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Abstract: In this study, the generalized special Dodd-Bullough-Mikhailov Equations u,—u,, = ¢e™ + Pe ™ is
studied. The existence of periodic wave and unbounded wave solutions of this equation is proved by using
the method of bifurcation theory of dynamical systems. Some exact explicit parametric representations of the

above traveling solutions are also obtained.
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INTRODUCTION

In this study, we consider the following Generalized
Special Dodd-Bullough-Mikhailov (GSDBM) equation

-, = o™+ Pe™ (1

where «, p are two non-zero real number, m, nx1
are positive mteger. Specially, when m = 1, n = 2 and
@ =p = -1, (1) is called the Dodd-Bullough-Mikhailov
equation (DBM), whenm =1, n=1anda=p=-1/2, (1)
is  called the sinh-Gordon equation. This equation
appears 1n problems varying from fluid flow to quantum
field theory. Recently, by using the tanh method
(Wazwaz, 2005) considered some solitary wave and
periodic wave solutions for the special DBM equation. In
this study, we mvestigate dynamical behavior of
solutions of Eq. (1). To answer this question, we shall
consider the bifurcations of travelling wave solutions of
(1) in the five-parameter space (¢, p, m, n, c).

Making the transformations u(x, t) = In v(x, t), (1)
becomes

v, —v. —vv_ +vi=av™ 7+ By (2)

Letv(x —ct) = p(x — ct) = H(E). Substituting d(x - ct) into
(2), we obtain

(o ~D(P" — (¢)") = o™ + B 3)

where “/” is the derivative with respect to £. Clearly, (3) is
equivalent to the following two-dimensional system:

@: v d_y _ (CZ 71)¢n—2y2 + a¢m+n + B (4)
2 dg (e’ D¢

System (4) has the first integrals

20
m(c’ —1)

ZB ¢2—n (5)

LA nfc’ -1

y =¢'h+

Systemn (4) 1s planar dynamical systems defmed m
the S-parameter space (¢, B, m, n, ¢).

Because the phase orbits defined by the vector fields
of (4) determine all travelling wave solutions, we will
investigate bifurcations of phase portraits of this system
as these parameters are varied.

Usually, a solitary wave solution of a non-linear
wave equation corresponds to a homeclinic orbit of
its travellmg wave equation, a kink (or anti-kink)
wave solution comresponds to a heteroclime orbit
(or connecting orbit). Similarly, a periodic orbit of a
travelling wave equation comresponds to a periodic
travelling wave solution of the non-linear wave equation.
To find all possible bifurcations of solitary waves,
periodic waves, kink and anti-kink wave of a non-linear
wave equation, we need to investigate the existence of
all homoclinic, heteroclinic orbits and periodic orbits for
its travelling wave equation in the parameter space. In
doing so, the bifurcation theory of dynamical systems
(Chow and Hale, 1981) is very important and useful.

We notice that by using transformation u(x, t) = In
&(x, t), we make (1) and become the traveling Eq. (4).
Therefore, we are only interesting the positive boundary
solutions of ¢(&). In addition, if a solution $(E) of (4
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can approach to Gp(E) = 0, then In(¢p(E)) approach to — oo
In other words, this solution determines an unbounded
travelling wave solution of (1).

Tt is easy to see that the right-hand side of the
second equation 1n (4) 1s generally not continuous
when ((£) = 0. In other words, on such straight lines in
the phase plane (p, y), the function ¢“; 13 not well-
defined. It implies that the smooth system (1) sometimes
have non-smooth travelling wave solutions. This
phenomenon has been considered before by (Li and
Chen, 2005; Li and Zhenrong, 2000, 2002) in which the
authors had already pointed out that the existence of such
a singular straight line for a travelling wave equation is
the very reason why travelling waves can lose their
smoothness.

BIFURCATIONS OF PHASE PORTRAITS
OF SYSTEMS (4)

System (4) have the same phase orbits for the cases
n=1, or n>2 as the following systems, respectively

9019y, ¥ (e -1y + a0+ ©)
dt dt

and

Q@ 10y T = - pey ot g ()
dt dt

except for the straight line ¢ = 0, where d& = (¢’ - 1)ddr
and df = (¢* - 1)¢""'dr. By using (5) for ¢ # 0, we define

2
Y 200
H(p.y) =2 —
{0, ¥) v me 71)(13
Without loss of generality, we can assume that
¢’ - 1> 0. We see from (6) and (7) that for the equilibrium
points of these two systems, the following conclusions
hold.

