Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Tournal of Applied Sciences 6 (15): 3122-3127, 2006
ISSN 1812-5654
© 2006 Asian Network for Scientific Information

A Prefetching Algorithm for Improving Web Cache Performance

'C. Umapathi and °J. Raja
'Sathyabama Institute of Science and Technology, Chennai-119 India
2S.8.N College of Engineering, Chennai-110 India

Abstract: Predictive Web pre fetching refers to the mechamsm of deducing the forthcoming page accesses of
a client based on its past accesses. Nowadays, mmproving the performance of the Web 1s a crucial requirement,
since its popularity resulted in a large increase in the user perceived latency. In this study, we describe a Web
pre fetching cum caching scheme that capitalizes on Web log mining methods. The proposed scheme achieves
coordination between the two techmiques (1.e., caching and pre fetching). Here the pre fetched documents are
accommodated in a dedicated part of the cache, to avoid the drawback of incorrect replacement of requested
documents. The requirements of the Web are taken into account, compared to the existing schemes for buffer
management in database and operating systems. Experimental results indicate the superiority of the proposed
method compared to the previous ones, mn terms of improvement in cache performance.

Key words: Prediction, pre fetching, web caching, apriori, web log mining, association rules

INTRODUCTION

In recent vears, the Web has become the primary
means for information dissemination. Tt is being used for
commercial, entertainment, or educational purposes and,
thus, its popularity resulted in heavy traffic in the
Internet. Since the Internet capacity 1s not keeping pace,
the net effect of thus growth was a sigmficant increase
the user perceived latency, that is, the time between when
a client issues a request for a document and the time the
response arrives. Potential sources of latency are the Web
servers’ heavy load, network congestion, low bandwidth,
band width underutilization and propagation delay.

The problem of modeling and predicting a user’s
accesses on a Web-site has attracted a lot of
research interest. Tt has been used to improve the
Web performance through caching and prefetching,
recommend related pages, improve search engines and
persenalize browsing i a Web site.

The caching of Web documents at various points in
the network (client, proxy and server) has been developed
to reduce latency. Caching capitalizes on the temporal
locality. Effective client and proxy caches reduce the
client perceived latency, the server load and the mumber
of traveling packets, thus increase the available
bandwidth. Nevertheless there exist cases where the
benefits reaped due to caching can be limited, e.g.,
when Web resources tend to change very frequently,
resources cannot be cached (dynamically generated Web
documents), when they contain cookies (this issue
matters only caching proxies),or when request streams do
not exhubit igh temporal locality.

Motivation: Web pre fetching 1s the process of deducing
client’s future requests for Web documents and getting
that document into the cache, in the background, before
an explicit request is made for them. Prefetching
capitalizes on the spatial locality present in request
streams, that 1s, comrelated references for different
documents and exploits the client’s idle time, 1.¢., the time
between successive requests. The main advantage of
employing prefetching is that it prevents band-width
underutilization and hides part of the latency.
Additionally, without a carefully designed prefetching
scheme, several transferred documents may not be used
by the client at all, thus they waste bandwidth. We focus
on predictive prefetching. Web prefetching acts
complementary to caching, it can significantly improve
cache performance and reduce the user-perceived latency
However, there are cases where a non-effective
prefetching algorithm, presenting the aforementioned
drawbacks, can impact cache performance For instance, if
the accuracy of the prefetching algorithm is low, then
several useful documents in the cache may be evicted by
prefetched documents that are not going to be referenced.
Therefore, there exists a requirement for both accurate
prefetching algorithms and caching schemes that wall
coordinate with prefetching.

