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Abstract: The problem of finding the prime factors of large composite numbers has always been of mathematical
interest for centuries. With the advent of public key cryptosystems it is also of practical importance, because
of the security of these cryptosystems, such as the Rivest-Shamir-Adleman (RSA) systems, depends on the
difficulty of factoring the public-keys. In recent years the best known integer factorization algorithms have
improved greatly, to the point where it is now easy to factor a 100-decimal digit number and possible to factor
larger than 250 decimal digits, given the availability of enough computing power. However, the problem of
mteger factorization still appears difficult, both i a practical sense (for numbers of more than over 100 decimal
digits), in a theoretical sense (because none of the algorithms run in polynomial time). Tn this study we will
outline some useful and recent integer factorization algorithms, including the Elliptic Curve Algorithm (ECM),
Quadratic Sieve (Q3), Number Field Sieve (NF3) and finally give some example of their usage.

Key words: Integer factorization, public-key cryptography, DLP, RSA, pollard rho, elliptic curve method,
quardratic sieve, MPQS, index calculus, number field sieve

INTRODUCTION

Cryptography 13 an important building block of
e-commerce systems. In particular, public key
cryptography can  be used for ensuring the
confidentiality, authenticity and integrity of information
inan organization. To protect the sensitive information
In an organization, encryption can be applied to conceal
sensitive data so that the encrypted data 1s completely
meaningless except to the authorized mdividuals
with the correct decryption key. To preserve the
authenticity and integrity of data, digital signature can
be performed on the data such that other people can
neither impersonate the correct signer nor modify the
signed data without being detected.

Modern asymmetric  key cryptography uses
mathematical operations that are fairly easy to do in one
direction, but extremely hard to do in reverse. The
standard example used (indeed, the one that is almost
synonymous with public key encryption) 1s that of prime
factorization. Large primes have at least one practical
application-they can be used to construct public key
cryptosystems (also known as asymmetric cryptosystems
and open encryption key cryptosystems)”. Two basic
types of public-key schemes emerged in the mid 1970s;
Diffie-Hellman (DH) for key agreement protocol proposed
i 1975 which relies on the hardness of the Discrete
Logarithm Problem (DLP): given p, g and g* find a™”. Two
vears later Rivest, Shamir and Alderman at MIT in the
USA proposed the key transport and digital signature
schemes known by their initials as RSA™, which takes
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it security from the hardness of the Integer Factorization
Problem (IFP): Given two large prime numbers p and g, 1t
1s a straightforward task to multiply them together and
find the resulting multiplicand, n = (p ' q). However,
given a large composite integer that is a product of two
large prime factors, it is extremely difficult to find those
two primes’™.

Factorization was once primarily of academic mterest.
It gained in practical importance after the introduction of
the RSA public-key cryptosystem™ ", It is one of the
most popular public key crypto-algorithm, which is
widely used today in hardware and software to secure
electronic data transport on Internet especially the
e-commerce to secure sensitive mformation such as
credit card numbers.

As usual let us consider our usual communicating
partners, Alice and Bob. Suppose Alice wants to use RSA
to send an encrypted message to Bob. Let the public key
of Bob be (e,n) and the private key of Bob be (d,n) where
n 18 the product of two prime numbers p and q (with
ed = 1{mod(p-1)(g-1)). In this scenario, (e, n) 1s accessible
to anyone (e.g. Alice) who wants to send encrypted
messages to Bob while d is kept secretly by Bob, for
detailed implementation procedure!'**!,

To encrypt a plaintext message M for Bob, Alice has
to compute ciphertext: C = MYmeoed ). Bob can decrypt C
by computing: (C)* = (M%* = M(mod n) = M. No cne
except Bob can decrypt C since d 1s only known to Bob.
To calculate d from e, it is required to factor nto get
p and q. With g and qknown, it is possible to calculate
(p —1)g—1). By reversing the key generation procedure,
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Fig. 1: Proposed the minimum key sizes (in bits) to be
regarded as safe for RSA and ECC

d can be calculated by computing: ¢ '(mod(p—1)(g—1))*4
for detailed implemenation.

The product, n, is the modulus, e is the public
exponent and d is the secret exponent. You can publish
your public-key freely, because there are no known
easy methods of calculating d, p or q given only your
public-key (e,n). Authentication on the other hand, 1s not
as easy to guarantee in public-key cryptography™.
Since everybody knows everybody else’s public-key,
Eve can easily send message to Alice claiming to be Bob.
The RSA crypto-algorithm can be broken by factoring n
mto p and q. If n 18 factored then (p—1){g—1) can be found
and from this d can be computed. Hence, any adversary
that factors n can find the private-key d and with it
decrypt any encrypted message.

Therefore, RSA crypto-algorithm is secure only if the
factorization of the carefully chosen sufficiently large
two prime numbers requires a super-polynomial amount of
time with respect to the size of the modulus number, n. To
date it has not been proved that the process of
factorization of numbers requires an exponential amount
of time. However, no classical polynomial time algorithm
has been found and most researchers generally believe
that none will ever been found! This 15 a practical
motivation for the current interest in integer factorization
algorithms. Currently, you need a crypto-keylength of
1024-bit number to get the same security you got from a
512-bit number in the early 1980s. If you want your keys
to remain secure for 20 years, 1024 bits 1s probably
too short (Fig. 1).

Because the security of RSA 18 so dependent on an
adversary’s inability to factor a large composite number,
much more research has been done to find ways to
quickly factor such numbers. The key question is: how
large 1s sufficiently large to make this recovery virtually
umpossible? In the 1980s it was generally held that prime
numbers of a fifty odd digits (i.e., 10™) would suffice. As
a case in point take, for example, when Rivest challenged
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the world in 1977 to factor RSA-129, a 129-digit number
(from a special list), he estimated that on the basis of
contemporary computational methods and computer
systems of the day, this would take about 10" years of
the computing time. Seventeen years later it took only
eight months in a worldwide cooperative effort to do the
job™. This gave a false credence to a modulus number of
512-bit (155-digits) which in the mid 80s was a popular
RSA encryption keylength used, for example, on the
Internet and to secure transactions i the financial world:
1t too, was factored at CWI on August 22, 1999 using the
Number Field Sieve factoring method (NFS). This was
not only a new record at the time for factoring
general numbers but in general, a big setback to the
RSA crypto-community which relied heavily on 512-bit
RSA crypto-keys so this factorization represented a
breakthrough in research on RSA-based cryptosystems.

Computing power is measured in MIPS-years: a
million-instructions-per-second computer rumning for
one year or about 3x10" instructions. A 100-MHz Pentium
III 1s about a 50-MIPS machine; a 1600-node Intel
Paragon 13 about 50,000 MIPS. In 1983, a Cray X-MP
supercomputer factored a 71-digit number m 0.1
MIPS-years, using 9.5 CPU hours. That's expensive.
Factoring the 129-digit number in 1994 required 5000
MIPS-years and used the idle time on 1600 computers
around the world over an eight-month period. Although
it took longer, it was essentially free. These two
computations used what's called the quadratic sieve,
but a newer, more powerful algorithm has arrived. The
general number field sieve 1s faster than the quadratic
sieve for numbers well below 116 digits and can factor a
512-bit number over 10 tumes faster-it would take less
than a year to run on an 1800-node Intel Paragon.
Figure 2 shows curent acceptable security level involving
MIPS-years estimation featuring public keys.
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INTEGER FACTORIZATION - A HISTORICAL
PERSPECTIVE

It has been known since before the days of Euclid
that any natural number >2 can be represented uniquely
as a product of primes, that 1s:

n=PiPz--Pa (1)

Tt is trivial to get the n from the primes, but how do
we get the primes from n? This is the connerstone of
the study.

In 1970, it was barely possible to factor a 20-digit
number. Tn 1980, asymmetric eryptography had matured
and was beginning to see widespread use in real-world
applications. Factoring large integers suddenly became
important work. The best algorithm of the time was
Morrison-Brillhart contimued fraction algorithm, based
largely on Maurice Kraitchik’s work during the 1920°s
improving Fermat’s difference-of-squares method!"”. Their
method was commeonly used to factor 70-digit mumbers,
but no reports of any factorizations near 100 digits
were made. After analyzing the complexity of the
continued fraction algorithms, Richard Schroeppel
discovered what necessary to improve their
efficiency and he began working on the linear sievel'".
Carl Pomerance used some of the same ideas in devising

was

the quadratic sieve, which still 1s the most efficient general
factoring method for large mumbers!'?.

By 1990, with the use of the quadratic sieve factoring
algorithm, the record factored number was 116 digits
long"¥. The biggest break for the quadratic sieve and
perhaps factoring in general, was the introduction of a
multiple polynomial variant, first by Jim Davis and then
Peter Montgomery™. This allowed for straightforward
parallelization, followed by a distributed version from
Robert Silverman. Arjen Lenstra and Mark Manasse
brought the problem to the Intermnet and in 1994 the
129-digit RSA challenge number was factored using
the 1dle time on over 1600 computers. It had been
estimated in 1976, to be safe for 40 quadrillion years"".
The quadratic sieve was replaced by Pollard’s number
field sieve in 1996"'% Number Field Sieve (NFS) is
currently at the cutting-edge of research into mteger
factormg  algorithm capable of factormg large
composite numbers 100 digits"”. The current
record in factoring a generally hard integer is that of
the 200 decimal digits challenge integer from RSA data
Security, Inc., RSA-200, which was accomplished with
General Number Field Sieve (GNFS) was factored by
Bahr, et al" Among the Cumningham integers, the

over
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record is the factorization of 248 decimal digit integer by
Special Number Field Sieve (SNFS) was factored by Aoki,
Kida, Shimoyama, Soneda and Ueda (CRYPTREC)™Y,
Therefore, the baseline and trade-off, 1s the size of n
should be chosen such that the time and cost for
performing the factorization exceeds the value of the
secured/encrypted mformation. But even then, great care
must still be taken in the overall crypto-design, as current
development n integer factorization have gone much
faster than foreseen and it is a precarious matter for
crypto-designers upon  quantitative
forecasts i1 this field. Moreover, one should realize that
it always remains possible that a new computational
method could be invented from unsuspecting quarter,
which makes factoring easy (e.g., quantum computing, if

to venture

an operative quantum computer were to be realized in
the not-so distance future): fortunately or unfortunately
depending on which side you are on-no one knows
how to build one yet™ 1|

However, be warned that factoring large numbers
is hard but not as hard as it used to bet®"*. This has
grave implications for the effectiveness of public-key
cryptography, which relies on the difficulty of factoring
long keys for its security. Today, the wise crypto-
designer is ultraconservative when choosing key lengths
for a publickey system. He/she must consider the
intended security, the key's expected lifetime and the
current state of the factoring art.

This quick historical perspectives show that the
ability to factor huge numbers was not solely the result of
advancements n computer technology, but nstead
was heavily based on the growth of mathematical
algorithms. These advances began with a mathematician

named Carl Friedrich Gauss™.

THE INTEGER FACTORTIZATION TECHNIQUES

For a long time factoring belonged to the realm of
pure mathematics, without any practical application.
Modemn algorithms for factoring N fall into two major
categories: these include trial division, Pollard Rho, p+1
and the Elliptic Curve Method (ECM). Algorithms in the
second category factor a number regardless of the sizes
of its prime factors, but cost much more when applied to
larger integers. These algorithms include continued
fraction, Quadratic Sieve (QS) and Number Field Sieve
(NFS). In practice, algorithms in both categories are
important. Given a large integer with no clue about the
sizes of its prime factors, one typically tries algorithms in
the first category until the cofactor (i.e., the quotient after
dividing by known prime factors) of the original number
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is sufficiently small. Then one tries an algorithm in the
second category if the cofactor 1s not itself prime.

Base concepts

Factoring linque: The symbols (.R and Z denote the
sets of rational numbers, real numbers and integers,
respectively. If x and y are integers, then x | y (read: x
divides y) means that y 13 a multiple of x. That 1s, x | y 1if
and only if there exists k £ Zsuch that v = kx. The
Greatest Common Divisor (GCD) of two integers x and y
18 denoted by ged(x,y). The GCD 1s always positive unless
x =y = 0.If ged(x,y) = 1, then x and y are said to be
coprime, i.e., they have no common factor except £1.