- ]
n(0271)¢. h ®

¢ Whenn=1,m= 2k k € 77, system (6) has two
equilibrium points at A, (., 0) and S(0, 0), where

¢ Whenn=1,m=2k-1,keZ" ifaf <0, (6) has three
equilibrium points at A.(¢,, 0) and S(0, 0), where

¢'+ _{_B]ﬁ :
[0

ifaf > 0, (6) has one equilibrium point at S(0, 0).

» Whenn=2,m=2k-1,keZ,if (¢’ - 1)p <0, (6) has
three equilibrium points at A, (¢,, 0) and S,(0, Y,),
where

9. ‘[_B}M° Vi :t\/zi’;if (¢ =1 >0,
o ¢ -1

(7)has one equilibrium poimt at A.(¢., 0).

»  Whenn=2m=2k keZ, ifap<0,(c’- NP <0,(7)
has four equilibrium points at A(., 0) and S.(0, Y,),
where

ifaf >0 (¢ - 1)P <0, (6) has two equilibrium points
at 5.0, Y, ifafp >0, (" - 1DPp=>0 (7) has no
equilibrium point.

» Whenn=3m+n=2k+125keZ, (7) has one
equilibrium point at A,(¢p,, 0), where

s Whennz=3m+n=2k >4 keZ ifup <0, (7)has
two equilibrium points at A (¢., 0), where

¢'+ _[_BJM :
o4

ifaf > 0, (7) has no equilibrium point.

Let M(¢,, v) and M, v;) be the coefficient matrix
of the linearized system of (6) and (7) at an equilibrium
point (¢, vi), respectively. Then we have Trace (M,(d,, 0))
= OandT,(M(¢,, 0)) =detM (¢, 0))=(c' - D(m+1)Bdp .
LM, (0, 0)) = 0. For n = 2, we have Trace My(¢,, 0) =0,
Trace (M,(0, £Y,)) = 0 and J,(M,(¢.., 0)) = det (M(¢.. 0))
=(’ - 1)(m+2) P, TAMLO, £Y, ) =2(c"- 1) Y’ Forn =
3, we have, Trace (M, (., 0)) and I,(M,(¢,, 0)) = det
(M, 0)) = Blc” - 1) (m + 2) (£ ™

By the theory of planar dynamical systems, we know
that for an equilibrium point (¢, y;), of a planar integrable
system, if T < O then the equilibrium point is a saddle
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point; if T > 0 and Trace (M(d,, v,) = O then it is a center
point; if > 0 and (Trace (M(¢,, y)Y - 4I(M(¢b,, v.)) > 0
then it is a node; if J = 0 and the index of the equilibrium
point 18 zero then it 18 a cusp; 1f I = 0 and the index of the
equilibrium point is not zero then it is a high order
equilibrium pont.

For H(¢, v) defined by (8), we have

h, =H,(:0,0) =~ Do,

For a fixed h the level curve H(¢p, v) = h defined by (8)
determines a set of invariant curves of (&) and (7),
except for the straight line ¢ = 0, which contains different
branches of curves. As h is varied, it defines different
families of orbits of (6) and (7) with different dynamical
behaviors.

From the above analysis we obtain the different
phase portraits of (4) shown mFig. 1 (k, 1> 1).

EXACT EXPLICIT TRAVELLING WAVE
SOLUTIONSOF(DFORm=1,n=10Rm=1,n=2
ORm=2,n=10Rm=2,n=2

Form=n=1, (1) becomes

u, —u_ =oe" +Pe" ®)

When a = p = -1/2, (9) was called the sinh-Gordon
equation by Wazwaz (2005). In this case, (4) have the
following forms:

do _ dy_(-Dy'+ap’+fio (10)
dag dg (¢* ~1)o

with the first integrals

2 200’ B) Y_ 2a, 26
vy =¢’h+ ——F—— R (¢Y)—¢ 0271¢+(027D¢—
(11)
Form =1, n=2, (1) becomes
u, —u_ =oe’ + e (12)

Whena =P = -1, (12) was called the special (DBM)
equation by Wazwaz (2005). In this case, (4) have the
following forms:

