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Abstract: In this study the restrictive assumptions of the trade credit independent of the order quantity and
the retailer’s umt selling price equaled to the purchasing price per umit are relaxed to fit real business situations.
This study investigates the retailer’s inventory problem under trade credit dependent of the order quantity and
the retailer’s unit selling price not necessarily equals to the purchasing price per unit within the Economic Order
Quantity (EOQ) framework. In addition, we adopt the algebraic procedure to determine the retailer’s optimal
ordering policy under mimmizing the annual total variable cost. This algebraic approach could therefore be used
easily to introduce the basic inventory theories to younger students who lack the knowledge of calculus. Then,
two theorems are developed to efficiently determine the optimal cycle time and optimal order quantity for the
retailer. Finally, numerical examples are given to illustrate these theorems and obtain a lot of managerial msights.
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INTRODUCTION

In a real world, the supplier often makes use of the
trade credit policy to promote their commodities. Goyal
(1985) is frequently cited when the inventory systems
under conditions of trade credit are discussed. Goyal
(1985) implicitly makes the following assumptions:
Supplier credit policy offered to the retailer where
credit terms are independent of the order quantity.
That 1s, whatever the order quantity 1s small or
large, the retailer can take the benefits of payment
delay.

The unit selling price and the umt purchasing price
are assumed to be equal. However, m practice, the
unit selling price 15 not lower than the umt
purchasing price in general.

At the end of the credit period, the account is settled.
The retailer starts paying for lugher interest charges
on the items m stock and returns money of the
remaining balance immediately when the items
are sold.

According to the above arguments, this study will

adopt the following assumptions to modify the Goyal’s
(1985) model.
To encourage retailer to order large quantity, the
supplier may give the trade credit period only
for large order quantity. Tn other words, the
retailer recquires immediate payment for small order
quantity. This viewpomt can be found in
Chang et al. (2003).
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The selling price per unit and the unit purchasing
price are not necessarily equal to match the practical
situations. This viewpoint can be found in Teng
(2002) and Chung et al. (2002).

The retailer needs cash for business transactions.
At the end of the credit period, the retailer pays off
all units sold and keeps lusther profits for
business transactions or other investment use.
This viewpoint also can be found in Teng (2002) and
Chung et al. (2002).
Hence, want to incorporate the above
assumptions (1), (11) and (i11) to modify the Goyal’s model
(1985). In addition, m previous all published papers
which have been derived using differential calculus to
find the optimal seclution and the need to prove
optimality  condition with second-order derivatives.
The mathematical methodology 15 difficult to many
younger students who lack the kmowledge of calculus.
In recent papers, Grubbstrém and Erdem (1999) and
Cardenas-Barrén (2001) showed that the formulae for
the EOQ and EPQ with backlogging derived without
differential calculus. This algebraic approach could
therefore be used easily to introduce the basic inventory
theories to younger students who lack the knowledge
of calculus. Therefore, we want to adopt the algebraic
procedure to mvestigate the effect of trade credit policy
depending on the order quantity and the retailer’s unit
selling price not necessarily equaled to the purchasing
price per umt within the Economic Order Quantity
(EOQ) framework. Then, two theorems are developed to

We
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efficiently determine the optimal cycle time and optimal
order quantity for the retailer. Finally, numerical examples
are given to illustrate these theorems.

Algebraic model formulation: Here, we want to develop
the inventory model under trade credit to take the order
quantity mto account. When the order quantity is less
than the fixed quantity at which the delay in payments is
permitted, the payment for the items must be made
mmediately. Otherwise, the fixed trade credit period is
permitted. The following notation and assumptions will be
used to develop our mventory model.

Notation:

Q = Order quantity

D = Annual demand

W = Minimum order quantity at which the
delay in payments is permitted

A = Costof placing one order

¢ = Unit purchasing price

s = Unit selling price

h = Unitstock holding cost per year excluding
mterest charges

I, = Interest charges per $ investment m

mventory per year

I, = Interest which can be earned per 3 per year
M = The trade credit period in years
T = Thecycle time in years
TVC(T) = The annual total variable cost when T>0
T* = The optimal cycle time of TVC(T)
Q* = The optimal order quantity = DT*
Assumptions

Demand rate 1s known and constant.

Shortages are not allowed.

Time period 13 mfinite.

Replenishments are instantaneous.

If Q<W, ie, T<W/D, the delayed payment is not
permitted. Otherwise, fixed trade credit period M 18
permitted. Hence, if Q<W, pay ¢ when the order 18
received. If Q=W, pay ¢Q M time periods after the
order is received.

During the time the account 1s not settled, generated
sales reverwe 18 deposited mn an interest-bearing
account. When T =M, the account is settled at T = M,
the retailer pays off all units sold and keeps his/her
profits and starts paying for the ligher mterest
charges on the items i stock. When T<M, the
account is settled at T = M and the retailer does not
need to pay any interest charge.

szc, [ 21,
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The annual total variable cost consists of the

following elements. There are two cases to occur: (1)
M=W/D and (2) M<W/D.

Case 1: Suppose that M>W/D.

