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A Mode-I Crack Problem for an Infinite Space in Thermoelasticity
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Abstract: A two-dimensional problem for an infinite space weakened by a finite linear opeming Mode-I crack
is solved. The solid material is assumed to be homogeneous and isotropic. The crack is subjected to prescribed
temperature and stress distributions. A rectangular system of Cartesian coordinates is used The Fourier
transform technique 1s applied to solve the problem. The boundary conditions of the problem are then reduced
to a system of two dual integral equations, which are solved analytically. Numerical values for the temperature,
stress and displacements are obtained and represented graphically then discussed. All the definite integrals
involved were calculated using Romberg technique of numerical integration with the aid of a Fortran program
compiled with Visual Fortran v.6.1 on a Pentium-IV pe with processor speed 2.0 GHz.
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INTRODUCTION

During the second half of the twentieth century,
non-isothermal problems of the theory of elasticity
became increasingly important. This is due mainly to
their many applications in widely diverse fields. First, the
high velocities of modern aircrafts give rise to an
aerodynamic heating, which produces intense thermal
stresses, reducing the strength of the aircraft structure.
Secondly, m the nuclear field, the extremely high
temperatures and temperature gradients origmating inside
nuclear reactors influence their design and operations".

In 1950, Danilovskaya was the first to solve an actual
problem in the theory of elasticity with non-uniform heat™?
that became known as the theory of uncoupled
thermoelasticity, in which the temperature is governed by
a parabolic partial differential equation and does not
contain any elastic term. Later, the theory of coupled
thermoelasticity was then formulated to eliminate the
paradox inherent in the classical uncoupled theory that
elastic changes have no effect on the temperature™. The
heat equations for both theories, however, are of the
diffusion type predicting infinite speeds of propagation
for heat waves contrary to physical observations. In 1967,
the theory of generalized thermoelasticity with one
relaxation time for the special case of an 1sotropic body
has been introduced by Lord and Shulman™. It was then
extended to include the anisotropic case” where a
modified law of heat conduction including both the heat
flux and its time derivative replaces the conventional
Fourier's law of head conduction. The heat equation
associated with this theory is hyperbolic and hence

eliminates the paradox of infinite speeds of propagation
inherent m both the uncoupled and the coupled theories
of thermoelasticity. Umqueness of solution for this theory
was proved under different conditions by many
researcheres”®!. The state space appreach to this theory
was developed for one-dimensional problems™" and for
two-dimensional problems!!. The fundamental solution
for this theory was then obtained"®. Consequently,
many problems had been solved concerning magneto-
thermoelasticity with thermal relaxation™, a dynamical
problem for an mternal penny-shaped crack in an infinite
thermoelastic solid' and a problem for penny-shaped
crack in piezoelectric materials”.

In recent years, considerable efforts have been
devoted to the study of failure and cracks in solids. This
is due to the applications of the latter generally in
industry and particularly in the fabrication of electronic
components. Most of the studies of dynamical crack
problems are done using the equations of the coupled or
even uncoupled theories of thermoelasticity!'**?. This is
suitable for most situations where long time effects are
sought. However, when short time effects are important,
as 1n many practical situations, the full system of
generalized thermoelastic equations must be used™:

FORMULATION OF THE PROBLEM

In this study, a problem for an infinite homogeneous
and isotropic space -e» << X <leo, o <y <loo, With a crack on
the x-axis, |x| < a, y = 0 1s considered. The crack surface
1s subjected to a known temperature and normal stress
distributions. There are many types (modes) of crack and
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Fig. 1: Displacement of an external Mode I crack

this study will be devoted to Mode-I shown in Fig. 1.
The governing equations have the following form™:

66 2 GT 1

AU — UV u-—y—= (1)
( “)ax B T

(h+ p‘)%wﬁvzvf}ra——rf 0, (2)
Oy oy

viT = 3

In the above equations u, v are the displacement
components in the x, y directions, respectively, T is the
absolute temperature, A, u are Lamé’s elastic constants, y
1s a material constant. In terms of the elastic constants
and the coefficient of linear thermal expansion o, v is
written as y = (34 + 2p).

The dilatation e is given by:

du v
E i

dx Oy

The above equations are supplemented by the

constitutive relations giving the components of the stress
tensor oy, namely!:

e

4

Gy = 2].4.% +he—y(T-Ty ), (3)
= 2p.%+ e —y(T-Ty). (6)

ou  ov
ny: (g"—&j (7)

Hereafter, for simplicity, the following non-

dimensional variables will be considered throughout this
study.
u' = ¢nu, v'=cmy,
T-T,
2 y ]
= ¢, 2. 0=—",
1n 0 1] TO

X'=cnx, y' = ¢ny.