Power-smoothness: A number N 1s B-smooth if it has no
prime divisors larger than some bound B where B is a
positive integer. A positive integer N 15 B-power-smooth
if all prime powers dividing N are less than or equal to B.
The power-smoothness of N is the largest B such that N
is B-power-smooth. For example, 135 = 3"+ 5 is 7-smooth
and 5-smooth, but not 3-smeoth or 2-smeoth. Similarly,
123456789 = 2-3-5-3607-3803 is 500-smooth and 3803-
smooth, but not 3607-smooth or 5-smooth. Once B 1s
found you can always compute m = B!. Alternatively one
can simply compute: m = lem(B).

Fermat's little theorem: Letn be a composite mteger with

prime factor p. By Fermat's little theorem, which states
that:

a"' = 1(mod p) forac (Z/nZ)* (2)

Where, a,p are integers that are relatively prime
(ie., gedlap)=1)

TRIAL DIVISION FACTORING METHOD

Almost all factoring programs attempt trial division
by the smallest prumes. Even if integer N 1s 100 decimal
digits long, it takes only a few seconds to divide N by all
primes up to 107 If N is composite, then at least cne prime
of N 13 at almostJﬁ. To factor N, the trial division
algorithm successively divides N by primes
2,3,5:7:___,Jﬁ and check which primes divide the
number to be factored. If p 15 the second largest prime
factor of N, the trial division takes O(p) steps (or
O(p/ln p)) steps 1if one does trial division only by the
primes.

Sometimes the primes divisors of N are known to
have a special form. For example, if p|a"—1 butp fa"* -1
for any k where k <N and k | N, then p = 1(mod N). This
information facilitates trial division, since it restricts
the range of possible divisors. For such numbers, one
might try trial division by all qualifying primes below 2%
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or even higher. Hoever, unless N has a special form, trial
division 1s impractical for finding prime divisor above
1¢°. Furthermore, this method is not very economical,
however and there are now far better methods
available today.

The newest ones are the Quadratic Sieve (Q3S) and
the Number Field Sieve (NFS), based on an old idea of
Pierre de Fermat (1601-1665)* who observed that every
composite number N can be written as the difference of
two squares: N =x"-v* = (x+ y)(x — y). Thus, having found
such mumbers x and y, we also have found factors of N.
The numbers are found by a sieving process, in which
possible values of x and y are excluded. The process
amounts to very efficiently collecting relations: pairs of
numbers a and b possessing only small prime factors,
such that N divides the difference: a — b. For large N, in
general very many relations are required to find its
primne factors (70 million for RSA-130, for example). In QS
the relations consists of ordinary numbers, in NFS these
are algebraic numbers (e.g., 3+ 2%).

Difficulty of factoring grows rapidly with the size,
i.e., the number of digits, of a number we want to factor.
To see this take a number N with L decimal digits
(N = 10%) and try factor it by dividing itby 2.3, /N and
checking the remainder. In the worst case scenario you
may need approximately /iy = 1912 division to solve the
problem-an exponential increase as a function of L. Now
imagine a computer capable of performing 10" per second.
The computer can factor any number N, using the trial
division method, m about ﬁ/lolﬂ seconds. Take a
100-digit mumber N, so that N = 10'™. The computer will
factor this number in about 10* seconds, much longer
than 3.8x10" seconds (12 billion years)-the currently
estimated age of the universe! Under this circumstances
do we give up- Nop!-In comes the quantum computing
number cruncher™,

Short® showed that if such machine could be built,
mteger factorization and discrete logs (including elliptic
curve discrete logs) could be computed m polynomial
time. This result has stimulated an explosion in research
on quantum computers®!. The one comforting factor is
that all experts agree that even if quantum computers are
eventually built, it will take many vears to do so (at
least for machines on a scale that will threaten modern
public key cryptosystems) and so there will be
advance warning about the need to develop and deploy
alternative crypto-algorithms.

KRAITCHIK ALGORITHM

In the 1920%s, Maurice Kraitchik improved Fermat’s
difference of squares technique for factorization (x* — v*),
which set the basis of most modem factorization
algorithms™. Kraitchik determined that instead of looking
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for a difference of squares equal to n, it would be enough
to find a difference of squares, which is equal to a multiple
of n. This can be restated as x* = ¥y (med n). This
congruence can have two different types of solutions:
mteresting and ummnteresting solutions, respectively.
In the case of an interesting solutions we have
X # = y(mod n); while uninteresting solution leads to
X = £y (modn).

What makes an mteresting solution interesting and
an uninteresting solution uninteresting? This can be
understood by breaking down, x*— ¥ into two factors
(x+ty)x—vy). In the case of an uninteresting solution,
one of the two factors 1s a multiple of the number n
we are trying to factor. This can be understood as
follows: if (am)(b) = abm, where a and b are mtegers and
abn is the value of x* = y{mod n) and in this case the
nmumber n has not been broken into two factors.
However, in the case of an interesting solution, the
factorization ends up as a'b = ¢, or in other words,
broken into two factors, say p and g, such that: n=(p - q).

Now, more mmportantly, how can the factors of n be
pulled out once an interesting solution has been
found? The answer to this can be found in Euclid’s
Greatest Common Divisor (GCD) algorithm. Applying this
algorithm to either x —y or x + y, an interesting selution
will yield a factor of n. Euclhid’s algorithm works by
repeatedly dividing the remainder into divisor of the
previous function until the remainder is zero or one. If
the remainder is zero, then the greatest common divisor
has been found and; if the remainder is one, then the
numbers are said to be relatively prime. Mathematically,
we pull out the commpn factors using GCD as follows:
ged(x + y, n) = p or ged(x — vy, n) = q to achieve our
desired aim.

The mechanics of Kraitchik algorithm: Now, to better
understand  this  theory, an example will be
presented using an overly simple composite number:
n =1513. The floor of the square root of this value

is | Jn ) = [41513 ] = 39. Using Fermat’s method
(x* —n=1v"), the following is obtained:

i %7 x?-n =y
1 39 2%
2 A 3-29
3 412 233-7
4 42 251
5 43 2437
6 A9 347
7 45 2%
8 16° 3467
9 47 23-3-29
10 48 7113
11 42 2%.3-37
12 569 3-7-47
13 512 217
14 522 3-397
15 532 283
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Next we implement the Kraitchik’s method which
finds a soluton by combimng several of the results
from the above table. The first suitable combination
that is found is for (x* = 39-41%-43%), since the
multiplication of the results is a square (y* = 2° - 3° - 7°).
Therefore, the solution x = (39-41-43) and y = (2':3-7) yields
ged(x — y,n) = ged(68757 - 336, n) = 1 which leads to
uninteresting solution. The next combmation that is
found is when x = 394047 andy = 2*3-29) which is
also uninteresting, since (73320 - 696) modn = (. Next,
we check the combination, x = 39-45 and v = 2° which is
mteresting, since ged(1755-64, n) = 89. In fact: n = 1513 =
17-89. (Note: If the powers of all numbers are even, then
a square has been found, as 1s the case with j = 15, with
x =53 and y =23’ = 36, so thatged(x —y, n) =
ged(53 -36n)=17.

Pollard’s (p — 1)-method: Pollard's p — 1 algorithm 1s a
mumber theoretic integer factorization algorithm,
mvented by Pollard®™. It is aspecial-purpose algorithm,
meaning that 1t 13 only sutable for mtegers with
specific types of factors. This algorithm is based on
Fermat’s Lattle Theorem which we came across in Eq. (2).
The algorithm 13 also based on the msight that
numbers of the form a’-1 tend to be highly composite
when b 1s itself composite. Since it 13 computationally
simple to evaluate numbers of this form in modular
arithmetic, the algorithm allows one to quickly check
many potential factors with great efficiency. In particular,
the method will find a factor p if b 1s divisible by p—1,
hence the name. When p — 1 is smooth (the product of
only small mntegers) then this algorithm 15 well-suited to
discovering the factor p.

Base concepts: Let nn be a composite integer with prime
factor p. By invoking the Fermat’s Theorem above, let us
further assume that p-1 1s B-powersmooth for some
reasonably sized B. Recall that a positive integer m 1s
called B-smooth if all prime factors p; of m are such that
P. < B. Here, m 1s called B-powersmooth if all pnme powers
P dividing m are such that p* < B. However, for n where
there is no factor p for which p — 1 has only factors, in the
worse case, this algorithm 1s no better than trial division.
Therefore, Pollard’s p — 1 algorithm can be considered as
special purpose algorithm to factor integers efficiently
provided n can satisfy the property discussed.

Let p,.....p, be the primes less than B and let e,,....e; be
ihetexponents such that piei <B< pieﬁl .

et:

3)

As a shortcut, note that m lem(1,...B). As a
consequence of this, (p — 1) divides m and also if p°
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divides m this implies that p* < B. Since (p—1) divides m
we know that a” = 1{mod p) and because p divides n this
means ged(a@™ — 1, N> 1. Therefore if ged (a™ —1, N) # 1,
then the ged is a non-trivial factor of N. Note that if p—1
18 not B-powersmooth, then a® # 1(mode p) for at least

half of all a.
POLLARD CONCEPTS

Let N = pgr, where, p and g are distinct primes and r
1s an integer, such that p— 1 18 B-powersmooth and g — 1
15 not B-powersmooth. Now, ged(a™— 1, N) yields a
proper factor of N. Note that in the case where, g — 1 is
B-powersmooth, the ged may yield a trivial factor because
q divides a® — 1. Note that this is what makes the
algorithm specialized.

As an example letN = 172189 = 421-409. Such that:
p—1=421-1=2"357andq—-1=409-1=2"3-17. So,
an appropriate value of B would be from 7 to 16. If B was
selected less than 7 the ged would have been 1 and if B
was selected lugher than 16 the ged would have been
N. Of course, we do not know what value of B is
appropriate 1n advance, so this will factor mto the
algorithm’s running time.

To speed up calculations, we also know that when
taking the ged we can reduce one part modulo the other,
so ged(a™ — 1, N) = ged(a™ — 1{(med N), N). This can be
efficiently calculated using modular exponentiation and
the Euclidean algorithm.

Algorithm and running time: The basic algorithm can be
written as follows:

Algorithm - Pollard p-1 method

Inputs: 2 a composite integer

Output: a non-trivial factor of # or failure

1. select a smoothness bound B

2. pick a randomly in (Z/nZ)"= (note: we can actually fix a, random
selection here is not imperative)

3. foreach primeq < B

e « | logB/logq |
a<a% modn
d-gedla-1,n)
it'a < d < nthen return d

it d =1 then select a higher B and go to step 2 or return tailure
if d = n then go to step 2 or return failure

(note: this is a™)

oy e

Ifd =1 in step 6, this indicates that for all p — 1 that
none were B-powersmooth. If d = nin step 7, thus usually
indicates that all factors were B-powersmooth, but in rare
cases 1t could mdicate that a had a small order modulo p.
The running time of this algorithm is O(B log B-log*n), so
it is advantageous to pick a small value of B.

Large prime variant: A variant of the basic algorithm 15
sometimes used. Statistically, there 1s often a factor p of

n such that p -1 = fg such that f is B-powersmooth
and B<q < B, where, ¢ is a prime and B'is called a
semi-smoothness bound. As a starting pomt, this
would work into the basic algorithm at step 6 if we
encountered ged = 1 but didn't want to increase B.
For all primes B < q,..q < B, we check if
ged(a%™ —1nyz= 110 obtain a non-trivial factor of n. This
18 quickly accomplished, because if we letc=a" and
d, = q,and d = g — q., then we can compute: jam _ 4,
The muming time of the
variant then  becomes

qd2m — Cdl Cdz - a‘hmcdz Yot
algorithm  with  thus
O(B' log B*log® n).

