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*x” in Subminiband Structures of

Fibonacci Al Ga, As/GaAs Superlattices
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Faculté des Sciences et Sciences de I"Ingénieur, Université Abdelhamid Tbn Badis,
Mostaganem BP 188, 27000 Algérie

Abstract: We study numerically the effects of a quasipriodicity on the transport properties of GaAs/Al Ga, As
superlattices. We consider layers having 1dentical thickness where the Al concentration x takes at two different
values. We study the transmission coefficient of a plane wave through a 1D fimite Fibonacei in height of barrier
suparlattices by computed by means of the transfer-matrix formalism.
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INTRODUCTION

Heterostructures and superlattices consisting of
semiconductors have been investigated as a source of
move physical properties as well as for their applications
mn devices (Dominguez-Adame et al., 1995). Some years
ago, the advances achieved m nanotechnology mainly
those technique based on molecular beam epitaxy-made
it possible to fabricate a quasi periodic semiconductors
superlattices (Merlin et al., 1985).

Following the first fabrication of quasiperiodic
semiconductor superlattices, there has been an mcreasing
mterest m the study of one-dimensional systems
describing quasiperiodic structures because they are
structures being intermediate between periodic and fully
disorder (random) ones (Dominguez-Adame et al., 1994;
Dominguez-Adame and Sanchez, 1991, Bentata ef al.,
2001 ; Bentata, 2003).

In particular, the Fibonacei quasiperiodic
superlattices have been extensively studied and a lot of
experimental work has been concermned with the
propagation of electrons or other classical waves in one-
dimensional quasiperiodic superlattices or dielectric
multilayer. Merlin ef af. (1985) have grown a Fibonacci
lattice made of GaAs and AlAs for the first time and have
studied its x-ray diffraction and Raman scattering
properties. Diez et al (1996) have demonstrated that
periodic coherent-field-induced oscillations, which we are
able to observe i our simulations of periodic SLs, are
replaced mn Fibonacci SLs by more complex oscillations
displaying quasiperiodic signatures.

Hiangbo et al. (1999) have investigated the
transmission properties of light through the Fibonacci-
class quasiperiodic multilayer and found some interesting
results. The trace map of propagation matrices 1s deduced

and the invanant of motion 18 found. They obtained the
expression of the coefficient T analytically for general
incidences and normal one.

Arunava et al (1992) have rexaminated the
conventional idea of determining the nature of the
electronic eigenfunction of a Fibonacci lattice from a
study of the associated with the trace map. They have
demonstrated that this is insufficient and a more detailed
study of the renormalisation group transformation itself is
required to ascertain the nature of the eigenfunctions.

Very recently, Dong ef al. (2003) reported a broad
omnidirectional bandgap. They designed a structure
composed of both Fibonacci multilayer and periodic
structures.

The main amm of this research treat the transfer-matrix
formalism with the calculation of the miniband structures,
the transmission coefficient of Fibonacci in height barrier
superlattices (FHBSL).

MODEL

Here, we calculate the transmission coefficient of
FHBSL m the stationary case. we consider quantum
well-based S constituted by two semiconductor materials
with the same well width d,, and barrier thickness d, in the
whole sample which in turns preserves the periodicity of
the lattice along the growing axis; the unit supercell
having the period d = d,, + dy. The physical picture may be
handled through the investigation of states close to the
bottom of the conduction miniband with k1 = 0. As usual,
nonparabolicity effects can be neglected without loss of
generality. Under these circumstances, the one-electron
Hamiltonian provides a

one-band effective-mass

satisfactory description:
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Here the SL potential Vy derives directly from the
different energies of the conduction band-edge of the two
semiconductor materials (GaAs and Al Ga, As) at the
interfaces.

The structure of FHBSL 1s starting from two basic
building blocks A and B. Here A and B consists the two
height of barrier of the potential. A usual method to
construct the Fibonacci sequence is to use an inflation
process according to the rule B = A and A — AB. This
sequence comprises 3, elements A and S, ; elements B.
The initial sequences is 3, = A=V, and S, =B =V;

In this model of SI., we consider that the height of the
barriers takes only two values, namely V| for a basic block
A and V, for B. These two energies are proportional to the
two values of the Al fraction in the AlxGal -xAs barriers.
The fifth sequence for example of energies is correlated
the: V,V,V,V V.V ViV,

In the followmng treatment, we meclude the electron
effective masses according to the different regions of the
potential: my, and my, corresponding to barrier heights V|
and V,, respectively and m, to the well. The transmission
coefficient and all the related physical quantities of
interest at zero temperature can be conveniently
computed within the framework of the transfer matrix
formalism.

Using the Bastard of continuity
(Bastard, 1981), for an incident electron coming from the
left one has the relation between the reflected and
transmitted amplitude, r and t, respectively:

[1}—M(O,L){$J 2

A simple algebra yields the transfer matrix M (0, L) as:

conditions

L 1 1
M(O,L)= -De | T Is(oL) | ik ik | )
21k B ik 1 —mT —mT
m* w W

Here the diffusion matrix S (0, L) can be formulated in
terms of the elementary diffusion matrices G j (1)
assoclated to each region j of the potential having a width
1 as the product:

s(0.L) = _leJ(l) - [:: ::j )

The transmission coefficient is then given by:

4
R (5
(S11+Szz)2+( k* SIZ—H;{WSZI}

T=

m

w

This expression measures the electron interaction
with the structure through the elements of the diffusion
matrix S (0, L) and the wave vector defined by:

2m, E
k= e
RESULTS AND DISCUSSION

Within the following description, several parameters
can be varied, namely: the height of the potential barriers
V, and V,, the width of the Quantum Wells (QW) a, the
thickness of the potential barriers b and the length of the
system L through the number N of supercells. Each of
these parameters has a specific physical bearing: the
width a determines the number of minibands while the
thickness b acts on the spread of these mimbands by
controlling the strength of the interaction between
neighbour states belonging to neighbour wells.