Ty
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where, n=""E ¢, is the speed of propagation of
: : : _ (At
isothermal elastic waves given by: €17~ o - in

which p is the density, k is the material’s thermal
conductivity and ¢; 1s the specific heat capacity.

Using the above non-dimensional variables, and by
dropping the primes for convenience, the governing
equations and expressions for stress components take the
following form:

a0

(3271)%+v ~bo-0 (8)

%L v P, 9

(215 > ©)

Vi =0, (10)

GXX:2%+(B272)e7b6, an

Gyy +(B*-2)e-be, (12)
o

v 13

O = o o (13)

_7L+2M:2(17

where, 1n terms of Poisson’s ratio ¥» P~ =

i 1-2v

and b= YMO (367 - 4)ou.

It 1s to be noted that Eq. 4 retains its form.
Eliminating u and v between Eq. 8 and 9 and using
Eq. 4, gives
Vi = 0. {14
The Fourier cosine and sine transforms are defined
respectively by the following relations®™:

F. [f(x,y)} = E(q) = | f(xy)cos qxdx,

(15)

F, [f(x,y)} = g(q) = | f(x.y)singxdx,

O by B o b, B

with the following relations:

>
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Fn{if(XJ)} =ab frixy)}-r(oy).
Ff & o) - frixs)-£0),
k {%f (XJ)} -l fr ey}

F{ df:z f (XJ)} -¢E{f(y)}raf(oy)

In addition, their inverses are given by the relation**

fx.y)= Fcfl[f*(q,Y)} = %Tf*(q,y)cos(qx)dq

f(xy)= B (0.y)] %Tf*(qJ)Siﬂ(qX)dq

Applying the Fourier cosine transform to both sides of
Eq. 10, then:

5
2 ec qle

ayl

98(0.y)

ax

(16)

c

Since 0 1s even in X, it follows that:

co

0.y)=0
= Oy)=0,

Consequently, Eq. 16 takes the form:

2’8

o
The solution of the above second order differential
equation 1s bounded as y~=+ and can be written in the

2n _
470 =0, (17)

form:

6.(a.y)=Alq)

where, A(q) 15 a parameter depending on q.
Due to symmetry, only the case y > 0 1s to be
considered. Accordingly:

e“lM’

0. (q.y)=A(q)e ?, y=0,

(18)
Similarly:

e=B{q)e?, y =0, (19)
where, B'(q) is a parameter depending on q.
Taking the Fourier sine transform for Eq. &,
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(B —1)(-qe, )+ —-—q’u, + qui0,y)+ bgd, =0, (20)
Since u 1s odd mn vy, it follows that u(0, y) =0,
then Eq. 20 takes the form:

GRT

ayz
Substituting from Eq. 18 and 19 into the right hand side of
Eq. 21 we obtain:

wusd(FEoel

ou, 5 ) , _
6y2 —qu,= q[(B 71)B - bA:|e qy, (22)
The solution G, of Eq. 22 has the form:
bA—(B*-1)B
0, =Ce ™4 [ (B ) }yefqy) (23)

2

Applying the Fourier cosine transform with respect to
the variable x on both sides of Eg. 4 to obtain

G oqn+ 2 24
[~ 5 ay ( )
Substituting from Eq. 19 and 23 into Eq. 24:
bA — ([52 - 1)13' o
Be¥ —qCeW+— Ly | e
q 5 ¥ oy (25)
Integrating both sides Eq. 25 with respect to y, gives:
bA-(p*-1|B
v, = 7( ) +C ey
2q
bA-(p*-1)B
],
2 (260)

In order to simplify Eq. 26, the following substitution
is to be used:

2 13
p_ bA-(B* DB B,:bA2 2B
2 B2 _1
Thus 6. =Ae?, y>0, (27)
o -PABog
B 1 (28)
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U,=Ce ¥+Bye ¥, v 0, (29)
(B2+1)B7bA
Ve =t +C e Y rBye ¥, y=0 (30)
q(B —1)

Appling Fourier cosine transforms to both sides of Eq. 11, 12 and the Fourier sine transform into both sides of
Eqg 13:

— _ - .= 31
(GXX)c:2quS+(BZ—2)es—b95, (8L
(G ). = 285; +(52 - 2)65 ~ b0, (32)
_ o _ 33
(ny)s :§+quc. (33)
Substituting from Eq. 27-30 mto Eq. 31-33, respectively,
I bA+2(pt+1)B
(Cxx )C =|2qC— # e ¥ 1 2qBye ¥, G4
_ (b 1]
i 35)
_ bA - 2B°B _ _ (
(ny)c = W—ZqC]e ¥ _2qBye™ ¥,
B B +1)B-bA | . 36
(ny)s =— qc+7( 2) e ¥ —qBye™ ¥, (36)
(6 -1)
Inverting the Fourter transform for Eq. 27-30 and 34-36, to have:
0(x.¥)= - [ A(a)s® cos(qx)da, 7
b
0
2% B (38)
e(xy)= ;J‘ B{q)e ¥ cos(gx)dq,
0
u(x,y)= %J.(C+ By e ¥sin(qgx )dq, (39)
m
0
(40)

