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Comparison of the One-Dimensional and Two-Dimensional Arterial Models
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Abstract: Modeling 1s an important tool of mathematics that has been i used for over a century. However there
have been underlying assumption that the more complicated a model the better the result. We compare the one
dimensional arterial model which is easily solvable analytically with a two dimensional model of the arterial tree.
We find out that in the steady state of flow the two models lead to the same result.
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INTRODUCTION

The advent of mathematical modeling was mtroduced
through the work of Frank in 1899 who introduced the
Windkessel model as a mathematical tool for describing
the arterial pulse waves. Over the decades the bug has
caught on and many useful deductions and nsights have
been made using this tool. There have been various
models ranging from the one dimensional, linear and
non-linear models (Anliker et al, 1974, Kivity and
Collins, 1974a,b; Hoogstraten and Smit, 1978; Oghre and
Akinrelere, 2000). There have been two-dimensional
models (Warmerseley, 1955; Lou, 1975; Santabrata and
Prashanta, 2000) and the three dimensional models (Rao
and Devanathan, 1973; Krijger ef al., 1981). Every one of
these models had been very useful to the understanding
of the arterial tree.

There is no exact model that can represent all arterial
properties nor can we reproduce the complete arterial tree
because experimental verification of complex model
parameters will be tedious and conceptual understanding
of the vessel response is still clouded. Also physiological
data on arteries are still too limited to permit a model of
great details.

However the basic properties of a useful
that the model generates
waveforms, which are free from artifacts resulting from the
models itself or from the computational techmiques. The
assumptions on which the model is based should be
realistic and related to the problem. Thus the choice of
model, its degree of complexity and computational scheme
of solution are crucial to the model.

In this study we compare the usual one-dimensional
and two-dimensional models of the arterial tree to
of these better describes the
characteristics of the arteries.

mathematical model 1is

ascertain  which

MATHEMATICAL FORMULATION

One-dimensional equation: The vessel is assumed to be
circular, 1solated and elastic. Blood 1s approximated as a
Newtonian, fluid of constant viscosity and density,
incompressible flow described by the Navier-Stoke
equations. The pressure amplitude 13 assumed small and
its wavelength long relative to the vessel radius. Blood
flow is laminar and velocity profile can generally be
considered radially axi-symmetric. Under the assumption
of one dimensionality the control theory gives the
continuity equation as

9A  O(uA)

oL ARy (1)
dt ax

where A denotes the cross sectional area of the
artery, u the axial blood velocity (average over the cross-
section), X the axial coordinate and t is the time. The first
term is the rate of storage of blood within the arterial
segment; the second 1s the difference between the blood
flowing into and out of the segment in the axial direction.

The second fluid dynamics relation 15 the momentum
equation, which balances inertia, friction and pressure
forces acting on the blood. In one dimension it is given as

p@+pua—u+a—P+t:0 (2)
ot ax  ox

where P is the pressure difference across the tube
and p is the fluid density. The first term is the acceleration
of the blood; the second is the convective acceleration
due to axial rate of change of velocity, the third the
pressure gradient and the fourth term represents the
friction at walls of the arteries.
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Although the shear stress in pulsating flows is not
directly related to the instantaneous mean velocity, it is
assumed to be given by the laminar Poiseuille relation

= Snuu (3)
A

where p 15 the blood viscosity.
Eq. 4 then becomes

du o0 10P _ Smu (4)
ot g pox pA

It 15 assumed that the lumen area 1s related
stantaneously to the pressure (Vander Werff, 1974) and
there 1s no phase lag; thus the one dimension state
equation 1s given as

A=AXP) (5
We shall consider later Eq. 1, 4 and 5

Two-dimensional equations: For the two dimensional
equation we use the cylindrical coordinate system (r, 8, x)
with the x axis aligned with the local vessel axial direction.
The velocity m the circumnferential direction is assumed to
be zero. This removes any dependency on 0 within the
model. Thus the Navier-Stoke equations which govemn
Newtonian fluid flow reduce to (Lou, 1975; Smith et ai.,
2002)

ou ou du 1dp d'u 19u ) (4

A e A e N )

ot o or  pox ax! rar  ar’
o 1ov

ov O Loy o ekt rar (7)

at ax g por v v
e

In Eq. 6 and 7 x and r are the axial and radial
directions respectively while u and v are the axial and
radial velocity. The pressure is denoted by p, kinematic
viscosity by and density by. The first terms in each of
Eq. 6 and 7 are the acceleration in the respective axial and
radial direction, the next two terms are the convective
acceleration while the last terms are the pressure term
while the terms on the right sides the viscous terms are
represented. The
dimensional 1s given by:

conservation of mass 1 two-

@+X+i =0 (8)
9x 1 or

We adopt the dimensional analysis of Smith et al
(2002) as follows:

A 5
t="1t, p=pU’p’ 9)
ot p=pUp

where Uand V are characteristic axial and radial velocities
and A is a characteristic length defined by A =RU/V
where R is the characteristic inner vessel radius.