*  Amnual ordering cost = A/T

Annual stock holding cost (excluding interest
charges) = DTh/2

There are three sub-cases to oceur in1 cost of interest
charges for the items kept in stock per year.

0<T<W/D (1)
In this case, the retailer must pay ¢DT when the
order 1s received since the delayed payment 1s not
permitted. Therefore,
Cost of interest charges for the items kept m
stock per cycle = c[ DT*/2
Cost of interest charges for the items kept in
stock per year = ¢[[DT/2
W/D<T<M (i)
In this case, the fixed trade credit period M is
permitted since Q > W. According to assumption (6),
no interest charges are paid for the items kept m
stock.
M<T 1)
In this case, the fixed trade credit period M is
permitted since Q>W. According to assumption (6),
Cost of interest charges for the items kept m
stock per cycle = cL D{T-M)%/2
Cost of interest charges for the items kept in
stock per year = c[ D(T-M)*/2T
There are three sub-cases to occur in interest earned
per year.
0<T<W/D (i)
In this case, no mterest earned since the delayed
payment is not permitted.
W/D<T<M (1)
In this case, the fixed trade credit period M is
permitted since Q > W. According to assumption (6),

Interest earned per cycle =

DT?

sl = —+DT(M—T) =DTs], M—%

e
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Interest earned per year = pg] n — T

M<T (iii)

In this case, the fixed trade credit period M is
permitted since Q@ > W. According to assumption (6),

DM,

Interest earned per cycle = ¢ " Ditdt —
0

DMsT,
2T

Interest earned per year

From the above arguments, the annual total variable
cost for the retailer can be expressed as:

TVC(T) = ordering cost + stock-holding cost
+ interest payable — interest earned

We show that the annual total variable cost, TVC(T),
is given by:

TVC(T) if 0 <T<WD (la)
TVC(T)= TVC,(T) if W/D<T<M (1b)
TVC,(T) if M<T (1c)
Where,
I DT
rve == P AP 2)
T 2 2
TVC,(T)= A DIh_ DsI (M — I) (3)
T 2 2
and
A DTh ol DIT—MY DMsI
Tve,m- A PTh DMy DML (g
T 2 2T 2T

Since TVC,(W/D) > TVCLW/D), TVC,(M)=TVC{M),
TVC(T) is continuous except T = W/D.
Then, we can rewrite:

TVC,(T) :%+w
_Dthtd)y, . [2a (5)

2T Db +eL)

+J2AD( + ol )
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From Eq. 5 the minimum of TVC/(T) is
obtamed when the quadratic non-negative term,

depending on T, is equal to zero. The optimum value

T 1s:
oo | 2N (6)
' Dh+dl)
Therefore,
TVC,(T* ) =f2AD(h + ¢l ) (7)

Similarly, we can derive TVC,(T) without derivatives
as follows:

A

TVC,(T)= T + DIth+sl.)

2
_Dh+sl) 2A
T D(h +sL)

+[\ZAD(h + 1) — DsML ]
From Eq. 8 the mmimum of TVC,(T) i

obtained when the quadratic non-negative term,
depending on T, 13 equal to zero. The optimum value

T,* is
2ZA
D¢h +s1)

TVC,(T,* ) = [{2AD(h +sI) — DsM1 ] (10)

Likewise, we can derive TVC,(T) algebraically as
follows.

DsMI,

(8)

® —

2

(%)

Therefore,

24+ DM?(cl, —sL) . DT¢h+cl )

TVC,(T) = o — DM,
_Dvicl), PATDMEL, S (1)

2T

V

+{{fPUh+eL, )24+ DME(el, —s1)] DM }

D(h 4l )

From Eq. 11 the minimum of TVC,(T) is obtained
when the quadratic non-negative term, depending on T,
1s equal to zero. The optimum value T;* 1s:

2A + DM (el —sl,)

Tz* =
Dih +cl,)
if 2A + DM (cl, —sL,) >0

(12)
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Therefore,

/Db + eI )[2A + DM? (el —sl,)]
~DeMI,

TVC,(T,* = (13)

Case 2: Suppose that M<W/D.
If M<W/D, equations 1(a, b, ¢) will be modified as:

TVC,(T)
TVED= rvem

if 0<T<WD
if W/D<T.

Since TVC (W/D)>TVC,(W/D), TVC(T) is continuous
except T = W/D.

Decision rule of the optimal cycle time T*
Case 1: When M>W/D

Equation 6 gives that the optimal value of T* for the
case when 0<T<W/D so that 0< T,*< W/D. We substitute
Eq. 6 mto 0<T*<W/D, then we can obtamn that
0< T *< W/D if and only if

2

0<2ZA <

S (hiel,) (14)

Similarly, Eq. 9 gives that the optimal value of T* for
the case when W/D<T<M so that W/D<T,*<M. We
substitute Eq. 9 into W/D<T,*<M, then we can obtain
that W/D<T,*<M 1f and only if

2

Wg(h +s1,)< 2A < DM*(h +5l,) (15)

Finally, Eq. 12 gives that the optimal value of T* for
the case when T>M so that T;* =M. We substitute Eq. 12
mto  T;*>M, then we can obtain that T;*>M if

and only if
2A:>DM(h+sl,) (16)
Furthermore, we let:
AlszAJrW (h4cl) (17)
D i3
2
AZ:—2A+WF(h+sIa) (18)

and

A, =—

2A +DM?(h 4sL) (19)

From Eq. 17, 18 and 19, we can easily obtain
A;=A; Tn addition, we know TVC,(W/D}TVC (W/D),
TVC,M) = TVC, (M), TVC(T) 18 continuous except
T = W/D from Eq. 2, 3 and 4. Then, we can summarize
above arguments and obtain following results.