©| (B2 +1)B-bA
V(X’Y)_%{( qEle)

+C+B y] e Y cos(gx)dq,
0
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% bA + 2 BZ+I)B
GXX(X,y):—I 2qC-—————+2qBy|e ¥ cos(qx)dq,
o (BZ *1)

@ 2
Oy (X, ¥) = EI bA=ZPB 2qC - 2qBy | ¥ cos(gx)dq,
T (52 - 1)

e (B> +1)B-bA .
ny(x,y):—;I qC+W+qu e Psin(qx)dg.
o —

Following are the boundary conditions for the heat conduction problem at y = 0,

@:0 R ‘x|> a,
dy

v=0 |, |x‘> a,
6=f(x) , ‘x|< a,

ny:fp(x) . ‘X‘< a,
Opy =0, —mw<Xx <o

s

xy
Applying the boundary condition (44e) leads to:

bA(q)—2B(q).

Clg= 2q(52—1)

Using the above relation, Eq. 39-42 reduce to

u(x.y)= +By e Vsin(qx)dq,

EREN]

T ba— 2B

0 2‘1([32 - 1)
?2528——bA
| 2(*-1]

EREW]

v(xy)= +By e cos{qx)dq,

4% _
O (XY)= —;I[B— qBy|e ¥ cos(qx)dq.
0

4% -
Oy (xy)= f;j[B+ qBy]e”™ ¥ cos(qx)dq.
0
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(41)

(42)

(43)

(44a)

(44b)
(d44dc)

(44d)

(44e)

(45)

(46)

(47)

(48)

(49)
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DUAL INTEGRAL EQUATION FORMULATION

Using the boundary conditions (44a) and (44c)
together with Eq. 37, it follows:

“ iy
jA(q)cos(qx)dq: i 2(X . X<a, (50)
0

R

]OqA(q)COS(QX)dq:O, X>a (51)
0

The boundary conditions Eq. 45b and 45d with Eq. 47
and 49, vield:

2B j cos (gx )dq - bI Alg cos(gqx)dqg =0, x >a,
q
0 (2
[B(a) cos(qx)dq = ﬂpzfx)= x<a, (53)

0

In Eq. 50-53, the symmetry of the problem has been
used to consider x only in the intervals [0,a] and [a,e].

Equations (50) and (51) are a set of dual integral
equations whose solution gives the unknown parameter
A, The followimng substitution 1s now taken in order to
solve these equations:

(a—x). (54

]?qA(q)cos (qx)d { j

0

where, H(a-x) 1s the Heaviside unit step function.
Inverting the Fourier cosine gives:

4A(q) {f { jJ—]cos (%) dx}

Using the mtegration by parts and the following relations:

a
) wis)ds
1 A tS
lim Xcos(qx)j o

X

(55)

Substituting from Eq. 55 into Eq. 50 to obtain

cos(qx)dq}sw(s)]l(qs)ds = 'nf(x), X <a,

2

S t— B

Interchanging the order of the integration in the
previous equation and using the followmng relation:

X <8

s

w | —

TJl(qS)cos(qx)dq:

1 X
—— |, X>s
[S S\sz—SZJ

Some simplifications are made to get

X

ij\p(zs)dsz _;{D—f(x)} «<a, (56)
OV¥X —8

2a
where, D= —jq}(s)ds
™o

Equation 56 15 called the Able integral equation and
its sclution is given by™:

,ijﬂ
dsg\/sz—xz. (57)

2
Assuming that f(x)=x*- e,

Regarding the above equation and Hq. 57, Eq. 55

becomes:

—T az

2q

Alq)= T2(qa). (58)
To obtain B (q), the dual integral Eq. 52 and 53 are to
be solved. Using Eq. 58 in 52 beside using the following

relation®”

a”cos{%} , b<a
noJ”J(at)cos(bt)

el

0 u
p‘(b+\lb27a2) , b=a
Equation 52 reduces to

]?iq)cos(qx)dqzo, X>a
o 4 (59)
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Congidering Eq. 53 and performing the same
technique, the system of dual integral equations can be
solved to give the solution in the form:

B(a)=qfo(s}To{as)ds, (60)
0
where:
‘t(s):%j%d& O<s<a. (61)

5 —X

Substituting for p(x) =1 mEq. 61, Eq. 60 can take the form:

na
B(Q):le {qa). (62)
RESULTS AND DISCUSSION

The above evaluations are applied to copper material,
whose constants are shown in Table 1.