@:yd_y:(cz—l)y2+0ub3+6 (13)
g TUdg (¢ ~Do

with the first integrals

200’ B v 20 B
f=¢'h+ =g s =h
v =¢ oD H(o,y) = ¢ Z 10 e
(14)
Form=2n=1, (1) becomes
u, —u,, =oe™ +pe™ (15)
In this case, (4) have the following forms:
do_ dy_y oo'+B (16)
dE & ¢ -1
with the first integrals
2 3 _
~1 T
Form 2, n=2, (1) becomes
u, —u, =ae’ + P (18)

In this case, (4) have the following forms:

d_qJ:yg:(czfl)y2+OL¢4+B (19)
g Tdg (¢’ ~1)o

with the first integrals

y’ 0t¢2+ B

A ok 20
H(p,y) 71 @Dy h (20)

By using (11) and (14) and (17) and (20) and the first
equations of (10) and (13) and (16) and (19) to do
integrations, we can obtain some exact explicit parametric
representations for the breaking wave solutions and
periodic wave selutions of (9) and (12) and (15) and (18).
Because the singular straight line ¢ = 0 intersects at two
node pomts with other orbits of (11) and (14) and (17) and
(20), so that, corresponding to these orbits, the travelling
wave solutions of (9) and (12) and (15) and (18) is
breaking waves.

Unbounded wave solutions of (9) and (12) and (15) and
{(18): For system (10), when aPp <0, f(¢’ - 1) <OQoarap <0,
B(c - 1)=0 (Fig. 1 (1), (2)), we have

ﬁf  _WR

o 02*1

Corresponding to H (+d, 0) = h, defined by (11), system
(10) has two orbits comnnecting the saddle A.(¢d., O).

Two orbits have the same algebraic equation for «ff < 0,
Blc* - 1)=<0
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Q@ 23) 24

Fig. 1: The phase portraits of (1) n=1,m=2k - 1, ap <0, B(c’- 1)>0,(2)n=1,m=2k+ 1, «ff < 0, (¢’ - 1) < 0,
B)n=1,m=2k ap<0,p(c’- 1)>0,(#)n=1,m=2k, ap <0, p(c’- 1)<0,(3)n=2, m=2k, ap >0, f(c’ - 1) >
0, (6)n=2,m=2k, afp>0,p(c*-1)<0,(7)n=2,m=2k-1,ap<0,p(c*- 1)<0,(8)n=2, m =2k - 1, aff >
0,B(c*-1)<0,9)n=2,m=2k, af <0,p(c’- 1)<0,(10)n=2,m=2k, afp >0, f(c’- 1)<0,(11)n=2/+1,m=
2k+1,ap<0,B(c- 1)>0,(12)n=20+1,m=2k+ 1, ap <0, f(c* - 1)<0, (13)n=2/- 1,m =2k, ap <0, p(c* -
1)>0,(14)n=2/-1,m=2k, ap<0,B(c*- 1)<0,(15)n=2/- 1, m=2k, ap >0, p(c’- 1)>0,(16)n=2/- 1, m=
2k, aB>0,B(c- 1)>0,(17)n=20,m=2k - 1,ap <0, B(c* - 1)>0,(18)n=2(1+1), m=2k - 1, ap <0, p(c* - 1)
<0,(19)n=2,m=2k- 1, P >0, p(c - 1)>0,(20)n=2(1+ 1), m =2k, ap >0, B(c* - 1)<0, (21)n =2/, m =2k,
ap<0,p(c’- 1)>0,(22)n=2(1+1), m=2k, ap <0, f(c’ - 1)<0,(23)n=2/,m =2k, afp > 0, B(c* - 1) <0, (24)n
=2]>2m=2k, afp>0,p(c’-1)>0
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7 =00 20

C

and for ap <0, fic* - 1)>0

yz __ . (—(I)) (¢_¢+)2 (22)
c -1

Thus, from (21), we obtain the parametric
representations of the arch orbit, for (0, ) as follows:

$(&) =0, tanh’ (&) (23)

where

1} 2

2V -1

) =

clearly, we have that &(0) = 0, Gp(Ee) = b, .
Tt follows that Eq. (9) has one unbounded wave
solution with the parametric representations

ulx.t) =Ind{x —ct) = In(d, tanh* (e (x —ct))). x —ct € (0,<)
24

From (22), we obtain the parametric representations
of the arch orbit for £€(0, T) as follows:

P(E) = 9. tan’ () (25)

where

1 [-2a0 P -1
(D__\/ 2a¢+=T:ﬂ - 2
2¥ e -1 —20007

clearly, we have that G(0)y =0, $(T) = ==.
It follows that Eq. (9) has one unbounded wave
solution with the parametric representations

u(x,t) =In{o, tan’(o{x —ct))),x —cte (0, T) (26)

For system (13), when <, f>0,¢* - 1< 0 or <0,
Pp=<0,¢-1=0(Fig 1(7), (&), we have

L

3 =3
¢+ _(_B} * h, :Cz *1¢+.

[0

Corresponding to H,(¢., 0) defined by (14), system (13)
has two orbits comnecting the node pomnts S, and the

saddle A.(d,, 0) and also has an arch orbit connecting
two node S. i the left (or right) side of the straight line

¢ = 0. Three orbits have the same algebraic equation for
<0 p>0,c"-1<0

2 20
¢t -1

(¢+%¢+ X9, — 0 27

org<0,p<0,c"-1>0

=20
¢’ -1

¥t = vm%mxmm)z (28)

Thus, from (27), we obtain the parametric
representations of the arch orbit of (13), respectively, for
Ec(-T,, T)), Ee(T,, ) and Ee(-==, - T,) as follows:

o(E) = f%m +§¢+ tanh? (6,8) (29)

where

_ / 30, e Ly,
R T, Tl_mztanh (J§)

Clearly, we have that $(T)) =0, p(Leo) = ¢,
Tt follows that Eq. (12) has two unbounded wave
solutions with the parametric representations

ux,t) = 1n(—%¢+ + %¢+ tanh’ (o, (x — ct)), (30)

forx —cte(-T,, T,), x — cte(T,, =) and x — cte(—o0, -T,).

From (18), we obtain the parametric representations
of the arch orbit of (13), for £e(-T,, T,), £&(T,, «) and
Ee(—cc, —T,) as follows:

oE) = f%m + %m tenh? (9,8 (31)

where

- ’ 304, D Ly
I Prcy Tfmjtanh 7

Clearly, we have that G(T,) =0, Pp(£) = &,.

It follows that Eq. (12). has two unbounded
wave solutions with the parametric representations for
X — cte(~T,, T,), x — cte(T,, «) and x — cte(—o0, - T,).

2860



J. Applied Sci., 6 (14): 2856-2865, 2006

u(x,t)= ln(—%q>+ + %m tanh’ (m,(x —ct)))  (32)

Especially, when « = p = -1, the special DBM
equation has the unbounded wave solution for x -
cte(-T,, T;)

S L3 zl/i _ 33
u(x, 1) 1{2 2tanh {2 ctl(x ct)ﬂ (33)

where

¢l -1 1
T, = tanh ' (—=).
2 3 { 3)

N

For system (16), when ¢« <0, B> 0,¢* -1 <0
(Fig. 1 (4)), we have

1

o g ] mm e
o ¢ -1

Corresponding to H,(¢., 0) = h, defined by (17), system
(16) has two orbits connecting the saddle A.(¢., 0).
Two orbits have the same algebraic equation for o <,
p=0,-1<0

¥ =000 (34)

02
Thus, from (34), we obtain the parametric

representations of the arch orbit for x - cote(-T,, T,),
X — cte(T,, o) and x — cte(—o0, —T,) as follows:

I S 35
e 3tanh’{m,E) -2 G

2
o -y
8(c —1) o, 3

Clearly, we have that G(T,) = e, dp(£=)=0.

It follows that Eq. (15) has two unbounded wave
solutions with the parametric representations for x -
cte(T,, =) and x — ote(—=, —T,) as follows:

o, } (36)
3tanh’ (m,(x —ct)) -2

where

u(x,t) =Ind(x —ct) = lr{

For system (19), whenp <0, B(c® - 1) <0 (Fig. 1 (9)),
we have

0, _{E]E,hl = —220'- ¢i
o ¢ —1

Corresponding to H,(¢,, 0) = h, defined by (20), system
(19) has two orbits connecting the node points 3, and the
saddle A.(d,, 0), respectively. Four orbits have the same
algebraic equation for ¢ <0, B(c* - 1) <0

o
-1

y' = (9" —¢l) (37)

Thus, from (37), we obtain the parametric
representations of the arch orbit for £e(0, <) and £e(—es, 0}
as follows:

O(E) ==, tanh(m,£) (38)

where

, o
o =, -1

Clearly, we have that $(0) = 0, d(£==) = +..