Paper contribution: In this study we describe a scheme
for: (a) Effective prefetching, which exploits Web log
mining and it is not affected by factors like noise (i.e.,
random document requests) and high-order dependencies
among document requests and thus, can sigmficantly
improve cache performance. (b) Coordination of caching

Corresponding Author: C. Umapathi, Sathyabama Institute of Science and Technology, Chennai-119 India
3122

J. Applied Sci., 6 (15): 3122-3127, 2006

and prefetching, by storing in the cache the prefetched
documents separately from those which have been
explicitly requested. The latter approach 1s based on the
one of, which dedicates part of the cache to separately
accommodate prefetched documents. Experimental results
indicate that the proposed scheme outperforms existing
ones m terms of improvement in cache performance.

RELATED WORK

In general, there exist two pre fetching approaches.
The first approach is characterized as informed Pre
fetching and the second approach is called predictive pre
fetching, which is more viable. Research on predictive
Web prefetching has involved the sigmficant 1ssue of log
file processing and the determination of user transactions
(sessions) from it. However, the most important factor in
Web prefetching is the prediction algorithm. For the
purpose of prediction, most of the Web prefetching
schemes relies on existing algorithms from the context of
file systems. This approach neglects issues that arise in
the case of Web and stem from both the contents of Web
documents 1n a site (which induce dependencies to their
references) and the site’s structure, 1.e., the links among
documents (which affect user ’s navigation).

The scheme described by Padmanabhan and Mogul
(1996) uses a prefetchung algorithm proposed i the
context of file systems. It constructs a data structure,
called the Dependency Graph (DG), which maintains the
pattern of access to different documents store at the
server. As described above, the choice of forthcoming
pages can depend, 1 general, on a number of previously
visited pages. DG considers only first order
dependencies. Thus, if several previous visits have to
be considered (1e., high-order dependencies), DG does
not take them into account. The work described by
Bestavros (1996), uses essentially the approach of
dependency graph, but it makes predictions by computing
the transitive closure of this graph. This method did not
show signmificantly better results compared to the simple
Dependency graph. Also the pre fetching algorithm which
used the context of file systems called an m-order
Prediction-by-Partial-Match (PPM) predictor did not show
good results (Deshpande and Karypis, 2001). During a
session, although a user may navigate according to a
pattern’s he may also randomly navigate to pages that do
not belong to any pattern (and can be modeled as
noise)Hence, a session can both contain documents
belonging to patterns and others that do not and these
documents are interleaved. However, PPM considers only
subsequences of consecutive documents inside sessions,
thus 1t 15 affected by the existence of noise. Moreover and

PPM uses a constant maximum value for the order.
However, no method for the determiation of this value 1s
provided. (Fan, 1999; Palpanas and Mendelzon, 1999) A
choice of a small maximum may have a similar
disadvantage as in the case of DG, whereas a choice of a
large maximum may lead to unnecessary computational
cost, due to mamtenance of a large number of rules. The
Web prefetching strategy, proposed by Lan et al. (1999),
develops a specialized association rule mining algorithm
to discover the prefetched documents. Tt discovers
dependencies between pairs of documents (association
rules with one item in the head and one item 1n the body).
However, this scheme, similar to DG, considers only first
order dependencies and, similar to PPM, it considers only
comsecutive subsequences
improvement of the efficiency of PPM is examined, based
on three pruning criteria. These criteria are used in a post-
processing step, on the set of discovered rules and can be
applied to any prefetching scheme, thus they are
orthogonal 1ssues to the subject examined in this study.

Web caching has received significant attention and
several new algorithms were proposed, ranging from
extensions to traditional policies (like LRU, LFU, etc.) to
key-based policies and more sophisticated function-based
policies, such as GD-Size, PSS. Moreover, significant
results regarding optimal on-line and off-line caching
policies for the Web were presented. Regarding the
coordination of caching and prefetching, Jeon and Noh
presented the W'R algorithm. Motivated by the 2Q
algorithm (Tohnson and Shasha, 1994), W* R divides the
available cache space into two partitions, called Weighing
Room and Waiting Room. Prefetched documents initially
enter the Waiting Room, before becoming normal cached
documents 1n the Weighing Room. However, W2R was
designed for database disk buffer management It uses
the One Block Lookahead (OBL) prefetching algorithm,
which prefetches only one page each time. Moreover, all

withm sessions. The

pages are of the same size. Web caching presents
sigmficantly different requirements,
prefetchung algorithms than the simple OBL are used
(several documents are allowed to be prefetched each
time and thus we must prioritize among them) and
documents of different sizes have to be accommodated in

the cache.

