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Abstract: This study deals with the analysis of cure rate estimation under uncensored data. Cure models have
been proposed for cure rate estimation. We have tried to estimate the parameter of the model using Maximum
Likelihood Method (MLE). The analysis showed that the cure rate estimator converges to the true parameter
when considered both cured and non-cured group. The analysis also showed that the estimating equation
converges to the true equation of parameter when considered only non-cured group.
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INTRODUCTION

In some clinical trials, a substantial proportion
of opatients who respond favorably to treatment
subsequently appear to be free of any signs or symptoms
of the diseases and may be considered as cured, while the
remaining patients may eventually relapse. The objective
of these climcal trials i3 to estimate the proportion of
patients who are cured and the failure time distribution of
proportion of patients who are not cured.

CURE MODEL

The survival models incorporating a cure fraction are
called cure rate models. Now a days these models are
becoming popular in analyzing data from cancer (or other
diseases) clinical trials. The cure rate model has been
widely used for modeling time to event data for various
types of cancers for which a significant proportion of
patients are cured. For example, Breast cancer, non-
hodgkins lymphoma, leukemia, prostate cancer, melanoma,
head and neck cancer etc. In fact cure model is a special
case of frailty model, whether or not a patient is cured is
an ‘unobserved explanatory variable’. Because of the
mixture nature of the patients m the clinical trials, the most
popular type of cure model is the mixture model
intreduced by Berkson and Gage'! .

S =7 +(1-mS'(t) (1)

In this model assume that T be a non-negative
random variable denoting the failuwre tine. A certain

proportion T of population is “‘cured’(cured patients) and
the remaining 1-m are not cured (uncured patients). For
this model, 3(t) denote the survival function for the whole
population (cured and uncured patients) and S*(t) denote
the survival function for the uncured patients m the
population.

Note that the survival
time distribution of cured patients 1s set equal to one
forall fimte values of the survival time because
it is assumed that cured patients will never
experience a relapse or death to the disease under
nvestigation.

To estumate 3*(t) in this model, we must specify the
failure time distribution of uncured patients. The
specification can be parametric or non parametric, which
leads to parametric and semi-parametric cure model
respectively. In parametric cure models, we assume a
particular distribution for the failure time distribution of
uncured patients. The most typical distributions that have
been used for this purpose are: the Exponential
distribution?, the Weibull distribution™” , the Lognormal
distribution® , the Gompertz distribution™, the Log-
logistic distribution, the Gamma distribution, the Normal
distribution, the Exponential power distribution, the
Inverse Gaussian distribution and the Pareto distribution.
More comprehensive distribution families such as the
Extended Generalised Gamma (EGG) distribution and the
Generalised F (GF) distribution™ have also been proposed
recently to accommodate other forms of failure time
distributions for uncured patients. The model (1) is called
Standard Cure Rate Model. Tt has been extensively used
in the statistical literature by many researchers®™**"'" The

function of the failure
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model (1) is also called Mixture Cure Rate Model by
several authors. In this model, the fraction of non-cured
patients ultimately will experience recurrence or other
treatment failure according to a statistical distribution
function, F(t). Note that in model (1),

S'(h=1-F(1) (2)
And F(0) = 0, F() = 1, so that S(0) =1,5 (ss)=0and
Si(ee) = m, the plateau value. The hazard function for this
model 18

(d-mft)

h(t)= S0 (3)
_ Lo (4)
8.(t)

Where, f(t) 15 the density corresponding to F(t) and
L) = (-m) 1)

Originally, when treatments for cancer comprised
surgery or radiation therapy alone administered over a
short period, Mixture Cure Model has a practical
interpretation’” . Patients either were cured by treatment
or they were not and the later would experience a
recurrence after some time. Now a days with combined
modality treatment that can last up to three years i1 some
children cancers, this interpretation does not apply, since
eradication of disease, if it occurs, can occurs at any time
during treatment. The time to cure can not reliably be
observed current technology. Hence even though mixture
cure models often fit cancer data well, they usually can
net be viewed literally as describing a mixture of cured
and uncured patients. The literal interpretation of the cure
model 13 meamngful also n  some
applications!"”. Cure models were first proposed by
Boag and have since received regular attention in the
statistical literature. However, they have not attained wide
use or acceptance in the medical research literature,
perhaps m part because of thewr reliance on particular
parametric forms. Although the cure rate model appears to
be attractive and is widely used, it has some drawbacks.
Chen ef L' has been identified the following drawbacks
of model (1).