A Fortran computer program, compiled with Visual
Fortran v.6.1, was utilized Romberg technique of
numerical integration with variable step size was
employed to calculate the mvolved definite integrals. Four
values of y, namely y =01, y =02,y =03 and y = 0.4,
were substituted in performing the computation.

It should be noted (Fig. 2) that m this problem, the
crack’s size, x, 18 unity or 1s taken to be the unit of length
in this problem so that O<x<1, y = O represents the plane
of the crack that is symmetric with respect to the y—plane.
It 1s clear from the graph that 6 has maximum value at the
beginmng of the crack (x = 0), it begins to fall just near the
crack edge (x = 1), where it experiences sharp decreases
(with maximum negative gradient at the crack’s end).
Graph lines for both values of y show different slopes at
crack ends according to y-values. In other words, the
temperature line for y = 0.1 has the highest gradient when
compared with that of y = 0.2, y =03 and y = 0.4 at the
edge of the crack. In addition, all lines begin to coincide
when the horizontal distance x 18 beyond the double of
the crack size to reach the reference temperature of the
solid. These results obey physical reality for the
behaviour of copper as a polycrystalline solid.

The horizontal displacement, u, begins with a
parabolic decrease then increases again to reach its
maximum magnitude just at the crack end. Beyond it,
u falls again to try toretain zero at infimty. Despite the

Table 1: Thermal and elastic constants for copper.

9

1
0.9 1
0.8 1
0.7 1
0.6 1
0.5
0.4 1
0.3 1
0.2 1
0.1

0

—y=01

0 1 15 2 25 3

Fig. 2: Temperature distribution

0.5

-0.01
-0.02
-0.03
-0.04
-0.05
-0.06
-0.07

-0.08

-0.0%

Fig. 3: Horizontal displacement distribution

peaks (for different vertical distances v = 0.1, y = 0.2,
y =03 and y =0.4) occur at equal value of x (x =a = 1), the
magnitude of the maximum displacement peak strongly
depends on the vertical distance y. It is also ¢lear that the
rate of change of u decreases with increasing vy as we go
farther apart from the crack (Fig. 3). On the other hand,
Fig. 4 shows atonable decrease of the vertical
displacement, v, at the crack end (x = a = 1) to reach small
value beyond x = a = 1 reaching zero at the double of the
crack size (state of particles equilibrium). The
displacements u and v show different behaviours,
because of the elasticity of the solid tends to resist
vertical displacements in the problem under investigation.

Both of the components show different behaviours;
the former tends to mcrease to maximum just before the
end of the crack. Then it falls to a minimum with a highly
negative gradient. Afterwards it rises again to a maximum
beyond the crack end (about x = 1.25 a). Finally all

= 1.78x107 K~ ¢ =383.1 Tkg ' K 1=8886.73 m s 8 =1K T,=293K
p=386x10" Nm™? A=7.76 x10"" Nm? p=8954 kgm™ ¢ =4.158x10°m 5! =4
a—1 b=10.042 c=0.01
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Fig. 4: Vertical displacement distribution
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Fig. 5. Horizontal stress distribution
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Fig. 6: Vertical stress distribution

horizontal stresses, 0. reach coincidence with zero
values (Fig. 5). But o, had a different behaviour as it
retains its maximum streng th until reaching the crack end
when it falls to a minima then increases again just beyond
the crack edge to coincide with other vertical stresses
(a different y values) to reach zero after their relaxations at
mfimty. Variation of y has a serious effect on both
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magnitudes of mechanical stresses (Fig. 6). These trends
obey elastic and thermoelastic properties of the solid
under mvestigation.

CONCLUSIONS

Analytical solutions based upon Fourier transforms
for thermoelastic problem in solids have been
developed and utilized.

A linear opening Mode-T crack has been investigated
and studied for copper solid.

Temperature, radial and axial distributions were
estimated at different distances from the crack edge.
Horizontal and vertical stress distributions were
evaluated as functions of the distance from the crack
edge.

Crack dimensions are significant to elucidate the
mechanical structure of the solid.

Cracks are stationary and external stress 13 demanded
to propagate such cracks.

Tt can be concluded that a change of volume is
attended by a change of the temperature while the
effect of the deformation upon the temperature
distribution 13 the subject of the theory of
thermoelasticity.
The displacements
behaviours, because of the elasticity of the solid
tends to resist vertical displacements in the problem
under investigation.

These behaviours obey elastic and thermoelastic
properties of the solid under investigation.

u and v show different

All functions are continuous, especially that of u and
v which prove that the crack will not propagate because
of the fact that both of the mechamcal and thermal
stresses are not sufficient to propagate such a crack, and
to propagate it, the solid need to be subject to an external
stress (tensile, shear,...).
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