since different

MECHANISM OF PREDICTIVE PRE FETCHING

Deduction of future references on the basis of
predictive pre fetching can be implemented by having an
engine which, after processing the past references,
derives the probability of future access for the documents
accessed so far. The prediction engine can reside either in

3123

J. Applied Sci., 6 (15): 3122-3127, 2006

the client or in the server side. Inn the former case, it uses
the set of past references to find correlations and initiates
pre fetching. No modifications need to be made neither to
the current Web mfrastructure (e.g., HI'TP protocol, Web
servers) nor to Web browsers if the pre fetcher module
runs as a proxy in the browser (Hosseini-Khayat, 2000).
The mamn limitation of this approach is that the clients, in
general, lack sufficient information to discover the
correlations between documents since their Requests
cover a broad range of Web servers and an even broader
range of documents. On the other hand, Web servers are
m better position to make predictions about future
references since they log a significant part of requests by
all Internet clients for the resources they own.

The main drawback of the latter approach is that
additional communication between the server and the
client is needed in order to realize the pre fetching scheme.
This scheme can be implemented by either the
dissemnation of predicted resources to the client [Barford
and Crorella, 1998) or exchange of messages between
server and clients, having the server piggybacking
information about the predicted resources onto regular
response messages, avolding establishment of any new
TCP connections (Brin and Page, 1998). Such a
mechanism has been implemented in (Brin and Page, 1998,
Curewitz et al., 1993) and seems the most appropriate
since 1t requires relatively few enhancements to the
current request-response protocol and no changes to the
HTTP 1.1 protocol.

Therefore, we assume that there is a system
mnplementing a server-based predictive pre fetcher,
which applies the Pre fetch procedure (Fig. 1). The server

piggybacks its predictions to the clients only as hints
(in this case, the prefetchSeq in Pre fetch procedure
comprises these hints, 1.e., ID numbers of the documents
to be pre fetched). The client receives these hints and
discards all those which correspond to documents found
in its cache. Then, in a second stage, pre fetching takes
place requesting the predicted documents. The caching of
the requested documents (on-demand and pre fetched) is
performed with the PECache procedure.
PREFETCHING ALGORITHM

None of the existing prefetching algorithms
addresses at the same time both the factors of noise and
high-order dependencies, that may within
transactions (i.e., user sessions). In this section we
describe an algorithm that addresses all the
aforementioned factors. Tt uses the history of user
accesses, maintained in the Web server’s log file, to
derive rules. Since the rules, which are appropriate for the
prefetching, should be based on the navigation behavior
of the client (expressed as the process of visiting links) we
describe a pruning criterion that is based on the site
structure. This prumng can significantly reduce the
computational overhead. Prefetching is performed with
the procedure depicted in Fig. 2. In this algorithm, R
denotes the current request stream formed by the user
and M 1s the maximum number of prefetched documents
(user parameter). Also, we use an upper limit, called

exist

maxSize, in the size of each prefetched document, since it
18 not desired to transfer very large documents to avoid
waste of bandwidth in case of an incorrect prediction.

r ™\

Enhanced web server system

Document request
—»
Request
Web — g
clint 3
—
Response Response document
-prefatching hints

Fig. 1: Proposed architecture of a prediction-enabled web server

3124

J. Applied Sci., 6 (15): 3122-3127, 2006

Procedure Prefetch (Array R, int M, float maxSize)

//h, b are sequences of document ids

begin

1. PrefetchSeq = @

2. for each ruleh = bsuch thath <« R

3. for each d0b such that d.size < maxSize

4. PrefetchSeq = prefetchSeq U d

5. end for

6. endfor

7. Sort documents in prefetchSeq in decreasing order of
the confidence Of the corresponding rule and keep the
first M ones.