For a proper understanding, we have treated the
overquoted GaAs/Al Ga, As as the semiconductor SL.
This material has a long and rich history and presents a
great challenge for technological purposes. Moreover all
the desired experimental parameters involved m our
calculations are available 1n the literature and, besides, 1t
serves as test for our computed magnitudes. In particular,
the SL potential Vg may be expressed in terms of the
alumimum concentration x in AlxGal -x As, using the rule
60% for the conduction-band offset (Adachi, 1985):

Ve = 0.6(1.247 %) for 0<x<0.45 (&)

This mterval of x delimits the region where Al Ga, As
presents a direct gap in the direction I'. As well as the
effective mass in this region:

m (x) = (0.0674+0.083 x). mo) (7

m, being the free electron mass.

We have chosen the physical parameter values, such
as d, =20A, d, =204, V, =260 meV and V,= 200 meV,
to obtain allowed minibands lying below the barriers.
The corresponding effective masses are taken to be
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m, = 0.067 m,, m, = 0.096 m, and m,, = 0.089 m, for, ®
respectively the quantum well and the two barrier height 1.0
V, and V, (Adachi, 1985), where m, is the free electron 09‘
mass. '_
For the above parameters, transmission coefficient 0.8-
versus electron incident energy t (E) is plotted.
Figure 1 shows the position of the lower and upper 0.7
band edges of the minibands corresponding to the two "06
ordered superlattices with the two barrier heights V and o
V. One can observe the existence of one miniband under 0.5
the well, ranging from 118 up to 309 meV for V, and from
93 up to 314 for V.. 0.4+
In Fig. 2 we present the curves of transmission 03'
coefficient versus electron incident energy T (E) of FHBSL B
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Fig. 1: Transmission coefficient of incident electron =50 0 50 100 150 200 250 300 350 400
energy E for the two ordered superlattices with N
N =377 barriers. (a) for V1 = 200 meV and (b) for ©
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Fig. 2: Transmission coefficient of incident electron barriers of the: (a) ordered superlattices with

energy E for the structure of FHBSL with N =377 V, = 260 meV, (b) ordered superlattices with

barriers, V, = 260 meV, V,=200meV,d =20 A, V= 200 meV, (c) FHBSL with V, =260 meV and
d,=20A V=200 meV
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or N = 377. The overall structure of the energy spectrum
is characterized by the presence of four main
subminibands and three minigaps. The first minigap is
clustered around energies 140 and 159 meV, the second
between 205 and 216 meV and the last minigap is ranging
from 252 and 257 meV.

By introducing the potential of Fibonacci V,, the
system tends toward a loss periodicity to long range
induced for the destructive interferences of the functions
wave in these areas from where the creation a singularly
localised states. For the short range the system tends
toward a quasiperiodicity induced for constructive
interferences of the functions wave. The potential of
Fibonacci play the role of the specific defect.

Figure 3 represents the transmission coefficient
versus number of barrier energy 1T (N) of the two ordered
superlattices with the two barrier heights V and V; of
FHBSL for energies 162 meV.

One observes that the coefficient of transmission
varies between 1 and 0.34 and the width of the envelope
is equal to 860 A corresponding to the first ordered

@
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superlattices (Fig. 3a). For the second ordered
superlattices, the coefficient of transmission varies
between 1 and 0.56 and the width of the envelope equal to
1260 A (Fig. 3b).

This result is due to the difference in height of
potential of the two structures and the position of
energies states in basic cell where the effective masse is
different. We have observed in (Fig. 3c¢), the appearance
of the fragmentation of the structure, the disappearance
of the periodic envelopes and the rupture of the
periodicity in height and effective mass due to the overlap
of the two structures (V, and V).

Then we studied the influence of the variation the
barrier height as the form of the quasiperiodic structure
by representing the coefficient of transmission according
to the energy of the electron for (a) V, = 247 meV;
(b) V,=210meV; (c) V,=200 meV and (d) V,= 150 meV as
ploted in Fig. 4. It is noted that the width of minigap
increases while reducing the potential height of Fibonacci.
The electron feels the quasipriodicity of the system when
the height of potential is quite different.
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Fig. 4: The transmission coefficients incident electron energy E for the structure of FHBSL with N = 377 barriers for
different values of the Fibonacci potential V¢ (a) V=247 mev, (b) V,=210 meV, (¢) V,=200 meV, (d) V,= 150 meV
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CONCLUSIONS

In this research, we have calculated the transmission
coefficient of FHBSL by making use of the transfer-matrix
method. We have noted that the difference in height of
the potential of the two structures V, and V; influences on
the structure of mimband (number of sub-minibands and
munigaps). The width of mimigap increases while reducing
height of potential of Fibonacei it plays the role of
specific defect.
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