Firstly, in the presence of covariates, it can not have
a proportional hazard structure which is a desirable
property for any survival model, because many
asymptotic and computational results require
proportional hazard structure.

Secondly, when including covariates through the
parameter T via a standard regression model, (1) yields

I1on-cancer
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improper posterior distributions for many types of non-
nformative improper priors, including the uniform prior for
the regression coefficients. This 1s the most crucial
drawback of model (1), because Bayesian mference with
the model (1) essentially requires a proper prior.

Thirdly, the model (1) does not appear to describe the
underlying biological process generating the failure time,
at least in the context of cancer relapse, where cure rate
model are frequently used.

However Chen'" proposed different types of cure
rate model, which overcomes the drawbacks just
mentioned above. The model that they propose 1s quite
attractive in several respects. The model is derived from
a natural biological motivation. The proposed model has
a mathematical relationship with the standard cure rate
model. Specifically one can show that any standard cure
rate model can be written as the proposed model and vice
versa. However the proposed cure rate model can be
written as:

8,(t) = exp(—OF(t)) (3)

The meodel (5) is not a proper survival function.
Because S(e) = exp(-0). The model incorporates
parameters bearing clear biological meaning. The model
(5) is suitable for any type of failure data that has a
surviving fraction. Thus the model can be useful for
modeling various types of failure time data, including time
to relapse, time to death, time to first infection and so
forth. We also observe that the cure rate w is given by:

$,(=) = exp(-0) ®

As B— oo, the cure rate tends to zero, where as 6— 0,
the cure rate tends to 1.1.e., the cure rate lies between 0
and 1.

Note that by taking first derivative of (5), we get,

S/ (1) = —OF(t)exp(—OF (1))
So, — 8 ()= 0 (t)exp(-OF (1)
Since, — 8 (1) =1£ (1)

Therefore, the demsity function corresponding to
model (5) 1s given by:

£, (1) = B (t)exp(~6F(1)) ™)

We observe that Sg(t) 18 not a proper survival

function, because Sy()#0. Therefore, £(t) is not a proper

probability density function. But f(t) in model (7) is a
proper density function. The hazard function s given by:
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LD ef(texp(—8F(t)
St exp(-0F(t)
= Bf (t)

b (t)
®)

We observe that h(t) is not a proper hazard functicn
corresponding to a probability distribution, because S(t)
18 not a proper survival function. The survival function for
the ‘non-cured’ group is given by:

(1) = PO~ exp(-6)

1-exp(-0) )

Nate that, in (9), $°(0) = 1 and §'(=) = 0, so that S'()
15 a proper survival function. Thus the survival density
corresponding to (9) 1s given by:

exp(—OF (1))

oo
=S O=- e

ORI

Here, f*(t) is a proper density function. Since 8'(t) is
a proper survival function. The hazard function for the
non-cured group 1s given by:

'

S'(L

h'(t)
exp(=0F (1)) —exp(-6)" *

( (t)

(10

There 1s an attractive mathematical relationship
between the models in (1) and (5). From (9), we can write:

exp(~OF(1)) = (I - exp(~8))S (1) + exp(-6) (12)
Using (12) in (5) , we obtain the following model as:
S,(t) = exp(-6) + (1 - exp(-6))S (1) (13)

Where, S'(t) is given by (9). Therefore, S,(t) is a standard
cure rate model with cure rate equal to T = e™® and the
survival function for the non-cured population given by
S'(t). This shows that every model defined by (5) can be
written as a standard cure rate model. This result also
means that every standard cure model corresponds to
some model of the form (5) for some 0 and distribution
function F(-).

ESTIMATION AND RESULTS

Since the cure model 13 a special kind of
survival model including cured portion and non-cured
portion. Suppose that X be the life time of a patient. Then,

. -8 . . .
P(X =) =1limP(X >t)=¢", which is considered as
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cure rate. On the other hand, P(X <t)=1-e7%, 0 <t< oo
which is the non-cured rate.