8. Return prefetchSeq

end

Fig. 2: Prefetching algorithm

Evidently, the fact that the ordering of documents within
transactions 18 preserved during the discovery of rules,
imnpacts the complexity of candidate generation and
support counting procedures. For this reason, we present
in the following section a pruning criterion according to
the site structure that reduces the overhead.

PRUNING CRITERION

For the purposes of prefetching, we focus on the
paradigm of traversal patterns, which will be used for
prediction, not on usage patterns. Based on the
assumption that navigation is performed by following
the hypertext links, the traversal patterns have to reflect
the way navigation is performed guided by the site
structure. Thus, we can apply pruning according to the
structure of the site.

Since the prumng 1s based on the structure of the
site, results in a significant reduction in the number of
candidates. Without pruning, due to the consideration of
ordering, a large number of candidates would have been
generated. According to the proposed prumng criterion,
(we take the candidate generation algorithim in
(Alexandros et al., 2003) an access sequence and thus a
candidate, has to correspond to a path in this graph. The
candidate generation procedure and the apriori-prumng
criterion have to be modified appropriately.

THE CACHING ALGORITHM

The caching algoritm PECache proposed here,
divides the cache into a Weighing Room (uses T RU as the
replacement policy) and a Waiting Room (uses the FIFO
policy). This division of the cache space aims at 1solating
the effect of document muspredictions or the effect of

aggressive pre fetching. Tt achieves this by dedicating
part of the cache space to exploit the temporal locality of
the request stream (on-demand requests) and the rest of
the cache space 1s dedicated to exploit the spatial locality
(prefetch requests). The relative size of the partitions
should reflect the amount and type of the locality of the
request stream.

The caching procedure PECache (Prefetch Enhanced
Cache), given in Fig. 3, has as input the requested
document (d) and the current request stream of the user
(R). The PECache procedure uses the prefetching
algorithm (step 3) that may return several documents,
whereas W’R uses the OBL prefetching algerithm, which
always prefetches one document. Therefore, differently
from the W’R algorithm, the set of prefetched documents
are nserted in the FIFO structure of the Waiting Room
according to the corresponding confidence values (this 1s
performed at step 5 of the PECache procedure). It 1s
assumed that at steps 4-5 of the PECache procedure the
prefetched documents enter the FIFO structure in the
exact order they were requested, ie., the caching
mechanism resolves the issues of identifying the
documents that belong to the same prefetchSeq and
sorting them according to the requested order. Moreover,
differently from W°R, the PECache procedure does not
perform prefetching in the case the requested document
d, 1s contamed in the Waiting Room (step 7). Otherwise,
this would result in excessive network traffic and
bandwidth consumption (notice that W’R is designed for
buffer management in a DBMS). It should be mentioned
that the replacement policy used m the Weighing Room
can be selected independently.

Procedure PECache(Array R, Document d)

begin

.R=RUd

.if not (d in Weighing Room or d in Waiting Room)
. put d at head of the LRU list of the Weighing Room
. prefetchSeq = Prefetch(R, M, maxSize)

. foreach p m prefetchSeq

. append p at the end of Waiting Room queue

. endfor

. else if d 1n Waiting Room

.remove d from Waiting Room

9. put d at head of the L.RU list of the Weighing Room
10. else if d in Weighing Room