Theorem 1

« If A>0, A0 and A0, then TVC(T*) =
min{TVC,(T*), TVC,(W/D) }. Hence T* is T,* or
W/D associated with the least cost.

« If A>0, A0 and A>0, then TVC(T*) =
mm{TVC(T*), TVC,(T,*) }. Hence T* is T* or T,*
associated with the least cost.

o If A0, A<0 and A;<0, then TVC(T*) =
mm{TVC(T*), TVC,(T,*) } Hence T* 1s T * or T,*
associated with the least cost.

o IfA <0 A>0and A0, then TVC(T*) = TVC,(W/D)
and T* = W/D.

o  IfA =0 A<0and A0, then TVC(T*) = TVC,(T,*)
and T* =T,*.

o T A <0, A, <Oand A;<0, then TVC(T*) = TVC,(T,*)
and T* =T.*

Case 2: When M<W/D
In another condition M<W/D, equations 1{a, b, ¢) will be
modified as:

TVC,(T)
VO = o

if 0 T<<W/D
if WD<T.

Similarly, Eq. 6 gives that the optimal value of T* for
the case when O<T<W/D so that O0<T*<W/D. We
substitute Eq. 6 mnto 0<T *< W/D, then we can obtain that
0<T,*<W/D if and only if

2

0<2A <

(el (20)

Likewise, Eq. 12 gives that the optimal value of T* for
the case when T=W/D so that T,*>W/D. We substitute
Eq. 12 into T;*>W/D, then we can obtain that T,;*>W/D
if and only if

2

2A > (h ¢l )—DM*(cl —sl ) (21)

D

Furthermore, we let:

2

A =—2A+ W (h+cl) (22)

D
and
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Table 1: The optimal cycle time and optimal order quantity with various values of W and s

W = 300 units/year

W =450 units/year

W = 600units/year

s=Sumit A, A, A, T* QA A, A T* Q* A, A, T Q*

50 0 <0 <0  T,*=0.1026 513 <0 <0 <0 T,#=01026 513 >0 >0 WD=012 600
75 <0 <0 >0 T,*=0.00562 478 <0 <0 >0  T#=009562 478 >0 >0 W/D=012 600
100 <0 <0 20 T,*=0.08M4 47 <0 20 =0  WD=0.09 450 =0 =0 W/D=012 600

Let A = $200/order, D = 5000 units/year, ¢ = $30/unit, h = $5/unit/year, I, = $0.15/$/year, I, = $0.05/8/year and M = 0.1 year

2

A=-2a4 Y (23)

D

(h +cl ) —DM*(cl_—sI )

We know TVC,(W/D)>TVC,(W/D), TVC(T) is
continuous except T = W/D from Eq. (2) and (4). Then, we
can summarize above arguments and obtain following
results.

Theorem 2

If A=0 and A>0, then TVC(T*) = min {TVC,(T,*),
TVC,(W/D)}. Hence T* is T,* or W/D associated
with the least cost.

If A <0 and A0, then TVC(T*) = TVC{T*) and
T*=T,*.

If A»0and A, <0, then TVC(T*) =min {TVC,(T,*),
TVC,(T*):. Hence T* 15 T,* or T,* associated with
the least cost.

If A, <0 and A>0, then TVC(T*) = TVC,(W/D) and
T*=W/D.

Numerical examples: To illustrate all results obtained in
this research, let us apply the proposed method to
efficiently solve the following numerical examples. The
optimal cycle time and optimal order quantity are
summarized m Table 1.

CONCLUSIONS

The purpose of this study adopts the algebraic
procedure to mvestigate the effect of trade credit policy
depending on the order quantity and the retailer’s unit
selling price not necessarily equaled to the purchasing
price per unit within the economic order quantity (EOQ)
framework. Using this approach presented in this
study, we can find the optimal cycle time and optimal
order quantity without using differential calculus. Two
ease-to-use theorems help the retailer accurately and
quickly determimng the optimal mventory policy under
mimmizing the annual total variable cost.
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From the final numerical examples, we can obtain
following managerial insights. The retailer will order more
quantity to take the benefits of trade credit as possible
when the mimmum order quantity to obtain the
permissible delay 1s lngher. In addition, the retailer will not
order too large quantity to pay higher holding cost for the
item under the delayed payment is permitted. And last,
the retailer will order less quantity to take the benefits of
the trade credit more frequently when the larger the
differences between the unit selling price and the
purchasing price per item.
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