Sinece X £ [0,00) U {“curred”} i.e., Xe[0,00) [ X =},
hence the probability density function of x can be
written as

f(=0f,(De™™ W1 +e°1

{t<ea} {t="cured"}

with respect to the measure

HiA) = j dt + 1 paecny fOr A < [0,50) U {"cured")
AN[0,0)

Thus P{Xe A}= | Of (e Vdt+e e
AN[0,e8)

By using Meaximum likelihood method we can estimate
the parameter of the cure model.

For uncensored data, we consider the following
cases:

Case—(a): (1), F(t) are known, 0 unknown and also both
cured and non-cured observed. So, this case is fully
parametric. Suppose that we have the data in the form
(x, €),1=1, 2, ..., n. where x; denotes the survival time for
the ith patient. £ is the cured indicator with 1 if x; is not
cured and O otherwise. Also, x£[0,00)u {“cured”}, 1 <1 <n.

Likelihood function: The likelihood function 15 given by:

L©) = [T = [T ORI @)y (1)

where, =1 and 1- =1

X%, w0 % =" cured"}

Therefore, the MLE of 0 1s

1 n

_ZE‘

n
IS erm)r Ly 0-e)
n = i o 1 n = 1

oo (15)

Which is the required estimate of 6. Thus, the estimate of
cure rate is = e, Now, we will show that é converges
to the true parameter 0.

»
Convergence of ©: From the law of convergence, we
can write,

Zﬁ:ejiE(e):P(X<oo):lfe'e (16)

i=1

1
n

lZn:(l* 6,)1';E(1f S)=P(X>w)=e"

i=1

(17)

and
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%ieiFu(xi)iE(e F(x))

5

=Bl oy B (X))

= J':efn(t)Fn(t)e’eﬁ“)dt

= J‘; fze”"dz [putting F,(t) = z]
= J.nl Oze *dz + J.nle'azdz

1

R
:7e’efé(e’efl)
_ l-e® s

G] (18)

Using (16), (17) and (18) in (15), we obtain the following
expression:

-8 -8

Therefore, 6 —0

Case (b): fi(t) and F,(t) are known, 6 unknown and only
non-cured are observed. So this case 1s alse fully
parametric. We also consider here only non-cured group
i.e., we observe X if X<loo, (X [0, o). The p.d.f of X given
X <=0 can be written as:

of, (x)e

fr ()= - X <®

(19)

Likelihood function: The likelihood function is given by:

1#(6) = [ [

Bf, (x, Yo "o
1-¢e°

n
i=1

Therefore, the estimate of 8 can be obtained from the
following estimating equation:

"

-8
5]

IR =0 20)
g M 1-¢°

or
1 e 1
o= LR (21)
g 1-e¢°® D

Comment: The Eq. 20 is an estimating equation of 8 and
this equation can not be solved analytically but it may be
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solved numerically. Therefore, the numerical solution of
this equation is the required estimate of 6.

Convergence of the equation: From the law of
convergence we can write:

lzn: E, (XJ:E(FD(X)‘X < oo)
n55

j:an(t)fD (t)e Ot
B P(x < )

(22)

Using (16) and (18) in (22), we obtam the following
eXpression as:

1-e 5
1 -
SYRE)=O
g -
_1 e
8 1-e° (23)
Therefore,
1 -8 12 as ] -°
=Y Rx) -
g l-¢° i=1 b 1-
And hence,
17 e ® 317 o ®
o 1_ee 6 1-¢7 (24)

CONCLUSIONS AND FURTHER RESEARCH

In this study, we are tried to find an estimator to
estimate the cure rate by considering uncensored
data. In uncensored data, eventually we have
considered several cases. When we have assumed fi(-)
and Fy(-) are known and also assumed non-cured and
cured group, we have found an analytic solution for the
cure tate parameter 6. That is, we have found an estimator
of 6 which converges to the true value of the parameter.
On the other hand, when we assume only non-cured
group, we could not find an analytic solution of 6 but we
have found an estimating equation for 6 which might be
solved numerically and the numerical solution of the
estimating equation would be the estimate of the
parameter. Also in that situation we have found that our
estimating equation converges to the true equation of
parameter.

For further research one could perform the simulation
study of the cure rate model based on uncensored data.
The fact that one could apply numerical method 1n order
to get estimate of the parameter of cure model.
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