It follows that Eq. (18) has two unbounded wave
solutions with the parametric representations for x -
cte(0, «) and x — cte(—o0, 0)

u(x,t) =Ind(x —ct) = In(+o, tanh{em, (x —ct))) (39

Uncountable infinite many exact explicit unbounded wave
solutions: For system (13), when o <0, B > 0,¢’ - 1
<0ora<0,B>0 ¢ -1>0(Fig 1(7), (8)), we have

L

3 =30
¢+—[_BJ o

[0

Corresponding to H,(¢,, 0) =h,, he(~, 0) defined by (14),
system (13) has two families of arch orbits connecting
two node pomts S, which lie m the left (or right) side
of the straight line ¢ = 0, respectively. These orbits have
the algebraic equation for¢ <0, p>0,¢* - 1 <0

§
-1

s = 2% (90,00 00 0,)
¢t - ¢ —1

(40)

37
1¢ ¢’

andfora <0,p>=0,¢-1<0
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yo=gths g - P2 oxe-0,00-0)
¢ -1 ¢ -1 ¢ -1

(41)

By using (40), we obtain the parametric

representations for the right arch orbits of (13), for ¢ < 0,
P=0,c" - 1<0as follows:

9, — 050’ (LK)
en*(QE.k)

o(E)= e (-P.B) (42)

where sn (x, k) is the Jacobin elliptic functions with the
modulo k and

Ql _ —C(.(q)i _q)m)’klz _ ¢‘M 7¢m .
V2@ 1) o, 0,

P = g;sn*{ q)g,kl}q)(Pl) =0

Pu

By wusing (41), we obtain the parametric
representations for the right arch orbits of (13) for ¢ < 0,
B<0,¢-1>0

q)(é) = ¢'M - (¢'M - %)Sﬂz(Qz@,kz):@E (_Pzapz) (43)

where

_ foou =00 . du o,
N2 T 6,0

1 ey _
PZ_Q sn { q)M_q)m,kZ}q)(Pz) 0

2

Thus, (42) and (43) give rise to the following
uncountable infinite many exact explicit unbounded wave
solutions of (12) fore <0, p>0,¢* - 1> 0

b, — oysn® (€ (x —ct).k))

u(x,t)=Indp(x —ct)=In en’ (G, (x —ct)k,)

> (44)
x—cte (-P,R)
andfora <0,p<0,c*-1=0

(O =Indx - ) =In(dy, — @, — 0, $n (@, (x -~ ct)k, ).
x—cte (-P.P,) (45)

For system (19), whena3 <0, e’ - 1) <0 (Fig. 1 (9)),
we have

o g m-Te
o ¢ —1

Corresponding to H,(¢, 0) = h, he(—o, 0) defined by (20),
system (19) has two families of arch orbits connecting two
node points S, which lie in the left (or right) side of the
straight line ¢ = 0, respectively. These orbits have the
algebraic equation for

g =@ [gr D0 ‘BJ— 2 p-e)o-e,)
—1( a ¢ -1

¢
46
(0-e)0-e.) “6)
By using (46), we obtain the parametric

representations for the right arch orbits of (19) for aff <0,
Blc* - 1)=<0

e, —e,) —e,(e, —e, s (LK)

- 47
e, —e, — (e —e,)sn’ (CLE k) e (-P,, ) (A7)

oy =t

where

(el —& )(62 —& )

(e —e. Xe, _34),

Y
P, _gljsn_l[ el(ez 764) kaJ:q)(Pa) =0

)
e,(e —e,)

afe, —e, e, —e,) &

Q, = :
’ Ae’ -1 ’

Thus, (47) give rise to the following uncountable
infinite many exact explicit unbounded wave solutions of
(18) for af < 0, p(c’ - 110

(e, —e,)—e,(e, —e, 30’ (Q,(x —ct),k,)
e, —e, —(e, —e, )50’ (Q,(x —ct).k,)
x—cte (-P,,P,)

u(x,t)=In &  (48)