11. put d at head of the LR list of the Weighing Room
12. endif

end

GO =1 n L B W R b

Fig. 3: The caching procedure

3125

J. Applied Sci., 6 (15): 3122-3127, 2006

PERFORMANCE RESULTS

This section presents the experimental results. The
cache performance i1s examined against the factors of
high-order dependencies, amount of noise and cache size.
The performance measure is the hit ratio achieved by the
cache. We examine the performance of the proposed
caching policy, in coordmation with the prefetching
algorithm. The proposed method is denoted as PEC
(Prefetch Enhanced Cache). For the purposes comparisor,
we also examine the cache performance in the case of
using the DG, PPM and LBOT prefetchung algorithms
coordination with the caching policy of Section 6, so as to
clearly 1identify the advantages of the proposed
prefetching algorithm. Additionally, we examine the
performance of the plamn LRU caching policy (1.e., when
no prefetching is performed and only one cache partition
1s used), so as to identify the advantages of the proposed
caching policy. In the case where one cache partition is
used, 1its size 15 equal to the sum of sizes of the two
partitions (i.e., Weighing and Waiting rooms) of the
proposed caching policy. We separately examine the
impact of the proposed pruning criterion on the reduction
of the number of candidates during the generation of
prefetching rules for the PEC method. Tn order to carry
out the experiments we generated a number of
workloads. Each workload consisted of T = 100,000
transactions. From these, 30,000 transactions were used to
train the algorithms and the rest to evaluate their
performance. The number of documents of the site for all
workloads was fixed to N = 1000 and the maximum fan out
to Nfanout = 100, so as to simulate a dense site. The
branching factor was set to bf = 4 to simulate relatively
low correlation between the paths. The number of paths
of the pool for all workloads was fixed to P = 1000. With
several experiments, not shown in this report, it was found
that varying the values of the parameters P and N does
not affect the relative performance of the considered
algorithms. For all the experiments presented here, the
order of the PPM algorithm was set equal to 5, so as to
capture both low and higher order dependencies. The
default value for the mean transaction size was set to 10.
Throughout the experiments, the range of cache size was
selected to be in the range of few hundred KB, to simulate
the fact that not all, but only a small part of the Web
client’s cache 1s dedicated to the documents of a
particular Web server. The confidence threshold was
tuned separately for each algorithm, so as to derive the
same network traffic overhead, which is defined to be the
number of documents that the client gets when
prefetching is used divided by the one when prefetching
1s not used. The exammned network traffic was 150%. Thus
is also the value of the average network byte overhead.

This means that for each byte the user requested, the
prefetchers fetched another 0.5 byte that the user never
requested. This is a relatively conservative approach
considering that existing techniques and implementations
incur a much larger overhead. First, we evaluated the
impact of varying order on the hit ratio (Notice that the

order of dependencies varies with the type of the site).

The mean noise value was set to 1.0. The total cache size
was setto 150 and 50 KB of this total size were dedicated
to the Waiting Room (this does not apply for the case of
plain LRU). The results of this set of experiments are

reported n Fig. 4.

Next, we assessed the impact of noise on the hit ratio.
The order value was set to 0.5. The results of this set of

experiments are reported in Fig. 5.

We measured the impact of cache size. We kept the
Waiting Room size equal to 50 KB and varied the total
cache size (which includes the size of the Waiting Room,
besides the case of plain LRU caching policy). The mean
noise value was set to 1.5 and the order was set to 0.5.

Figure 6 illustrates the results for all methods.

As depicted, the hit ratio mcreases linearly with
increasing cache size. PEC presents the best performance
in all cases, whereas PPM the second best. As m the
previous cases, plain LRU presents the worst hit ratio

among all methods.

0.4 1
0.35 ¢
0.3 §
2 0.25 1
E 0.2 1
: e — g%
% 015 --PEC
0.1 -=DG
) —A-PPM
0.05 =¢«LBOT
—-LRU
0 T T) T 1
02 04 0.6 08 1
Higher order percentage

Fig. 4: Results on hit ratio w.r.t. order

0.51 --PEC
DG
0.4- —-A-FPM
’ —¢LBOT
—=-LRU
.% 0.3+
A 02 M
0.1+
0 T T T T 1

15
Mean noise

0.5 2 25

Fig. 5: Results on hit ratio w.r.t. noise

3126

J. Applied Sci., 6 (15): 3122-3127, 2006

0.5
0.4
g 0.3+
&=] --PEC
iz 02 --DG
—A-PPM
01+ —-LBOT
-%LRU
D T LJ T T 1

100 150 200 250 300
Cache size (in KB)