Using these transformation Eq. 6 and 7 become

" Lou
* (10)
Lou” 9 o (VoW lod 9t
Voot = v am T oo T
of ox’ UR!|U*ox? o’ o”
o L,ovt L,ov o
covtlae e TV TR
_ap Vo (11)
of U (VvioW 1ov v W
— ——
Ulox” o 1t ot

If we assume that the radial velocity is small
compared to the axial velocity then terms multiply by
V*/U? can be neglected and Eq. 10 becomes:

o Lo o0 ap ?w(lau’ azu'}
+ +

R i e T oo ar T A
ot ox ar o9x" UR®| r or or

Le.

oo B w a(

_ 22 a2
ot’ ox’ o  9x” URYor 4

ar

P _g (13)

or
Equation 13  implies that the pressure is
constant across the vessel «cross section. The

continuity Eq. 8 can also be transformed and written in the
form:
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a(r’ "
(rw) A7)
at ax (14)
9(r'uv’) N 2(r'p’) _ 9 r’%
ar’ ax’  UR*a’l o

The continuity Eq. 8 can also be transform and
written in the form:

a{rv') _

arr

d{rn’)
PV

(15)

If we introduce a nen-diunensional immer radius
quantity and integrate Hq. 14 and 15 from 1" = 0 and 1’ =
R’ we have:

RJ LA s ror a LA s r 7
— (rudr) [ ]R Bt Bx’{[ruzdr} —[rqu
(16)
aR, £orr " ra(P’) ’ ;\-'D rau,
§+ [ruv]R, +'D|.r—ax, dr _UR{r ar']{’

oY%
—{ J‘r'u'dr'} V] e—=+ V] =0 A7)
X o
Since the wall 1s a streamline surface,
. dRr’ n OR’
[V]Rli atf+[V]R’axr (18)
or
rorr aR-’ r o aR-’ (19)
= + .
[ ]R ] tl [ru :|R aX’
If we define the average axial velocity to be:
1%
U= _'2,[ 2r'u’dr” (20)
R 0
and the non-dimensionalized energy quantity ¢’ as:
.
s 12 ’
then Eq. 14 and 15 become:
slrof Py Fip rf2 ’
aﬁ{U)+ﬂ“R‘J) g8 _ Do [ouw] (22
at ax’ ax’  UR' | o )"
12y 1f ,
AR R @3)
ox’ at’

If we make a transformation baclk to the dimensional
quantity as r = RR’ and tu = UU’ Eq. 22 and 23 can be

written as:
a—u+2(1705)3§+0t — 1ap {&1} (24)
ot r ot ax pox or
§+uﬁ+£aiu:0 (25)
ot ox  20x
If we assume a velocity profile of the form
(Smith et al., 2002)
i
uy+2U{l {r” (26)
¥ R
If we substitute Eq. 26 into Hqg. 21 we have
v = R (27)
-1
thus Eq. 24 becomes:
%, 2(1-a) = oo 1P _21)(132 (28)
ot r ot ox pox a-1r

COMPARISM OF THE ONE DIMENSIONAL MODEL
AND THE TWO DIMENSIONAL MODEL

We shall now consider Eq. 4 and 28. For each of
these equation we require another equation which
describes the mechanics of the vessel by relating pressure
with the cross sectional area. We adopt an empirical
relationship between transmural pressure and the radius
{or cross-sectional area) of the form (Fung, 1997)

A=m (R, Pp) (29)
where R, 1s the vessel radius at zero pressure and P is the

compliant constant of the vessel. This Equation can be
written in the form

This pressure-area relation 1s sunilar to that proposed
by Olufsen (1999) with only one parameter p. Then

1

p

2 R
n

(30)

1op 1 da

Sl O i (31)
pox ZDB\/E dx
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Let us also consider the steady state by setting all
transient terms 1in Eq. 4 and 28 to zero then we have:

you 19P  8mum (32)
ox pox pA
L (33)

If we comsider a given constant flow rate Q, the
conservation of mass Eq. 1 and 25 imply that velocity u
can be expressed as:

u=_ (34)
A
au_Qd(3)
dx A dx
_QPd(3)da
A dA dx
L _Qlda (35)
ox A’ dx

If we substitute Eq. 31 and 35 into Eq. 32 and 33 we
have:

2
SQda, 1 da smQ (36)
A’ dx  2pPAm dx A

2
—OLQ—E%Jr L R % (37)
AT dx 2pPyJ AR dx o-1A
RESULTS

Equation 36 and 37 are virtually the same except for
some constant and both can be integrated by separable
variable method to determine the value of x as:

i
2

A
-Q'log A + P =—8nuQx + C

ppVT

CaQtlog, A+ —_ — g Y

SpBYT o-

x+ C
1Q

This shows that the one-dimensional model and the
two dimensional model lead to the same determination of
the site x when steady state of flow 13 consider. In each
case the coefficient of x is the measure of the viscous
term. Thus we conclude that the use of one-dimensional

model which is easily solvable analytically is as
dependable as the two dimensional model.
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