Additional information: Because of this algorithm's
effectiveness on certain types of numbers the RSA
specifications require that the primes, p and g, be such
that they are non-B-powersmooth for small values of B.

The mechanics of Pollard’s (p — 1)-Factoring Algorithm:
We now illustrate the Pollard (p — 1) algorithm as follows:

¢+ Choose m = B! and suppose that (p — 1)|m for some
bound B € N. (We choose B so that it 1s sufficiently
large to capture the small prime factors of p — 1.)

¢« Apply Fermat’s Little Theorem (FLT) to get

™ = 1(mod p). (This 1s the reason for choosing

B!instep 1.)

¢+ Compute d = ged(2® — 1,n) using the Euclidean
algorithm.

» Ifn f(2"-1), then d from step 3 provides a nontrivial
factorization of n

In PARI, these computations are carried out as follows™:

Algorithm 4A: Pollard’s (p—1) method with PART - “Pollardp-1.gp™
\\ Implementation of Pollard's (p—1) method

\\ to run provide: integer N and B

\\ Copy and save as: “Pollardp-1.gp™

W Pollard p—1 method. Usage pollard(n,t) where n is the

“\ number to be factored and t is the size of the factor base

W ie., the first t primes. Adjust to taste.

W By  Felipe Voloch™  http/fwww.ma.texas.edwusers'voloch!
mathinfo2.html”

{

pollard(n,t,

b.p.j.d.g.lgn)=

until(b,b=randomq)%en);
iftn<=1,error("Invalid input"));
g=gcd(b,n);

ifig=1,print{g," is a factor of ",n),
p=2,j=1;d=1;1gn=log(n);
while(d=1&&j<=t,
b=litt(Mod(b,n)(p Hloor(gn/log(p));
d=gcd(b—1,n);

if(d=1 &&d<n,print{d," is a factor of ",n));
JEitHpnextprime(pt+));
if{d=1||d=mn,print("Try increasing t")))
}
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ELLIPTIC CURVE METHOD (ECM) OF
FACTORIZATION

Background of elliptic curve theory: Let K be the field.
Here K will be either field R of real numbers, the field Q@ of
rational mumbers, the field € of complex numbers, or
finite field F, of q = p" elements. An elliptic curve over K
is the set of points (x, y) with x,y € K which satisfy the
equation:

y=x't+ax+b (4

together with a single element denoted by O and called
the point at infinity, where a, b € F,, 4a’ + 27b*# 0 and ged
(g, 6) = 1. We use the symbol O for the pomt at infimty
since 1t tums out to be the additive identity, or zero
element, in the additive abelian group on the elliptic
curve, for detail implementation of elliptic curve theory™.

In all cases the group used when implementing the
ECM is the group of points on the curve over F, If
represented 1n affine coordinates, the points have the
form: (x,y). where, x and y are in ¥, and they satisfy the
equation of the curve, Eq. 4, as well as a distinguished
point O (called the point at infinity) which acts as the
identity for the points on the curve.

Points of finite order: The order m of a point P on an
elliptic curve 1s the smallest positive integer such that
mP = O; of course, such a finite m need not exist. It 1s
often of interest to find points P of finite order on an
elliptic curve, especially for elliptic curve defined
over () .

Additive of points on elliptic curve (mod p): Points are
added using a geometric group law which can be
expressed algebraically through rational functions
involving x and y. That is, two points are added, forming
P + Q, or a point is doubled, forming 2P,
Let E denote the points on the elliptic curve given by
Eq. 4. For any two points P = (x,, y;) and Q = (x,, y,) m E,
define:
O ifx; =%, andy; = -y,
P+Q=Q=0Q+P ifP=0 &)

(X3.y3) otherwise

Next define x; and y, as:

X = A —X — X, andy; = A, —%) —y:(6)
Where:

)

3X12 + a/2y1

Va—v1/%; - % If P#Q, Point addition
A=
If P=Q, Point doubling

As an example, let the elliptic curve be given by:
E:v'=x"+x+1 188 over the finite fieldF, Tofindall the
points on E, we needtosclve the congruence, x* +x +
188 = v (mod 7), for all x < 6. In other words, we need to
find the quadratic residues. For each value of x, one
needs to determine whether or not it is a quadratic
residue. If it 1s the case, then there are two values in the
elliptic group. If not, then the point is not in the elliptic
group E, (1, 1880). So there will be a lot of points modulo
7. These are:

E(Z/7Z)=4{0,(23), (11), (2.4, (6,5), (4.5),
G, 3.6), (42). (6.2). (1.6)}

Hence, E has eleven points, which is also known as
the order of the group, defined as: #E (F;) =11. We now
show that this is a cyclic group. We need only find a
nonzero element that is a generator. Choose P = (2, 3) as
the generator point that generates all the other points.
For example, to find 2P = (2,3) +(2,3) = (4,2), we find A
using Eq. 7, as follows:

2 2
:3X1+amod :3(2) +1

2y,

A mod 7
= %mod'f’ =13(6 \)mod7 =1

Which we enter in the table below:

k 1 2 3 4 5 6
kP @3 {4,2) (3.1) (6.5 (1) (1,6)
) . 1 3 5 4 2

k 7 8 9 10 1
kP (6.2 (3.6) (4.5) (2.4) [c]
A 4 5 3 1 :

Hasse’s bound for elliptic curve over F.: If E 13 on an
elliptic curve over [, for a prime p>3 and A 1s the
number of points on E, then, |A —p — 1|<24/p . In the
above example, we observe that the number points or
group order is 11. The group structure of E over K is
also known.

Now that we have explained the basic theory behind
elliptic curve we will next look at how this theory
motivated researchers to look at the possibility of using
it to perform integer factorization or ECM.

Addition and reduction of points on elliptic curves (mod
N) useful for ECM: Let N be an mteger and let E be an
elliptic curve over Q@ with equation:

yv=x"tax+h, abc Z and

ged (42 + 2705, N) =1 (8)
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Let P, P, be points on E where P, + P, # O and the
denominators of P, P, are relative prime to N. Then
P, + P, 1s on E with coordinates having denommators
prime to N if and only if there does not exist a prime
pIN such that:

Py(modp) + By (modp) = O(mod p) ©)
On the elliptic curve F(modp) over F,, with equation:
y2 =x%+ a(modp)x + B(modp) (10)

Where, P(modp) means (x(modN),(ymodN))
where, P (x, y) 18 point on E with x=ZX{modN)
and y = y(modN) . Here, F(modp) denotes the curve
reduced modulo N. Now that we have sorted out the
basic theory behind the elliptic curve, let us move into
bigger picture of the elliptic curve method of
factorization, 1.e., ECM.

The basic idea and motivation of ECM: Recall that in
Pollard’s p — 1 method we needed to fix an integer B.
Further, recall that if N = p-q with p and g prime and
neither p — 1 nor ¢ — 1 is B-power-smooth number, then
the Pollard (p — 1) method; 13 extremely unlikely to
work. For example, let B = 20 and suppose that N = 59-107
= 6313. Note that neither 59—-1=2-29nor 107 —1 = 2-53
is B-power-smooth. Withm =lem (1,2,..., 20) = 232792560,
we have:

22-1=1755(mod N) and ged (2" -1, N) =1,
So we get nothing.

As remarked earlier, the problem 1s that p — 1 1s not
30-power-smooth for either p = 59 or p = 107. However,
notice that p — 2 = 3-19 15 20-power-smooth! If we could
somehow replace the group (Z/pZ ) which has order
p — 1, by a group of order p — 2 and compute a® for an
element of this group, then we might easily split N.
Roughly speaking, this is what Lenstra’s elliptic curve
factorization method does; it replaces (Z /p Z )* by an
elliptic curve E over Z/pZ. The order of the group
E(Z/pZ) 1s p+ 1+t for some nommegative mteger
t <24p (any t can occur). For example, if E is the
elliptic curve, i.e.,:

EvV=x"+x+54

With Z/ 597 then E(Z/59Z) is cyclic of order 57. The
set of mumbers 59 + 1 +t for t<15 contain numbers with
very small power-smoothness. Hence, the beauty of the
elliptic curve factoring method is that it demonstrates the
use of the arithmetic theory of elliptic curves. This is
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a branch of number theory with roots going deeply

into other areas and has been well-studied in the

literaturet®",

Lenstra’s Elliptic Curve Factoring Method (ECM): The
Elliptic Curve Method (ECM) was invented by
Lenstra™. It is suited for finding small-say 9
to 30 digits-prime factors of large numbers. Among the
different factorization algorithms whose complexity
mainly depends on the size of the factor searched for
(trial division, Pollard tho, Pollard p—1, Williams p+ 1),
1t 1s asymptotically the best method known. ECM can be
viewed as generalization of Pollard’s p — 1 method, just
like ECPP generalizes the N — 1 primality test. ECM relies
on Hasse’s theorem: if p 1s prime, then an elliptic curve
over Z /pZ has group order p + 1- t with ‘t‘gz,\/_,
where, t depends on the curve. If p + 1 — t is a smooth
number, then ECM will most probably succeed and reveal
the unknown factor p. The running time of ECM s
comparahle to that of the quadratic sieve!"™,

The ECM factoring technmique is an extension of
Pollard’s (p—1) method obtained by replacing the
multiplicative group by the group of pomts on a random
elliptic curve. To find a non-trivial divisor of an integer
N=1, one begins by selecting an elliptic curve E over
Z/NZ and an integer k: k = Iem (2, 3, ..., b). Using the
addition law of the curve, one next calculates the multiple
k'p of p. One now hopes that there 1s a prime divisor of p
of N for which k'P and the neutral element O of the curve
become the same modulo p; if E is given by a
homogencus Weierstrass equation: y'z = x° + axz” + bz’,
with O = (0:1:0), then this 13 equivalent to the z-coordinate
of kP being divisible by pi'¥. Hence, cne hopes to find
a non-trivial factor of N by calculating the greatest
common divisor {ged) of this z-coordinate with N.

If the above algorithm fails with a specific elliptic
curve E, there is an option that is unavailable with
Pollard’s  (P-1) method. We may repeat the above
algorithm with a different choice of E. The number of
points on E over Z /pZ 1s of the form p +1 —t for some
twith‘ t]< 2\/5 and the algorithm is likely to succeed if
p+1 —tis B-power-smooth.

Now suppose that we wish to factor N. Choose an
integer B. Next choose a random point P = (x, y) and a
random elliptic curve ¥ = x° + ax + b over Z/NZ that
goes through P. Letk = lem (2, 3, .., b). Try to compute
mP (and hence, A) working modulo N and at some point
we can hot compute A because we can not compute the
inverse modulo N from Eq. 7, then we (usually) find a
nontrivial factor of N. Something wrong and not being
able to divide 1s analogous to a® being congruent to
1 modulo p.
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The mechanics of ECM algorithm: Tet n be an odd
composite integer. The following 1s the algorithm for
factoring n.

In some random fashion, we generate pair (E, P),
where, E 18 an elliptic curve over Q@ with equation:

vV=x+ax+b,a bc Z and P apointonE.

Check that ged (n, 42’ + 27 b%) = 1. If net, then we
have a factor of n, unless ged (n, 4a° + 27b% n, in
which case we choose a different pair (E, P).

Choose m € N and bounds A.B, £ N such that the
canonical prime factorization of m 1s:

4
iy
m=[]p;"’
il

for small primes: p; <p, <..p < B
Where: a, =| log(A)/log(p;) |

15 the largest exponent such that: % _ , (where A1s

Pj
the number of points on our cureve E)

Compute: plfP {modn), forl=k< ap

then pgp?‘]‘ P(modn), for1<k=<a,

and so on, until all primes P, dividing m have been
exhausted or the following occurs.

If the calculation of either (x, — %)™ or (2y,)~' in
Eq. 7, for some s |m in step 4, determines one of them
not prime to n, then there is a prime p|n such that
P = O (modp) - above. This will give us a nontrivial
factor of nunless gp— O (modp) forall primes p|n,
i which case ged (s, n) and go back and try the
algorithm with different (E, P).