Uncountable infinite many exact explicit periodic wave
solutions: Forn =1, m =1, ¢p < 0, pic* - 1) > 0
corresponding to H (¢, v) =h, heh,, =),

4\/%)

h. =
( ¢t -1

1

defined by (11), system (10) have a family of periodic
solutions enclosing the center (¢,, 0) which lie in the right
side of the straight line ¢ = 0, these orbits determine
uncountable infinite many periodic wave solutions of (9)

(Fig. 1 (1),
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2 2 hi P
yo= 22a1¢(¢ + (Cz D¢E}—
C (0.4 0.4 (49)
hic? —
22°L¢(¢—¢M){¢+¢M+ © DJ
¢ -1 20

Thus, from (49), we obtain the parametric
representations of the arch orbit for £e(0, P,) as follows:

oE) = o en’(mE k) (50)
where
(Dl —Jm,kf _ : zaq)M ’
Ae -1y h(c’ = 1)+ 40,
™
p o).
[E2)

1

Clearly, we have that $(0) = ¢y, G(P,) = 0.
Thus, Eq. (12) has uncountable infimte many periodic
wave solutions,

u{x,t) =In¢(x —ct) = ln((])Mcn2 (e (x —ct), k), (51)
x —cte (O,B)

Forn=2,m=1, ap <0, p(c’ - 1) > 0 corresponding
to H(¢, y) = h, heth,, =),

4f-af

h =
( ¢t -1

1

)

defined by (14), system (13) have a family of periodic
solutions enclosing the center ({,, 0) which lie in the right
side of the straight line ¢ = 0, these orbits determine
uncountable infinite many periodic wave solutions of (12)
(Fig. 1 (A7),

;20 [ 5 hic’ -1 27£ _
S —1[¢ M 2(1] (52)
S 0-0,00-0,)(0-0,)

Thus, from (52), we obtain the parametric
representations of the arch orbit for Ze(-P., P.) as follows:

¢(E_') = ¢g - ((bg - ¢M )Snz ((sziakg) (53)

_ ,—Ol(q)g D T
(DZ - 3 ,k2 - ]
2e’ -1 by = u

where

P5:LSH_1 L Jeo |
0, q)g_q)M

Clearly, we have that$(P,)=0
Thus, Eq. (12) has uncountable infimite many periodic
wave solutions,

uix, ) =Indx —ct) = m[q)g ~ (0, ~ 0, s’ (, (x —et)k, )],
x—cte (-P,P) (34)

Forn=1,m=2,ap <0, B(c* - 1)> 0 corresponding
to H(¢, y) =h he(hy, =),

defined by (17), system (16) have a family of periodic
solutions enclosing the center (¢,, 0) which lie in the right
side of the straight line ¢ = 0, these orbits determine
uncountable infimte many periodic wave solutions of (15)
(Fig. 1 (3)).

. O
Y ¢t -1

q{qf Gl 25] (55)
a

Thus, we obtain the parametric representations of the
arch orbit for £€(-P,, P;) as follows:

1
— =y (0, — Yol k, (56)
v Py — (G — 0, )0 (ol k)

where

B((DM 7¢‘) 2 ¢' _q)
— g , k3 — M m
P 2 0 0,

P, = Lsn’1 by L |
o, q)M 7¢m

Clearly, we have that ¢p(P;) =
Thus, Eq. (15) have uncountable infinite many
periodic wave solutions,

u(x, ) =Ind(x —ot) = ~In| ¢y, —(dy, ~ P (y(x —ctrky) |,
x-cte (-B,,P,) (57)

s

EXISTENCE OF UNBOUNDED
WAVE SOLUTIONS AND PERIODIC WAYE
SOLUTIONS OF (1)

Here, by using the phase portraits we show the
existence of unbounded wave and periodic wave
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solutions of (1) for any integer m = 2k +1, m = 2k. We have
mentioned that we are only interesting the positive
solutions of ¢(£), because of u(x, t) = In Gp(x - ct).

We see from Fig. 1(23) or Fig. 1(16) that
corresponding to a branch of the curves H(¢, v) =h,
or he(-os, o) or given by (8), m the right side of the
(b, v)-phase plane, there exist uncountable infinity
of $(E) (but, $'(5) are
unbounded). These solutions approach to ¢ = 0 as
E - doo These G(E) are breaking solutions of (4) near.
¢ = 0 Sumilarly, some solution families in Fig. 1 (14),
(18), (20), (22) or (12) have the same dynamical behavior.
We use Fig. 2 (2-1)-(2-7) to show these wave profiles
(k,1e Z%).