Fig. 6: Results on hit ratio w.r.t cache size

CONCLUSIONS

We considered the problem of enhancing Web
caching with the techmque of predictive Web prefetching.
We also examined the problem of the coordination
between Web caching and prefetching. We proposed a
new algorithm called PEC, which focuses both on
attaining accurate prefetching and using cooperative
caching so as to effectively accommodate the prefetched
documents with the normal cached ones (1.e., the ones
cached after an explicit user request). For the former
factor, we described a prefetclhing algorithm, which
exploits Web log mining techniques. To address the
problem of large computational overhead for the rule
generation phase, we described a pruning criterion that is
based on the site structure. For the latter factor, we
presented an algorithm which uses a small part of the
cache so as to separately store the prefetched documents.
We addressed the new requirements due to the
particularities of the Web Experimental results illustrated
the superiority of PEC. In contrast to existing methods,
PEC is not affected by factors like high-order
dependencies among document references, or the
existence of mnoise within user transactions. Also,
experimental results showed the effectiveness of the
prumng criterion

The examination of other caching policies within the
framework of PEC. And the development of dynamic
methods for the tumung of the Waiting Room Size is our
future work.

REFERENCES
Alexandros, N. et al., 2003. A data mining algorithm for

generalized web prefetchung. IEEE Transactions on
Knowledge and Data Eng., 15: 1155-1169.

Barford, P. and M. Crovella,
representative Web workloads

1998. Generating
for network and
server performance evaluation In Proceedings of
the ACM Conference on Measurement and Modeling
of Computer Systems, (ACM SIGMETRICS’SR),

pp: 151-160.

Bestavros, A., 1996. Speculative data dissemination and
service to reduce server load, network traffic and
service time. In: Proceedings of the TEEE Conference
on Data Engmeering (ICDE’96), pp: 180-189.

Brin, S. and L. Page, 1998. The anatomy of large-scale
hypertextual Web search engine. In: Proceedings
of the World Wide Web Conference (WWW’98),
pp: 107-117.

Curewitz, KM, P. Krishnan and J.S. Vitter, 1993. Practical
prefetching via data compression.In Proceedings of
the ACM Conference on Management of Data
(ACMSIGMOD’93), pp: 257-266.

Deshpande, M. and G. Karypis, 2001. Selective Markov
models for predicing Web page accesses. I
Proceedings of the STAM Conference on Data
Mimng (SDM’01).

Fan, 1., P. Cao, W. Lin and Q. Tacobson, 1999. Web
prefetching between low-bandwidth clients and
proxies: Potential and performance. In Proceedings of
the ACM Conference on Measurement and Modeling
of Computer Systems (ACM SIGMETRICS’ 99),
pp: 178-187.

Hosseini-Khayat, 5., 2000. On optimal replacement of
nomuniform cache objects. TEEE Transactions on
Computers, 49: 769-778.

Johnson, T. and D. Shasha, 1994. 2Q: A low overhead
high performance buffer management replacement
algonthm. In: Proceedings of the 20th Conference on
Very Large Data Bases (VLDB’94), pp: 439-450.

Lan, B., S. Bressan, B.S. Oo1 and Y. Tay, 1999. Making
Web pushier. In Proceedings of the
Workshop on Web Usage Analysis and User
Profiling (WEBKDD’99).

Padmanabhan, V. and J. Mogul, 1996. Using predictive
prefetching to mmprove World Wide Web latency.
ACM SIGCOMM Computer Communications Review,
26(3).

Palpanas, T. and A. Mendelzon, 1999. Web prefetching
using partial match prediction. In: Proceedings of the
4th Web Caching Workshop.

SEIVeEers

3127

	JAS.pdf
	Page 1