The implementation of Lenstra’s EC factorization
method: Here we use an overly small composite number
for the purpose of testing the EC method. Let n = 963.
Next choose a family of curves:
Ey=x+ax+9 (1
with the points P = (0, 3) and Q = (8, 23) falling on the
curve E. Choose one of the points, say Q = (8, 23). We
now choose successive natural number a until the

process described above is successful in factoring n.
We take B = 3 and since:
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Table 1: Lenstra’s HCC  Factoring  method using (EJP)  pair
 =x +x+9,(8, 23)) tofactor n = 963

s A A X ¥

1=2 --- --- (8,23)

2=2 193/46 67 (621,315)

4=2 578462/315 —

- 2

From Hasse’s theorem, we find: A = p+1+2 | \fog3 | = 94.

Next calculate:  [log(94)/1og(2) | 6 and
| log(94)1log(3) | = 4. Thus: m = 2°3*

Now using Eq. 11, we tabulate the values of 4 for
a=1(Table 1). We therefore begin with the (E,P) pair
(Y =x+x+9,(823)). Witha relative on our first trv, we
get a solution since the process terminates with attempt
to find a reduction of modulo n of A. Here ged (315, n) = 9.
In fact n = 9-107.

Since 1985, many improvements have been proposed
to ECM Lenstra’s original algorithm had no second
phase®™. Brent proposes in"™ a birthday paradox second
phase and further more techmical refinements. In,
Montgomery™ presents different variants of phase
two of ECM and Pollard p-1 and mtroduces a
parameterization with homogeneous coordinates, which
avolds mversions modulo n, with only 6 and 5 modular
multiplications per addition and duplication on E,
respectively. It 1s also possible to choose elliptic curves
with a group order divisible by 12 or 1679,

ECM has been used to find the factors of
Cummingham numbers a" + 1 for a = 2,3,5,6,7,10,11,12).
Fermat numbers F, = 22 41 are very good candidates
for a>10, smce they are too large for general purpose
factorization methods. Brent™ completed the factorization
of Fyy and F}; using ECM in 1988. The largest factor found
by the Elliptic Curve method has 66 digits, found by
Dodson™ in April 2005. Brent™ maintains a list of the ten
largest factors found by ECM lis extrapolation from
previous data would give an ECM record of 70 digits
m year 2010, 85 digits m year 2018 and 100 digits in
year 2025.

From the pomt of view of parallel
implementations, the big deal with elliptic curve
method 1s that we can use many parallel curves for many
different parametric values of a and b. This 1s naive
parallelism, but it works. There are various ways in which
one can determine, for a given N, the right number of
curves to use m order to be assured that factors that can
be found with method will in fact be found with this
method.

PARI Implementaion of ECM: For simplicity, we use an
elliptic curve of the form: E: v = x’+ax + 4 withb =4 and



J. Applied Sci., 6 (2): 458-451, 2006

a point P = (0, 2) already on it for any given value of a.
The following tiny PARI function implements the ECM.
Save it as ECM.gp. It generates an error message along
with a usually nontrivial factor of N exactly when the ECM
succeeds.

PARI Code: ECM.gp

{lemfirst(B)=

local(L.i); L=1; for(i=2,B.L=lem(L,i));

return(L);

b

{ECMN,m) = local(E);
E = ellinit{[0,0,0,ran dom(N),4] *Mod{1,N));
print("E: y"2 =x"3 + " Lft(E[4]), "x+4, P=[0,2]");
ellpow(E,[0,2]*Mod(1,N),m); % this fails if and only if we win!

numpoints(a,p) = retum(p+1 - ellap(ellinit((0,0,0,a,1]),p));

For simplicity we will implement the program on a
small integer N. (ECM uses the random function, so the
results of your run may differ from the one below.)

Running: ECM.gp

 Result with small N

=i CVECMA.gp oread PARIT *.gp file
=

= m=lemfirst(20) W B=20

%162 = 232792560
>N=105550217
%163 = 105550217
= Mod(2,ny'm-1
%164 = Mod (53337269, 105550217)
> ged(53337269, 105550217)

W no. to be factored

2%165=1
=
> ECM(N,m)

E:y*2=x"3 + §9267312x+4, P=0,2]

96166 = [Mod(24337003, 105550217), Mod(97898758, 105550217)]
=

> ECM(N,m)

E:y"2=x"3 + 41879720x-+4, P=0,2]

94167 = [Mod(88635780, 105550217), Mod(17524161, 105550217)]

S ‘4 after several trials
=
> ECM(N,m)

E:y"2=x"3 + 49137188+, P=0,2]
%181 =[Mod(90537630, 105550217), Mod(59393357, 105550217)]
> BECM(N,m)
E: y"2=x"3 + 86857918x+4, P={0,2]
*++ ellpow: impossible inverse modulo: Mod(35166067, 105550217).
> W try ged with our impossible modulo
> ged(35166067, 105550217)
%182 =3251

Yap! We have a factor of N = 3251x32467

Elliptic curve primality test: Here we will extend Lenstra’s
algorithm and a method for modifying it in order to give a
primality test, 1.e., to tell us if a given mumber 18 prime or
not. Letme N with ged (n, 6) and let E be an elliptic curve
over rational field ) . Suppose that:
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n+l-2vn <|E(modn)|<n +1+2JIT

|E (mod n)| = 2p, where, p>2 is prime

IfP# O isapointonEandpp on |E (mod N)| then N
is prime.

Using the above theorem and picking randomly
chosen points P, P,, ..., P,; me N onEand calculating pT’l
foreachj=1,2, .., m. If IE: O forsomej=1, 2 ...,m,
then n is prime. As a final illustration, we again choose an
overly simplistic value of n, which we use to illustrate the
primality test without excessive calculation.

As an example, let n = 1103 with our earlier elliptic
curve pair: (B, P)= (v =x"+x+9, (5, 310)): One calculates:
|E {mod n)| = 1084 = 22271 and

1038 <n +1-24/n <|E(modn)|<n +1+ 24/n <1170

and so both parts 1 and 2 of the theorem are satisfied. Tf
n were to be prime, then we might be able to generate
enough points for testing from a primitive element. Thus,
we proceed as with the Lenstra’s method, namely by
successive doubling and reduction of P with powers of 2.
Notice that:

27 =28+ 284284214 20

so we will first go for 2% and test 271p. the results are
shown in Table 2.

Hence, from the primality test above, we prove that
n =1103 is a primenumber as we are unable to split it.
Moreover, we have been very lucky that the test worked
after a few try, largely due to the small value of N chosen.
However, if part 1, of the theorem fails, then we have to
test for compositeness by Hasse’s theorem. Part 2 of the
theorem, however, 13 very special and does not hold for
many elliptic curves. Furthermore, although we were able
to calculate the value of |E (mod n)| above, this
cardinality gets large as N gets large, so we may not even
be able to determine what is in general. Calculating it
could be as difficulty as proving that N is prime. These
problems were overcome in a primality test by Goldwasser
and Kilian®*",
Pollard’s rho method: Pollard™ introduced the Monte
Carlo method for factoring. He so named it because it
rests on randomly chosen integers. Today, we refer to
Pollard’s method as the Pollard-rho method. Given
thatn € N composite and p an (as yet unknown) prime
divisor of it, Pollard’s rho method seeks to find the two
prime factors. First, we illustrate the reason behind the
name Pollard rho-method. We take n =31 as the modulus
and x, =2 as the seed and then we proceed through
the Pollard rho-method, by placing the values ofx;’s
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Table 2: Elliptic curve primality testing method using (E, P) pair
?=x*+x+9,(5310) to factor n= 1103 (tested using Sect.

733 pat5:) sP=(x,v)

P A A= A{modn) xy)

1=20 - - (5,310)
2=2 19/155 299 (48, 69)
4=2 6913/138 154 (457, 919)
8=2 313274/919 971 (1068, 317)
16=2* 3421873/634 820 (734, 360)
32=2 414037/180 468 (247, 138)
64=2° 45757/69 823 (696, 943)
128=7 1453249/1886 915 (826, 484)
256=2° 2229133/968 613 (128, 537)
264 =2 + 2 -11/47 563 (315, 70)
268 =264 + 22 849/142 1008 (532, 691)
270=268 + 2 311/242 97 (5,793)
271 - 0=(0,0)

Table 3: Pollard rho-method simulation
i %= £ (X)(mod m)

x = f (x)(mod n)

1

1 5 26
2 26 10
3 10 14
4 14 23
5 23 8
6 8 7
7 7 21
8 21 7
9 7 21

Pollard tho-the pP-symbol

(Table 3), which we map to achieve the rho-simple diagram
shown next to the table.

From the Table 3, we can observe that when we reach
X;, then we are in the period that takes us back and forth
between the residue system of 7 and that of 21 modulo 31.
This is the significance of the left pointing arrow from the
position of x; back to position of x,, which 1s the same as
the reside system of x,. Tlis completes the circuit. The
diagram mapped depict the shape of the symbol of the
Greek letter p, rho.

Modified pollard rho method: The tho algorithm 1s based
on Floyd's cycle-finding algorithm and the birthday
paradox. Tt is based on the observation that, by the
birthday paradox, two numbers x and y are congruent
modulo p with probability 0.5 after 1_77J5 numbers
have been randomly chosen. If p is a factor of n, the
integer we are aiming to factor, then: ged (|x — |, n) =p,
since x —y = 0 (mod p) .

The rho algorithm therefore uses
module n as a generator of a pseudo-random sequence.

a function

Tt runs one sequence twice as fast as the other; i.e., for
every iteration made by one copy of the sequence, the
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other copy makes two iterations. Let x be the current state
of one sequence and y be the current state of the other.
The GCD of |x —y| and n is taken at each step. If thus GCD
ever comes to 1, then the algorithm termimates with failure,
since this means that x = y and therefore, by Floyd's
cycle-finding algorithm, the sequence has cycled and
continuing any further would only be repeating
previous study.

The Pollard’s tho algorithm

Inputs: n, the integer to be factored; and f(x), a
pseudo-random function modulo n

Output: a non-trivial factor of n, or failure.
1. X-2,¥y-2d-1

Whiled=1

x - fix)

v~ fityn

d - GCD(x -y, n)

If 1 < d < n, then return d.

If d = n, return failure.

ISl S N

Note that this algornithm will return failure for all prime
n, but it can also fail for composite n. In that case, use a
different f (x) and try again.

To illustrate the modified Pollard’s tho method we
follow the following procedure. Givenn € N composite
and p an (as yet unknown) prime divisor of it, perform the
following steps:

Choose an imtegral polynomial f with deg (£)22,
usually f(x)=x*+ 1, is chosen for simplicity.
Choose randomly generated x = x,, the seed and
compute x,= £(x).x, = f{x) ...x, = f(x) for
1=0.1,..B, where the bound B 15 determined by
step 3.

Sieve through all differences x; —x, modulo n until we
find x5 # x; but x; = x; (mod p) for some natural
number B > j > 1. Then ged (x5 = x;, n) is a nontrivial
divisor of n.

As an example we use an overly small value of
n = 5561 and x, = 2 = y; as the seed with { (x) = x* + 1 we
generate the values of x’s and y;’s as per the table below
until ged (x, —y, ) = d > 1, where d 1s our factored mteger.

i =1 ) =@ ged (1% — i, n)
1 5 26 1
2 26 2328 1
3 667 954 1
4 2328 1730 1
5 3171 5080 83
We find that ged (x—vy, n) for i< 4 until

d = ged (x|, n) = ged (5080 — 3171, n) which is factor
of 5561. In fact n = 5561 = 67-83.
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Richard Brent's rho variant: Eldershan and Brent!""

published a faster variant of the rho algorithm. He used
the same core 1deas as Pollard™ however, with a different
method of cycle detection that was faster than Floyd's
original algorithm. In Real practice, the algorithm is very
fast for numbers with small factors. For example, on a
733 Mhz workstation, an implementation of the rho
algorithm, without any optimizations, found the factor
274177 of the sixth Fermat number in about half a second.
The sixth Fermat number is 18446744073709551617
(20 decimal digits). However, for a semiprime of the same
size, the same workstation took around 9 seconds to find
a factor of 10023859281455311421 (the product of 2 each
of 10-digit primes). The rho algorithm’s most remarkable
success has been the factorization of the eighth Fermat
number by Brent and Pollard™®”. They used Brent's variant
of the algorithm, which found a previously unknown
prime factor. The complete factorization of F; took, in
total, 2 h on a Univac 1100/42.