From the above discussion, we have the following

many bounded solutions

conclusions.

Theorem 1

(i) Supposethatm=2k,n=2I+1,apfp>0,p(c’- 1)>0,
heth,, ). Then, Eq. (1) has a family of uncountable
infinity many periodic wave solutions which
correspond to a branch of the curves H(d, y) = h
given by (8) in the right side of the (¢, y)-phase plane
(Fig. 1 (13)).

{(ii) Supposethatm =2k - 1,n=2Lap <0,p(c* - 1)>0,
he(h,, ). Then, Eq. (1) has a family of uncountable
mfinity many periodic wave solutions which
corresponds to a branch of the curves H{d, y) = h
given by (8) in the right side of the (¢, y)-phase plane
(Fig. 1 (17)).

(111) Suppose that Then, Eq. (1) has a family of
uncountable infimity many periodic wave solutions
which corresponds to a branch of the curves
H{d, v) =h given by (8) in the right side of the (¢, y)-
plane (Fig. 1 (21)).

Theorem 2

(1) Supposethatm=2k-1,n=2/-1,ap <0,p(c’-1)
< 0, he(-e, h). Then, Eq. (1) has a family of
uncountable infinity many unbounded wave
solutions which cormresponds to a branch of the
curves H(, v) = hgiven by (8) in the right side of the
(¢, y)-phase plane (Fig. 1 (12)).

{(ii) Supposethatm =2k, n=21+1,apf <0, p(c* - 1) <0,
he(—oo, h)). Then, Eq. (1) has a family of uncountable
mfinity many unbounded wave solutions which
corresponds to a branch of the curves H{d, y) = h
given by (8) in the right side of the phase (¢, y)-plane

(Fig. 1 (14)).

Fig. 2: The wave profiles of bounded solutions of 2-1)m =2k - 1,n=2/+1,ap <0, B(c’ - 1) <0, (2-2)m =2k n= 2/
+1Lep<O Bl D<0,23m=2kn=21+1,apf>0,pfc - 1DN<0,2-4Hm=2k-1,n=21+1,ap<0,pc*- 1)
<0, (25m=2k- 1,n=2Lap>0,pc* - HN<0,26)m=2k,n=2(1+ D, ap<0, p(c* - 1) <0, (2-7) m = 2k,

n=2(1+1),af>0 Pl -1)>0
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(iii) Supposethatm =2k - 1,n=2L ap <0, f(c* - 1) <0,
he(—oo, h)). Then, Eq. (1) has a family of uncountable
infinity many unbounded wave solutions which
corresponds to a branch of the curves H(d, y) = h
given by (8) in the right side of the (¢, y)-phase plane
(Fig. 1 (18)).

(iv) Suppose thatm = 2k, n= 2L afp <0, p(c* - 1) > 0,
he(-20, k). Then, Eq. (1) has a family of uncountable
infinity many unbounded wave solutions which
corresponds to a branch of the curves H(dp, y) = h
given by (8) in the right side of the (¢, y)-phase plane
(Fig. 1 (22)).

(v) Supposethatm=2k-1,n=21+1,¢f>0,p(" - 1)
< 0, he(—ee, +eo). Then, Eq. (1) has a family of
uncountable infimty many unbounded wave
solutions which corresponds to a branch of the
curves H(}p, y) =h given by (8) in the right side of the
(. y)-plane (Fig. 1 (16)),

(vi) Suppose thatm =2k -1, n=2L af>0, (¢’ - 1) <0,
he( =20, +o0) Then, Eq. (1) has a family of uncountable
infinity many unbounded wave solutions which
corresponds to a branch of the curves H(dp, y) = h
given by (8) in the right side of the (¢, y)-phase plane
(Fig. 1(20)).

(vii) Suppose that m = 2k, n =21 af > 0, f(c* - 1) <0,
he(—oo, +=0). Then, Eq. (1) has a family of uncountable
wnfinity  many solutions
whichcorresponds to a branch of the curves H(¢d, y)
= h given by (8) in the right side of the (¢, y)-phase
plane (Fig. 1 (23)).

unbounded  wave
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