haque, M.H., 1996. Efficient load flow method for

Amerongen, RAM. V., 1989. A general-purposeversion of
the fast decoupled load flow. IEEE Trans., PWRS-
4: 760-766.

Aravindhababu, P. et al., 2001. A novel technique for the
analysis of rdial distribution systems. Elect. Power
and Energy Sys., 23: 167-171.

Afsari, M. et al, 2002, A fast power flow solution of radial
distribution networks. Elect. Power Components Sys.,
30: 1065-1074.

Augugliaro, A. ef al., 2001. An efficient iterative for load-

flow solution in radial distribution networks. TEEE

Porto Power Tech. Conference 2001; 10-13 Sept.,

Porto, Portugal.

D, 1994, Novel method for solving radial
distribution networks. TEEE Proc. Gene. Trans.
Distrib., 141: 291-298.

Ghosh, S. and D. Das, 1999. Method for lead-flow
solution of radial distribution networks. IEEE Proc.
Gene. Trans. Distrib., 146: 641-648.

Haque, M.H., 1993. Novel decoupled load flow method.
IEEE Proc. C, 140: 199-205.

Das

s

distribution  systems with radial or mesh
configuration. TEEE Proc. Gene. Trans. Distrib.,
143: 33-38.

Mekhamer, S.F. efal., 2002. Load flow solution of radial
distribution feeders: a new contribution. Elect. Power
and Energy Sys., 24: 701-707.

Nanda, I. et al., 2000. New finding on radial distribution
systems load flow algorithms. TEEE Trans. Power
Sys., pp: 1157-1161.

Ramjan, R., B. Venkatesh and D. Das, 2003. Voltage
stability analysis of radial distribution networks.
Elect. Power Components Sys., 31: 501-511.

Ranjan, R. and D. Das, 2003. Simple and efficient computer
algorithm to solve radial distribution networks.
Electric Power Compoenents Sys., 31: 95-107.

Stott, B. and O. Alsac, 1974. Fast decoupled load flow.
IEEE Trans. Power Apparatus Sys., 93: 859-869.
Timey, W.G. and C.E. Hart, 1967. Power flow solutions
by newton’s method. TEEE  Trans. Power

Apparatus Sys., 86: 1449-1457.

2748



	JAS.pdf
	Page 1