THE QUADRATIC SIEVE FACTORING ALGORITHM

Background: Pollard’s two methods discussed above
may be mvoked when trmal division fails to be useful
However, if the methods of Pollard fail to be useful, which
they will for large prime factors, say with the number of
digits in the high tens, then we need more powerful
number cruncher algorithm e.g., the quadratic sieving
technique'™. The Quadratic Sieve (QS) factoring algorithm
was the most effective general purpose factoring
algorithm of the 1980°s and early 1990°s. Thus algorithm is
an improvement over the Fermat’s method and Dixon’s
random square method for performing factorization. Tt is
the method of choice for factoring integers between 50
and 100 digits. Unlike the Integer Factorization Problem
(IFP) and the likes i which the running time depends
mainly on the size of p and q (the factors of n = (p-q)), the
ruming time of Quadratic Sieve (QS) and its advance
counterpart Number Field Sieve (WSF) depends mainly on
the size of n.

The basic idea behind QS algorithm is to find
solutions where: x* = y(modn). This would imply
(x +y)x—y) = 0(mod n). By calculating ged((x + y), )
and ged((x — y), ), it may be possible to find a non-trivial
divisor of n. In particular, when n is the product of two
prime numbers p and g, the probability of finding a
non-trivial factor 1s 2/3.

Recall that the Kraitchik! method searches for
combinations to produce a square by incrementing
from the ceiling of the square root until an interesting
combination is found. The quadratic sieve aims at finding
a more efficient method of searching for these
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combinations by using a modified version of the Sieve of
Eratosthenes. The
new primes by crossing off all multiples of primes below
the square root of the upper bound of the search. Instead
of crossing off the numbers, the quadratic sieve uses the
search to find numbers, which fall in a range of primes.
The quadratic sieve would search for results, which were
completely factorable by all primes undermneath a certain
value (a combination with primes under a certain value is
called B-Smooth, where y is the largest prime) by using
division, instead of sunply crossing off the values.
However, 1t must be noted, that the larger the mumber
being factored, the harder it becomes to find values under
a low y-smooth range.

Sieve of Eratosthenes searches for

The mechanics of quadratic sieve algorithm: Quadratic
Sieving (QS) technique is a process whereby we search
mumbers up to a prescribed bound and eliminate
candidates along the way, leaving only the solution.
Recall Fermat’s method, which essentially had as en
end-goal to solve x* = y{mod n) in an attempt to find a
nontrivial factor of n. The QS method similarly has this
same end-goal (which 13 essentially factormg using
congruences) was introduced by Pomerance!. To
describe it, we begin as usual with a composite n € W and
proceed as follows:

Choose a factor base $§ iP1-Po--»Prt» Where
p, are the primes for =12, k¢ N. (Evidence in
the literature suggests that the optimal k is
one which 18 chosen to be approximately

Jexp( log(mwloglogn)) where exp(x) means ¢ as a

convenient approximation.)

Find all values of xi = j + | \fn | such that x? factors

modulo n over the factor base. In other words, find
2 k L) _

those s =TT = v

Paj € Sforalliy.

If we find t such congruences as in part (2) with

H§=1Yj — y*(modn)- then ¥ = y{(mod n) and

ged(x +y,n) provides a nontrivial factor of n if

x # £ y(modn).

(modn) - Withag > Oand

By virtue of part (2) of the algorithm, it makes no
sense to have any odd primes p € & which do not have
any solutions x* = n(mod p) for any xZ . Hence, we
choose primes in & to ensure the maximal possibility of
finding solutions to x = n(mod p). When n fails to satisfy
x* = n{mod p) for any x < Z , n is a quadratic nonresidue
modulo p and if there is a solution of the congruence,
then n is a quadratic residue modulo p.
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Table 4: Computation of Q(x) and extracton of primes in the factor base

i %’ Q0 Q) -1 2 3 7 11 17 19 23 37 41

0 200? -5313 -1-3-7-11:23 v v v v v

1 2012 —4912 ~1-24307 v v X

2 2022 —4509 ~1-3*-167 v v X

3 203 4104 -1-23:5-19 v v v Vv

4 2042 -3607 ~1-3687 v X

5 205 —3288 ~1-233-137 v v v X

6 206 —2877 ~1-3-7-137 v v v X

7 207 —2464 —1-257-11 v v Vv v

8 208* —2049 -1-3-683 v v X

) 200 ~1632 ~1-2%3-17 v v v v

10 21 ~1213 ~1-1213 v X

11 211 792 -1-233211 v v v v

12 2122 369 -1-3%41 v v Y

13 213 56 257 v v

14 214 483 3723 v v v

15 215 912 243-10 v v Vv

16 216 1343 17-79 v X

17 217 1776 24337 v v v

18 218 2211 3-11-67 v v X

19 2162 2648 2331 v X

20 2207 3087 307 v Vv

21 221 3528 2307 v v v

22 2222 3071 11-1¢? v v

23 223 4416 26.3-23 v v Vv

o1 2242 4863 31621 v X
-1 2 3 7 11 17 19 23 37 4

Note: X implies not fully factored over &

As an example and again using an overly small value
composite munber; let n = 45313, Notice that the optimal
number of primes in our factor base should be twelve, by
part (1) of the above algorithm. To find a factor base
consider the values of (n/p), which we compute using the
Legendre symbol:

P 2 3 5 7 11 13 17
n/p) 1 1 -1 1 1 11

% = msqrt(p,n) 1, 1,2 Fail 34 2,9 Fail 5 12
P 12 23 29 31 37 41
n/p) 1 1 -1 -1 1 1

X = msqrt(p,n) 6,13 7,16 Fail Fail 5,32 7, 34

Example Maple: x:=msqrt(7,n), =+, = x = 2, or 5. PARI: kronecker(n, p)

Therefore, our selected factor base: §= {2,3.7,11,17.19,
23,3741}, That 15, to factor n = 45313, we start by
considering only 41-smooth numbers. Next we look at the
polynomial Q(x) = x* —n. In order for a prime p to divide a
value of Q(x), it is necessary that x* = n{mod p), which we
compute as per (Table 4) (using the values of the factor
base); and at the same time extract the primes that appear
i1 our factor base, 5.

Now we use the results from Table 4 to speed up the
factorization of Q(x)=x*—n. Below we list the values of
X from 200 to 225 (these values are chosen to be
roughly centered from about 212, the square root of no,
ie, | Jn = [45313 | = 212, which gives us a sieving
range, M = 25, which we use to further develop (Table 4).
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That’s for each j find: x; = j +[J L x*and finally
x* = n{mod p). That is, we tick-mark which primes
divides Q(x).

Since most of the entries in columns 5-14 in Table 4
(~75 % to be precise) are empty, we have saved a lot of
work in implementing the sieving method of building
the table to tell us which primes we need to consider
(tick marked) plus QS technique requires us to use only
the rows that are completely split and cross out those that
are but their prime factors are outside our factor base
(rows marked with X in the last column). This effectively
leads to a great saving. (For larger numbers, the savings
are even greater - much greater!)

Now we can start to factor Q(x) = x* — n, for each
value of x, using Table 4 to tell us which primes will factor
Q(x). Scanning Table 4 we can see that we have a possible
solution for j =14, =20 and j = 23

Hence, we have: 214 = 3-723(med n), 220° =
3*7{mod n) and 223*= 2%3-23(mod n) so (214-220-223)
= (2°3*7+23Y(modn), namely 31537 = 35831 (mod 45313)
and ged(31537 — 35831, 45313) = 113, or ged(31537 +
35831, 45313) = 401. In fact: n = 45313 = 113401,

Sometimes we get lucky in our use of the quadratic

sieve since we may find, m the sieving process, that a
single x’—nis itself a square. In other words, the value
t =1 in part (3) of the above algorithm. In this particular
example we were not that lucky!

Now let’s immplememt a more effective and robust
binary technique which gives a definitive solution and
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Table 5: Implementation of an effective and robust binary technique for speeding up QS

i = Qix) Qix) -1 2 3 7 11 17 19 23 37 41 T
0 2007 -5313 —1-3-7-11-23 1 0 1 1 1 0 0 1 0 0 1
3 203 —104 -1-23-3%19 1 1 1 0 0 0 1 0 0 0 2
7 207 —2464 -1-2-7-11 1 1 0 1 1 0 0 0 0 0 3
9 209 -1632 -1-2>3-17 1 1 1 0 0 1 0 0 0 0 4
11 2112 =792 -1-23-3%11 1 1 0 0 1 0 0 0 0 0 5
12 2122 —369 -1-3%41 1 0 0 0 0 0 0 0 0 1 6
13 213 56 227 0 1 0 1 0 0 0 0 0 0 7
14 2142 483 3723 0 0 1 1 0 0 0 1 0 0 8
15 215 912 24319 0 0 1 0 0 0 1 0 0 0 9
17 217 1776 213-37 0 0 1 0 0 0 0 0 1 0 10
20 2209 3087 37 0 0 0 1 0 0 0 0 0 0 11
21 2217 3528 23327 0 1 0 0 0 0 0 0 0 0 12
22 227 3971 11-1¢ 0 0 0 0 1 0 0 0 0 0 13
23 223 4416 2-3-2 0 0 1 0 0 0 0 1 0 0 14
-1 2 3 7 11 17 19 23 37 41

avolds the trial lookout performed above, which can be
very difficulty if our composite number is large!. To
achieve thus, we transfer cur data for the values for which,
Q(x) = x* — n, splits completely over & and take their
exponent vector modulo 2 which we enter in Table 5,
columns 5-14:

The matrix A extracted from Table 5, columns 5-14 1s:

- 0 0 0 M - O oo = © = =
(= R R = T =~ — T — T =
-0 0O 0 0 0~ o000 o o -
0 oo - oo o oo @ 2 e 9

= T R B R R R — S e
=R =T — R — T — R — R O =
S 0 O R O 0 == oo o
= R R = = R = — R = L
S 0 oo 0 oc o0 o oo -9 oo
0 oo o0 o oo S oo

AT.‘ =6(12)

\glogl‘glglglglﬁlgl ﬁ)

(=}

[ == = T = IR e T e TR s B e TR s B
—

[T = T = = T = = = = =]
oo = O O O = = O O
== e R e R = T == T = T ol e B e |
o = o O o O O = O O
o o © o o o = O O O
=== == == = -]
[==T e T e I = = R L == = R = |
[= e R — I = T == T e B ol e B e |

c o~ o0 O R = RO -
I I - T — T — T
o0 0 0 C - O
[T e T = B B =T ==
- - - -

J’slgl’jlgl

w

i
i~
L

Equation 12 has the form, 5T .z_ 6(m0d 2y where €
is the exponent vector and AT is the transpose of the
14x10 exponent matrix A extracted from the right side of
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Table 5 but reduced modulo 2. The fourteen column
vectors must be lmearly dependent since most are n a
space of dimension at most 10. This is equivalent to
saying that there exists a nonzero &e GF(2)!* such that
AT.E=0

In tlus example we have solved (the matrix A, is
transposed to AT, as we solve Al 6=0 andnot
8- A =0) using Maple, which gives five set of possible
solutions as:

[0,0,0,0,0,0,1,0,0,0,1,1,0,0],
[1,0,0,0,1,0,0,0,0,0,1,1,0,1],
[0,0,1,0,1,0,0,0,0,1,0,0,0],
[0,0,0,0,0,0,0,1,0,0,1,0,0,1],
[0,1,0,0,1,0,0,0,1,0,0,0,1,0]

e=

Which we shall identify as follows:

E = {[ésl]a [652 ]: [653 ]: [654 ]: [655 ]}
Here e,; and e, give no factors of n= 45313 while

€., €, and &4 are able to factor our composite number
n. For example:

€3 =[0,0,1,0,1,0,0,0,0,0,1,0,0,0] =[1;,55,5,]
Where, we read the values of x’s corresponding to
values of r’s as listed by rows in the last column of

(Table 5), which gives:

x = 207-211-220 = 9608940 = 2584 mod 45313

y= (2072 - n)- (2112~ n)-(220% - )
=2%.32.72.11= 77616 = 32303 (modn)

This yields the geds:
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gedix—y,n)=113 and ged(x—y, n)=401

Which gives a factorization n=45313=113-401. This is
the same value as we had found earlier via a primitive
look-up method.

Traditionally, one solves the system AT .= 0 by a
Gaussian elimination. However, recently some iterative
methods!">***! have been found. The iterative methods
are superior when the matrix 1s large, since they require
less storage (matrices arising from integer factorization
problems are very sparse as noted earlier). For these large,
sparse, matrices, the iterative methods are also faster-if
A is an n ¥ nmatrix, then Gaussian elimination uses O(n”)
bit operations but the iterative methods take O(n)
applications of the matrix A, which is time C(n®) if the
number of nonzero entries per column remains bounded
as Il ZTOws.

The term quadratic sieve comes from the above
process of sieving over all quadratic congruences
x’; = n(med p) for p € & Unlike p-1 method, as k (the
number of primes in our factor base) gets large in the QS
method, then we may naturally expect to find more
integers x, that factor over . However, the negative side
here is the increased number of congruences that we need
to list before a solution leads us naturally to its

complexity, naturally Q¢exp( /log(n)loglog(n) 3) -

Complexity of the quadratic sieve algorithm
Conjectired  time  for optimal choice of B:
exp((c + of1))-(log m)"*-(log log n)") with ¢ = 1,
comparedto ¢ =42 for Dixon’s algorithm. Hence, it
can factor mtegers that are twice longer.

Variant-self initializing multiple polynomial quadratic

sieve.

Subexponential time, subexponential space but can
practically factor integers up to ~400 bits.

Can we decrease the (log n)" term in the exponent?

On April 2, 1994, the factorization of RSA-129 was
completed using QS. It was a 129-digit number, the
product of two large primes, one of 64 digits and the
other of 65 The factor base for this factorization
contained 524339 primes. The data collection phase
took 5000 mips-years, done in distributed fashion over
the Internet. The data collected totaled 2GB. The data
processing phase took 45 h on Bellcore's MasPar
(massively parallel) supercomputer. This was the largest
published factorization by a general-purpose algorithm,
until the arrival of NFS which is currently the champion
factoring algorithm.
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THE MULTIPLE POLYNOMIAL
QUADRATIC SIEVE (MPQS)

The Quadratic Sieve (QS) 1s much efficient algorithm,
however, for large n it suffers from limitations. To
generate enough relations, the length of the sieve interval
M must be large. But the value of Q(x) grows with M,
making it less likely that we’1l find values of x which Q(x)
factor fully over the factor base &. In general, the number
of relations returned per unit time spend sieving
decreases as M increases. If we sieve the 2M values of
Q(x) for |X,Jﬁ | <M . then the largest residue is about
2My/N (assuming M « /N ). Montgomery™*! found a
way to stunt this growth as M grows. His variation, which
is an improvement to QS technique, is called the Multiple
Polynomial Quadratic Sieve, or MPQS.

As the name suggests, the MPQS uses several
polynomials instead of just a single polynomial Q(x) as
m QS and although discovered independently by
several researchers, it was first suggested by Peter
Montgomery. But it is also important to note that MPQS
goes back Kraitchik  technique™; however,
Pomerance'? was the first to describe and analyze it in its

to

modern form. Davis and Holdridge®*? and independently,
Montgomery™ proposed the use of the multiple
polynomials i the quadratic sieve algorithm. The new
Multiple Polynomial Quadratic Sieve (MPQS)
significantly faster than the single polynomial version but
requires expensive multi-precision and modular nverse
operations for each new polynomial. The algorithm

18

spends much time calculating the new zeros for each
polynomial when compared to the sieving time.

In the mteger factoring world, the MPQS method 1s
usually considered as a complementary to ECM since the
computing time of MPQS depends on the size of the
smallest prime factor of the number to be factorized. At
the present, numbers with smallest prime divisor up to
30 decimal digits may be best factorized with the help
of ECM, whereas numbers with smallest divisor more than
30 digits may be best factorized with the help of MPQS,
provided that the size of the number to be factorized does
not exceed 90 decimal digits. In real practice, however, we
usually do not have such knowledge about the size of the
prime divisors we are seeking. In best practice, it is always
advisable to try ECM before MPQS, i order to eluninate
the smaller prime divisors first.

The mechanics of MPQS-algorithm: Let n be the (large)
number, which is known by Fermat’s little theorem and
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which we wish to factorize. Further recall that the
Quadratic Sieve ((QS) method belongs to a class of
algorithm, which have common aim to find two integers
X and Y, such that:

X! =Y*medn) (13)

If ged(X-Y, n) = d satisfies 1<d<n, then d 13, a proper
divisor of n. In order to find such an (X,Y)-pair, one may
try to find triples (U, a;, H), where, 1=1,2,... such that:

Hix) = a * f(x)) = U'(x,)(mod n) (14)

Where, H(x) = a-f(x) 1s easy to factor, or at least
easier than n. If sufficiently many congruences have
been found these can be combmed, by multiplying

together a subset of them, in order to get a relation of
the form of Eq. 13, 1.e.:

[TU*(x;) = [TH(x;)(modn) (15)

In this study we will implement the version suggested
by Montgomery. Multiple polynomials keeps the value of
Q(x) smaller and therefore more likely to be smooth over
3. The Montgomery’s refinement to MPQS sieves over
shorter interval but with several different quadratic
polynomials in x. Instead of just:

Qx)=x*-n (16)

The Montgomery option starts with a general

polynomial of the form:
fix)=ax’ +2bx+¢ (17)

Where, a, b and ¢ are chosen according to certain
guidelines below. The motivation for this is that by using
several polynomials, we can make the sieving mterval
much smaller, which makes f(x) smaller, which in turn will
mean that a greater proportion of values of f(x)
completely factor over the factor base.

In choosing our coefficients, let a be a square. Then
choose 0 < b <aso that b’ = n(mod a). This can only be
true if n 1s a square mod p for every prime p|a. So we wish
to choose a with a known factorization such that
(n/p) =1 for every pla.

In order for f(x) to generate quadratic residues, the
determinant b’~ 4ac must equal n. Since the determinant
will be equal to O or 1 (mod 4) and nwill be 1 or 3 (mod 4),
1f n=3 (mod 4) we must multiply it by a small constant k
(called the multiplier) in order to make the product kn
equal to 1(mod 4) so we factor kn instead of n.
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Lastly, we choose ¢ so that b~ dac = n. When we
find a f(x) that factors well, notice that:

Hx) = af(x)= (ax)* + 2abx +ac + (ax + by’ —n (18)
Where:
fx)=ax*+2bx+c, Hx)=a-f(x)and

U(x) = (ax + b) (19)

So that:

Ui{x;) = H{x,) (mod n) (20)
Also as before, if a prime p divides, a'f(x), thennis a
quadratic residue modulo p, so that we do not need to
change our factor base.
The number to be factored hits its mimmum at
X = —b/a. We want to choose a, b and ¢ so as to minimize
both: —Q(-b/a)=n/a and the extreme values at the edge

of the sieved interval:
Q(-M-b/a) = Q(M-b/a) = aM*n/a

Where, M is half of the sieving interval. If M is
prescribed, this 15 accomplished by setting these values
equal, e, at g~ Jﬁ/M )

If a is chosen to be a prime, then we know how to
solve the congruence, x* = n(mod a). Finally, we choose
b to be a solution of this congruence and c to be:
¢ = (b’ —n)a.

The MPQS described above has a number of nice
features. For example, if we do not get enough completely
factored Q(x)’s m the chosen short sieving range then we
Just generate a new polynomial and sieve again over our
shorter interval. However, one of the nicest features is
that the sieving parallelizes perfectly. With N processors,
one can assign a different polynomial to each processor
and the algorithm runs N times as fast. In Lenstra and
Manasse!"”! used this procedure with a dramatic effect to
produce the first factorization of a hard 100-digit integer
mnto a product of two primes and accomplished the
factorization by farming out their polynomials to roughly
400 computers around the world.

A Simple implementation of MPQS: Here we present an
overly simple implementation of MPQS. Note that in real
practice we are talking of integers in the range of 50-100
digits. It has been shown that if the number of decimal
digits to be factorized is mcreased by three, then the
amount of CPU-time needed is roughly doubled.
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Appendix 1: % Maple implementation of MPQS

> restart;
> with(numtheory):
Waming, the protected name order has been redefined and unprotected
>
= n=45313%;

n: = 45313
= msqrtin,7);

3
=a=T,

a=7
=h:=3;

b:=3
= o:=(b"21n)/a;

o =—6472

> F=proc(r)c+r*(a*r+2*b)end;
F: =proc(r) c+r<{axr+2xh) end proc

= evalfi—b/a);
—4285714286
= evalf(F(—b/a));
—6473.285714
= evalf{sqrt(2*n)/a);
43.00593221
> M=44,
M: =44
= plot(F(t) t=—M-b/a. M-b/a);
6000
4000
2000
-40 20 40

> begining:=floor(-M-b/a);
beginning =—45
> ending:=floor(M-b/a);
ending =43

> gvals:=[seq([r,F(r)],=begining..ending)];

svals: = [[—45, 7433], [, 6816], [43, 6213], [<42, 5624], [=H1, 5049], [—40, 4488],
[-39, 3941], [-38, 3402], [-37, 2889], [-36, 2384], [-35, 1893], [-34, 1416],
[=33, 953], [<32, 504]. [31, 69], [-30, -352], [-29, -759], [-28, -1152], [-27, -1531],
[-26, -1896], [-25, -2247], [-24, -2584], [-23, -2907], [-22, -3216], [-21, -3511],
[-20, -3792], [-19, -4059], [-18, -5312], [-17, -4551], [-16, 4774], [-15, -4987],
[-14, 5184], [-13, -5367], [-12, -5536], [-11, -5691], [-10, -5832], [-9, -5959],
[-8, 6072, [-7, 6171], [-6.6256], [-5, 63271, [-1, 6384], [-3, 6427],
[-2, 6456], [-1, 6471], [0, 6472], [1, -6459], [2, -6432], [3. -6391], [4, -6336],
[5, 62671, [6, -6184], [7, -6087], [8. -5976], [9, -5851], [10, -5712], [11, -5559],
[18, -4096], [19, -3831], [20, -3552], [21, -3259], [22, -2957], [23, -2631],
[24, 2296], [25, -1947], [26, -1584], [27, -1207], [28, -816], [29, -411], [30, 8],
[31, 441], [32, 888], [33, 1349], [34, 1824], [35, 2313], [36, 2816], [37, 3333],
[38, 38641, [39, 4409, [40, 4968], [41, 5541], [42, 6128], [43, 6725]]

=

= plot{svals);
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6000
4000

2000

40 20 10

-3
= tvals:=map(u-={u[1],ifactors(u[ 2])],svals);
tvals: =[[-45, [1, [[7433, 11111, [-44, [1 [[2, 51, [3, 11, [71, 17110,

[-43, [1. [[3. 1]. [19, 1], [109, 1]1]]. [-42. [1[[2. 3][19, 1]. [37. 1]]].

[-41, [1. [[3, 3]. [11. 1], [17, 1110, [-40. [1. [[2. 3] [3. 1], [11, 1], [17, 11110,

[-39, [1. [[7. 1][563. 1]1]1. [-38, [1.I[2, 4], [3. 1]. [71, 1]]10.

[-37, [1. [[3. 3]. [107. 1]]1]. [-36, [1, [[2, 4]. [149, 1]]]].

[-35, [1. [[3. 1]. [631. 1]]11. [-34, [1, [[2, 3]. [3. 1], [5.. 111111

[-33, [1. [[953, 1]11]. [-32. [1, [I2. 3]. [3, 2]. [7. 11]11.

[-31, [1. {3, 1]. [23. 1]]1]. [-30, [-1, [[2, 5]. [11, 1]]].

[-29, [-1, [[3. 1], [11, 1]. [23. 1]]1]. [-28, [-1. [[2, 7]. [3, 2]]10.

[-27, [-1, [[1539, 1]11]. [-26, [-1, [[2. 3], [3. 1]. [79, 111110,

[-25, [-1, [[3.1], [7. 1], [107, 11111, [-24, [-1. [[2.3]. [17, 1]. [19. 1]]]].

[-23, [-1, [[3. 2], [17, 1]. [19, 1]]11. [-22, [-1, [[2. 4], [3, 1]. [67. 1]11].
[-L. [[3511, 1]]1]. [-20, [-1. [[2. 4]. [3. 1], [7%, 1]111.
[-1, [[3. 2], [11, 1], [41. 1111, [-18, [-1. [[2, 3]. [7, 2]. [11. 1]]]].
[-1, [[3. 1], [37, 1]. [41. 1110, [-16, [-1, [[2. 3]. [3.1]. [199, 1]]]].
[-1, [[4987, 11111, [-414, [-1, [[2. 6], [3. 41111, [-13. [-1, [[3. 1], [1789, 1]]]].
L [[2. 5]. (173, 1]11]. [-11. [-1. [[3. 1]. [7. 1]. [271, 1]]]].
L [[2. 3]. [2. 8110, [-%, [, [[5%. 1], [101, 1]]]].
-8, [-1. [[2. 3]. [3,1]. [11, 1], [23, 1]11]. [-7. [-1, [[3. 1], [11, 2], [17, 1]]11.
[=6. [-1. [[2. 4]. [17. 1], [23, 11111, [=5, [-1, [[3, 21. [19, 1]. [37. 1]11].
[—4[-LI[2.41.[3.1L[7.1 1119, 1]1]1.[-3.[- LI 6427.1]]]1,
[—2.[-1.[[2,3].[3.1].[269,1]]]1.[-L.[-1.[[3.2]. 7191 ]]]].
[0.[-0.[[2,3].[8,2.1]]]1.[1.[-L.I[3,1].[2153,1]]1].
[2.,[-1,[[2,5].[3,11.067,L]11.[3.[-1.[[7,1].[11,1].[83, 1111
[4.[-1.[[2.6].3,2].[1 1 1]]]L.[5.[-1.[[3.1].[2089,1]]]].
[6.[-1.[[2.3].[773.1]1]1.[7.[-L.[[3.1].[2029.1]]]],
[8.[-1.[[2.3].,[3.2].[83.1 ]]1.[9.[-L.[[5851.1]]1].
[10.[-1[[2,4].[3.1L.[7.1.[17.1]11].[11,[-1[[3,1],17,1]. 109, 1]]]].
[12.[-1[[2,4].[337.1]1]1.[13.[-L[[3,3].[193.1]1]].
[14.[-1[[2,3].[3.1].[11.1],[19, 111101 5.1, [[11,1].[19.1].[ 23, 1]]1].
[16.[-1[[2,3].[3.1L.[191, 111111 7.[-1.[[3.31.[7.1].[23.1]]]].
[18.[-LI[2 121119, [-L[[3.1].[1277.1]]]].
[20.[-[[2,5].[3.1L.[37, 1]]1].[21.[-1.[[3259.1]1]].
[22.[-1.[[2,3].[3.2].[41.1]]]].[23.[-1.[[3.1).[877. 1]11].
[24.[-1[[2,3].[7.1].[41.1]]]1.[25,[-1.[[3.1].[11.1 ][ 59.1]]]].
[26.[-L[[2.4].[3.2].[1L]]L[27.[-L.[[17.1].[ 71, 1]]1].
[28.[-L[[2.4].[3.1L.[17.1]111.[29.[-1.[[3.1 .11 37.1 ] T11.[30.[L.[[2.3]11].
[31.[1.[[3.2].[7.2]110.132,[ 1.[[2.31.[3.1].[37.1]1]].
[33.[L[[19.1].[7LA]]]1.[34.[L.[[2.5].[3,1].[19.1]]11,
[35.[1.[[3.2].[257.1]111.[36,[L,[[2.8].[11,1]]]].
[37.[1.[[3.1],[11,1].[101, 1]]]1.[38.[1.[[2.3].[3.1].[ 701].[23.1]]]].
[39.[1.[[4402.1]]]].[40.[1,[[2.3].[3,3].23,1]]]].
[41.[1.[[3.1],[1847.1]]]].[42.[1.[[2.4].[383.1]]11,
[43.[1.[[3.1],[2243.1]]]1]

[-21,
[-19,
[-17,
[-15,
[-12.[-
[-1o.[-
[

=

=pvals:=map (u—={u[1] u[2] [1] ,map(v—=v[1], W[ 2] [2])] .tvals);

=

pvlas = ={[-45,1,[7433]],[-44,1,[2,3,71]],[-43,1,[3,19,109]],[-42,1,[ 2,19,37]],
[-41,1,[3,11,17]],[40,1,[2,3,11,17]],[-3%,1,[ 7.563]].[-38,1,[2,3,71]].
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[37,1,[3,107]],[-36,1,[2,149]],[-35,1,[3,631]],[-34,1,[ 2,3,59]],
[-33,1,[953,]1.[-32.1,[2.3,7]1.[-31,1,[3,23]],[-31,-1,[2,11]],
[-29.-1,[3,,11,23]],[-28,-1,[2,3]].[-27.—1,[ 1531]],[-26,-1,[2,3,79]],
[-25,-1,[3,7,107]],[-24,-1,[2,17,19]].[-12,—1,[3,17,19]],
[-22,-1,[2,3,67]],[-21,-1,[3511]],[-20,—1,[2,3,79]],[-19,—1,[3,11,41]],
[-18-1,[2,7,11]]),[-17,-1,[3,37.41]],[-16,-1,[2,3,199]],[-15,—-1,[4987]],
[-14,-1,[2,3]1.[-13,-1,[3,1789]],[-12,-1,[2,173]].[-11,-1,[3,7.271]],
[-10-1,[2,3]].[-9.-1,[59,101]],[-8,-1,[2,3,11,23]].[-7.—1,[3,11,17]],
[-6,-1,[2,17,23]],[-5,~ 1.[3,12,37]].[4—1,[2,3,7,19]1.[-3.-1,[6427]],
[-2,-1,[2,3,269]],[-1,-1,[3,719]1.[0,—1,[2,809]].[1,-1,[3,2153]],
[2,-1,[2,3,67]].[3,-1,[7,11,83]],[4,-1,[2,3,11]].,[ 5,-1,[3,2089]],
[6,-1,[2,773]1,[7,-1.[3,2029]].[8.-1,[2,3,83]],[9.—1,[ 5851]],
[10-1,[2,3,7,17]],[11,-1,[3,17,109]],[12,—1,[2,337]],[13,-1,[3,193]],
[14,-1,[2,3,11,19]],[15,-1,[11,19,23]].[ 16,-1,[2,3,191]],
[17,-1,[3,7,23]],[18,—1,[2]],[19,—1,[3,1277]].[20,-1,[2,3,37]].
[21,-1,[3259]],[22,-1,[2,3,41]],[23,-1,[3,877]].[24.-1,[ 2,7,41]],
[25,-1,[3,11,59]],[26,~1,[2,3,11]],[27.-1,[17,71]].[28,—1,[2,3,1 7]].
[29-1,[3,137]1,[30,1,[2]11[31,1,[3,710.[32,1,[2,3,37]1,33,1,[19,71]],
[34,1,[2,3,19]],[35,1,[3,257]],[36,1,[ 2,11]],[37.1,[3,11,101]],
38,1,[2,3,7,23]],[39.1,[4409]],[40,1,[203023]],[41,1,[3,1847]],
[42,1,[2,383]],[43,1,[3,2243]]]

= chooser:=proc(x) local

m,y,n;: =x[3] ;n =nops (¥) ;m=op(n,y) ;evalb (m,36)end;

chooser:=
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proc(x) local my,n;y =< 3];n:= nops@ ) m=op(n,y); evalb{m<36) end proc

=select (chooser , pvals) ;
[[-41,1,[3,11,17]],[-40,1,[2,3,11,17]1,[-32,1,[ 2,3,7]1.[-31,1,[3,23]],
[-30,-1,[2,11]],[-29,-1,[3,11,23]],[-28,-1,[ 2,3]].[-24,-1,[ 2,1 7,1 9]],
[-23,-1,[3,17,19]].[-18,-1,[2,7,11]].[-14,—1,[2,3]],[-10,—1,[ 2,3]],
[-8,-1,[2,3,11,23]],[-7.—1,[3,11,1 7]].[-6,-1,[2,17,23]],
[4,-1,[2,3,7,19]],[4,-1,[2,3,11]],[10,-1,[2,3,7,17]],
[14,-1,[2,3,11,19]],[15,~1,[11,19,23]],[17,-1,[3,7,23]].[ 18,1, [2]],
[26,-1,[2,3,11]],[28,~1,[2,3,17]],[30,1,[2]1.[31,1,[3, 711,

[34,1,[2,3,19]],[36,1,[2,11]],[38,1,[2,3,7,23]],[4,1,[2,3,23]]]
=
=nops (tvals);

98
=vals [1];

[45[1,[[7433,1]11]
tvals [10];

[-36[1,[[24].[142.1]11]
tvals [46];

[0.[-1,[12,3].[80%,1111]
tvals [48];

[2.[0-1.[12.5].[3.1].[67,1]11]
tvals [70];

[24,[-1,[[2,3LI711,[41.1111
tvals [81];

[35,[1,[13,2].[257.1111]
tvals [84];

[38,[L[[2.31[3,11.[7.11.[23,1]]1]

Note: we read tvals as follows:
tvals [10]=f(—36)= 2"4*149, tvals [48] =f(2) = —1*2"5*3%47,
and tvals[84] = f(38) = 2"3*3*7%23.

TLetn=45313 giving n=1({mod 4) and k = 1 and let’s pick
a =7 from our earlier factor base $, so that:

b = msqrt{n,a) = msqrt(45313,7) =3
c=(b*n)a=-6472 -45<M =< 43

Hence, from Eq. (19):

flx)=7x*=6x-6472 Hx) =74x) Ux)=7x+3
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This can be combined with values of Q(x;) from QS
algorithm to produce a product which allows for complete
factorization of n. One such product which we can
derive from 1s:

Q(200) = -1-3-7-11-23 Q(207) = -1-2°7-11

and  f(38)=2"3-7-23 H(38)=7-f(38) = 2"3-7%23

TJ(38) =269 giving:
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Q200)Q(207U(38)= (200-207-269)°
= (2%37%23)(-1-3-71123)(-12*711)
=08.37411%23%=(2:3-7511 23 )2

Which we can write as follows:
x = 200-207-269 = 34915 modn  and
y = 2+37%11-23 = 5987 mod n
This yields the geds as:
ged(x—y,n)=113 and ged(x+y, n) =401

Which give a factorization of n = 45313 = 113-401
which 1s the same as found with QS.

The above solutions is found using the values read
from the Appendix 1. Read tvals as: M = —45 or Q(—45) to
M =43 or Q(43). These values gives the sieving range,
=45 < M < 43, which can be merged with other data from
Table 4 from the QS scheme to produce squares on both
sides of Eq. 13.

MPQS large prime variations technique: The sieving
procedure in QS looks for values of x such that f(x) is
smooth with respect to the factor base . The algorithm
is easily modified to also find values of x for which f(x) is
a smooth number times a prime not much larger than the
factor base bound, by adjusting the threshold used when
mspecting logarithms after sieving. The extra prime in the
factorization of f(x) is called a large prime. If one finds two
values of x for which f{x) has the same large prime, then
the corresponding congruences can be multiplied
together and treated as a pair for the rest of the algorithm.

The solution is to allow separate large prime factors.
The chances that another Q(x,) has the same large prime
factor are good when an even number of such Q(x;) are
combined, the large factor appears with even exponent
and does not need to be considered in the matrix.

This procedure, called the large prune variation, is
compatible with the wuse of multiple polynomials
described above. For example, both Q(218) = 3-11-67 and
f{2) = -1-2°-3-67 have 67 as the only prime exceeding 41.
After domg linear algebra phase, we decide to combine
these with two entries from Table 4 from QS method. One
such product which we can derive from are:

Q(211)=-1-23%11 Q(218) = 31167 Q(220) = 3%7°

and
f(2)y =-12"3-67 H(2)=7f(2)=-12"37-67
U2)y=17 is:
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QRIDIORIHIQ220YU(2) = (211-218-220-17)
= (—1-2%3"11)(3:11-67)(3%7)(~12°367)
= 28307411867 = (29:347%11-67)2

Which we can write as follows:
x = 17211-218220 = 24372 mod n and
y = 2%3%7%11-67 = 13144 mod n
This yields the geds as:
gedx—y, n) =401 and ged(x +y,n) =113

Which give a factorization of n = 45313 = 113-401,
which 1s the same as found with QS.

INDEX CALCULUS METHOD

The integer factorization problem has been the
subject of intense research, especially in the years since
the invention of RSAM. Recall that the most basic attack
on RSA consists of factoring the modulus N = pg. Let N
be an n-bit integer. Most of the subexponential-time
algorithms-those that take fewer than ,n°-steps with
¢ < 1-are of index calculus type. We now describe mdex
calculus algorithm to factor N.

The methoed 13 based on the elementary observations
that if x* = y* (mod N), then N = pg(x + y)(x —y)and so p
and q each must divide either x +y or x — y. If x and v were
formed independently of one another then one expects
that 50% of the time the two primes will divide different
factors, say pjx +v, gl(x —y. In that case and as before, we
can factor N by using the Euclidean algorithm to
compute ged(x +y, N) =p.

We start the index calculus factoring algorithm by
choosing a factor base & consisting of all primes less
than some bound B along with the number—1, ie.,
3 = {Pos Pisesprt. where py = -1, p, = 2, p; = 3. We next
choose positive integers a < N (either randomly or
according to some convenient criteria) and compute the
least absolute residue of a’ If this residue cannot be
written as a product of numbers in our factor base, we
choose another value of a. We finally arrive at a system of
mod N relations of the form:

2t A
a; = TioP;

Where, 1=1,2,...s. We try the product :

2v,

.ar = Vit
i%

—LLjFj
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Where, v; € {0,1} in such a way that we get a perfect
square on the right. Tn other words, we need each prime
on the right to occur to an even power; i.e., Xyva,; must be
even for each j = 0,1,...,r. This amounts to solving a
system of r + 1 simultaneously equations in s unknowns
over the field FF, = {0,1}. Once we have such a product, we
can set:

x=TTa" and y=[;pl" with Hj:%(Zivio'“i,j)

Then x* = y* (mod N) and there is a 50% chance that
we can immediately factor N, we find another solution
to the simultaneous equations over F, and try agam.

As an example, again using an overly simple
composite number, let N = 403 =(13-31) and choose
J=14-1,23,5 7,11, 13}. After squaring some 2-digit
numbers, we find that we can take a, 1 <1 < 7 which we
use to complete the table below:

i a? ai modn -1 2 3 5 7 1 13
1 19 -1-2-3-7 1 1 1 1 0 0 0
2 222 3 0 0 0 0 0 0 0
3 260 —1-2-5-13 1 1 0 1 0 0 1
4 28 —1-2-11 1 1 0 0 0 1 0
5 33 —1-2%-3-5 1 1 1 1 0 0 0
6 34 2 0 0 0 0 0 0 0
7 38 -1-2-3-7 1 1 1 0 1 0 0

As with the case with Quadratic Sieve (QS), we
extract the exponent information from H_pkk , to
. . 111
form a matrix A, which we transpose to get &,

o3

Il
[ Y S S S R SR o S
=T e e e = B )
=T S - T o T - R
[ = RS R =T
- o O O O O O
=R =T = S = S = T )
= = e A = =)

s
-

Il
[=RNelleB ol
[T T e T o B oo B oo ) o
—_ D O D = =
2 = = D D =
o oo o o o o O

D O D e e
[ e R =

and then solve the equation: AT™v = O{med 2), where v is
the exponent vector, which gives three set of possible
solutions as:

v = {[0,1,0,0,0,0,0], [0,0,0,0,0,1,0], [1,0,0,0,1,0,0]}

Which we shall identify as follows: v = {[v,], [v..],
[v:]}. Here v, and v, give no factors of N = 403, while v,
153 able to factor our composite mumber N. For
example, v, = [0,1,0,0,0,0,0], gives, x = 22(mod 403) = 22
and y = 3%mod 403) = 9. These yield the gcds,
ged(x — y, n) = 13 and ged(x + y, n) = 31, which gives a
factorization N = 403 = 13-31.

It can be shown that the time required to factor an
n-bit integer by the above mdex calculus factorization
method is of the order zn'ﬁ*e for any € = 0 (More
precisely, the number of steps is (O m N
Throughout the 1980°s modifications and generalizations
were introduced that improved upon the performance of
index calculus methods; however, no one was able to
reduce the exponent of n below 1/2 + £. Even when
Lenstra™ developed an exciting and conceptually very
different factorization methods based on elliptic curves,
asymptotically his method required roughly the same
amount of time as the mdex calculus algorithms. Some
people wondered whether the exponent 1/2 + ¢ might be
best possible for a general mteger factorization algorithm.

However, ideas of Pollard"? led to a major
breakthrough in factorization, called the Number Field
Sieve (NF3). By carrying over index calculus to algebraic
filed, it was possible to factor an arbitrary n-bit integer in
time bounded by 2111/ ™ for any € > 0. (More precisely,
exp(Ofnlog?n) ). The number field sieve is at present the
fastest method for factoring an RSA modulus; the current
record is a number of 248 decimal digits. The reduction in
the exponent of n from 1/24+¢ to 1/3+c has important
consequences 1n the long run. It means that even modest
improvements in hardware and software can increase the
size of the numbers that can be factored. For this reason
the current recommendation for implementation of RSA is
to use numbers of at least n = 1024 bits (Fig. 1).

THE GENERAL NUMBER FIELD SIEVE (GNF'S)

The general number field sieve (GNFS) algorithm is
the fastest known method for factoring large number of
between 100 and 248 digits. GNFS is an improvement on
quadratic sieve**". The algorithm uses idea from diverse
field of mathematics such as algebraic number theory,
graph theory, fimite fields and linear algebra. One of the
improvements is that the polynomial being used is not
only limited to quadratic, but may be cubic or even higher
degree polynomials. Implementation of the number field
sieve can be written such that the sieving process can
take place on several computers. The results of the
sieving processare then combined at a later stage.

In GNFS, as compared to QS or its variant, we have
two polynomials f and g that are related modulo n, but
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now the relation is more subtle: f and g both have known
m modulo n:

flm) = g{m) = O(med n)

Also, suppose f and g are monic and irreducible. Let
¢ be a complex root of f Consider the ring Z[o]
(equivalent, Z[x]/(f(x)) ). The members of this ring are of
the form:

Q) = q + et + Qo +..+ g+ quatE

Operations in this ring are done modulo f{e), simply
because f{e) = 0. Similarly, define Z[B], where, [ is a
complex root of g.

Consider the rng homomorphism ¢: Z[a] — Z;
¢:a > m defined by (1Le., replacing all occurrences of o
withm). Like wise, W: Z[p] > Z ,y:Pr>m .

Suppose we found a setoff integer pairs SCZxZ
and also q{a) e Z{o] and t(P) e Z[B] , such that:

qla)? = [T(ap)es(a—ba) over Z[a]
t(B)* = IT(ab)es(@—bB) over Z[B]

Then mod n gives:

ba@))* = 6( [T pyesta—bo)

BB = W T pyes (@ = bB)]
Let F(a,b) = b®8f f{a/b). Tt turns out that:

I1

(a,b)es

(a—bm)mod n

H(a,b)es (a—ba) 1s asquare in Z[o]

Implies:

[Tiapyes Flab) is asquare in Z

Moreover, the converse almost holds. Therefore, we
can work as before: find (a,b) pairs such that: F(a,b) is
B-smooth, compute their exponent vectors and find
dependencies. To find pairs, we fix values of b and sieve
over a. We do the same for g and Z[p] and find S that
satisfies both conditions. Mips vears required to factor a
number with the GNFS:

Bits Mips-years
512 30,000
768 2x10°
1024 3x101
1280 1x101
1536 3x10%
2048 3x10%
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Complexity of the Number Field Sieve (NFS): The best
known classical method for factoring numbers is currently
the Number Field Sieve (NFS)*. It has an asymptotic run
time of approximately exp(c (Inn)"(In n'ln n)**), reducing
the exponent over the continued fraction factorization
algorithm and quadratic sieve. There are three values
of ¢ relevant to different flavors of the method™. For
the special case of the algorithm applied to numbers
near a large power, ¢ = (32/9)" = 1.526285 for the
general case applicable to any odd positive number,
which is not a power, ¢ = (64/9)"" = 1.92299% and for
a version using many pelynomials (Coppersmith®?),
c= %(92 + 265)1’/3 =1.901883, where n is the number
to be factored. As the length of the number n is O(ln n)
this means that the factoring algorithm 1s exponential in
the length of n. The factorization of a 512-bit mumber
using NFS method requires approximately 10" steps.
Using quantum oracle, one can achieve a better time
complexity™"*,

The point: wisely choose f and g so that there values
near 0 are small and therefore likely to be smooth.
Specifically, we choose f and g of degree:
d = (log n/log log n)"” and the F(a,b) and G(a,b)
values we test for smoothness have size roughly
™ (versus n'* for QS).

Conjectured tume for optimal parameter choice:
e(c+o(1))-(1ogn)1f3-(1oglogn)2f3 with ¢=2

Successfully factored 512-bit and 524-bit composites,
at considerable effort.

Appears scalable to 1024-bit composites using
custom-built hardware, thereby threatening the
security reliability of RSA 1024 public key
cryptosystems, which rely on the hardness factoring
composite mteger of that order.

A recent research trend has been to design
special-purpose hardware on which factoring algorithm
such as the number field sieve might be faster or more
cost-effective than on conventional general-purpose
computers. Among the noteworthy proposals are
Shamir’s TWINKLE machine®, Bernstein’s circuits™ and
the TWIRL machine of Shamir and Tromer™. Shamir and
Tromer"” estimate that the relation-generation stage of
the number field sieve for factoring a 1024-bit RSA
modulus can be completed in less than a year by a
machine that would cost about US$ 10 million to build and
that the linear algebra stage is easier. Such special-
purpose hardware has yet to be built (unless it has been
built in secret), so it remains to be seen if this work will
have any mmpact on the size of RSA moduli used n
practice.
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CONCLUSIONS

In this review paper attempt has been made to
present in a simple manner a very difficult topic of integer
factorization that i1s the commerstone of the security
behind RSA cryptosystems. As a review paper most of the
work presented here have been sourced from variant
research works that came to our notice. We hope it will be
of good use to the future budding cryptanalyst and
number theorists. It has been pointed out that the security
of RSA depends on the difficulty of factorizing n into its
constituent primes p and q. With the increase in the speed
of computers today and the improvement of factorization
methods, it becomes mncreasmgly feasible to factorize
large numbers. From this perspective, choosing a longer
key is essential to safeguard against attacks based on
factorization. However, choosing a longer key may meur
higher overhead in performing encryption and decryption
to secure your data. The question for the crypto designer
to ponder, is given a certain amount of budget and time,
what should be the length of the key that 1s reasonably
without

secure causing unmnecessary performance

degradation?
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