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Abstract: Continuum Damage Mechanics deals with elastic or mnelastic materials wiich undergo structural
weakening as a result of micro-crack formation or micro-voids growth. In this study, a relevant mathematical
model is developed in the context of Continuum Damage Mechanics. This mathematical model represents
mechanical behavior of an elastic media which have micro-voids and which is subjected to a mechanical
loading. As a result, constitutive equations for the stress and strain-energy density release rate are presented

for the media under consideration.
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INTRODUCTION

Continuum Damage Mechanics (CDM) is a research
field rendering necessary a combined application of large
number of mechamcs branches, engineering mathematics
and material science. Damage mechanics examines
mechanisms  addressing failure,
deterioration or becoming useless that are covered by the
general concept of damage m materials affected by
various loads. The literature states that the first theories
related with CDM, especially with creep and fatigue have
been put forward by Kachanov in 1958 and by Rabotnov
i 1969 (Chaboche, 1981 ; Murakami, 1988).

Later on, Kachanov (1986) discussed subjects like
types of damage, damage variables, isotropic damage,
kinetic law of damage, damaged elastic materials, creep
and crack under uraxial stress, crack growth and fatigue
damage (Kachanov, 1986). Having clearly defined borders
and relationships between the Classical Crack Mechanics
and CDM, Lemaitre (1996) has presented a summary
of various damage variables and constitutive equations
obtained according to these variables. Subjects like basic
concepts and definitions related with CDM, selection of
damage parameters, brittle and ductile deformation
processes and constitutive equations of damaged
materials have been researched by Krajcinovic (1983),
Krajcinovic and Mier (2000). Examining the damage
mechamcs 1n the most systematic way by separating it
mto subdivisions of micromechanical models and
continuous media models, Krajcinovic (2003) refers to
about 900 sources related with the subject in his
publication.

situations  like

As 18 known, considering micro scales, when the
distance between atoms is at a critical value, the energy
between these atoms reaches its maximum level. As a
result of external loads and consequent change m this
distance between the atoms, a decrease occurs i the
interaction energy between the atoms. This leads to a
weakening in atomic bonds and a decrease in cohesion
powers. This situation creates micro voids and
discontinuty surfaces in a material. Thus, it can be stated
that a micro level damage takes a start in the material
(Woo and Li, 1993).

In damage mechanics, scales are considered on three
different levels: micro, meso and macro. A micro level
damage is the accumulation of dislocations and micro
stresses close around defects and interfaces as well as
bond tear-off. On the meso level, beginming of a crack
forms due to unified motion and growth of micro cracks or
micro voids inside Representative Volume Element (RVE).
In the macro level the cracks and voids grow. The first
two scales can be examined by using Continuum
Mechanics (CM) damage variables while macro scale 1s
subject to the crack mechanics (Lemaitre, 1996,
Krajcinovie, 2003). A systematic study was done by
Kattan and Voyiladjs (2002) that considers damage
models using the fimte element method based on
the ground principles of CM and the effective stress
concept. In general  expressions
pertaming to constitutive equations of sotropic elastic
damaged materials was derived from the basic law of
thermodynamics of irreversible processes, Helmholtz free
energy was selected as a free energy constitutive
functional for a damaged matenal and opened in Taylor
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series with two conditional variables. The classical
damage constitutive equation developed in relation with
the strain equivalence principle is expressed to be a
simplified form of the general expression stated in this
study (Song et al., 2001). Studying the electro-mechanic
behavior of damage in ferroelectric materials, Bassiouny
has developed a phenomenological model setting off
from the principles of thermodynamics. Considering
effective values he studied the effects of different type
electromechanical couplings (Bassiouny, 2005).

In this study in the scope of CDM, considering RVE,
the mechanical representation of damage was expressed
with two interior conditional variables showing the
properties of a second degree symmetrical tensor. In
scope of CM, balance equations have been summarized
and, without diving into too much detail, the combined
form was stated for the energy equation and entropy
inequality. Considering necessary constitutive axioms,
after determining the arguments affecting the stress
potential it was further proceeded to the formulation of
the constitutive theory and a model has been formed for
the damaged elastic isotropic medium. Considering fully
orthogonal transformations for the material coordinate
system, after determining the common invariants affecting
the stress potential, constitutive equations have been
obtained related with the stress and the strain energy
density release rate.

Mechanical representation of damage: To obtain
constitutive equations and thus determines the
mechanical behavior it is first necessary to determine
damage variables, consider the free energy as a function
of a damage variable and determine scale invariants. For
this purpose we have to determine the structure of the
damage variables. Regarded in the beginning as linear,
homogenous and isotropic, the material becomes
anisotropic under the effect of damage. For example, in
case of a uniaxial stress the damage parameter shown by
D can be defined as follows (Fig. 1):

S'=(1-D)S

b)

Fig. 1: Definition of damage parameter of a bar under

uniaxial tension (Murakami, 1988)
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Due to the existence in the material of dispersed
microscopic cracks and voids representing damage, the
effective area carrying the load is less than the S, area that
existed in the beginning. In this situation, S" representing
the remaining effective area after the micro voids have
been subtracted should be given as follows. DS here
represents the value of area that turned into voids due to
the damage and DS<S. Thus, for D<1, the expression

. S
S'=S-DS = D=1-— 1))

S
can be written. S here represents the cross sectional area
not affected by the damage. Considering the definition

provided above the following limitations can be written.

0<Dc<1
D = 0 (Initial undamaged state) @
D =1 (Final ruptured state) 3

The decrease in the total area carrying the load
determines the distribution of the stress ¢ created by the
external force F. Referring to definition (1), for the
effective stress & the following equality can be written.

F F c

4

Just in a similar way to the effective stress principle,
a suitable definition has been made for the effective strain
by some researchers (Lemaitre, 1996; Ibijola, 2002).
Equivalence strain for the isotropic damage condition can
be expressed as follows:

g=(1-D)e

Using effective stress principle the relationship
between a damaged and an undamaged material can be
expressed as below:

&)

Here, DE expressed the decrease in the elasticity
module occurring due to damage whereas E stands for
the Young’s modulus of damaged material.

Now, to define the fictitious undamaged state a cross
sectional area S’ mechanically equivalent to a real
damaged state and an imaginary element under affected
by the load F applied can be considered, naming this an
undamaged situation (Fig. 1¢). If, in the two mechanically
equivalent states, the relationship between the areas S
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Fig.2: a) A sketch of a representative volume element
containing K micro cracks (Weitsman, 1988a), b)

Open and closed surfaces of a micro crack

and S’ can be somehow defined then the damage variable
D can be assigned using Eq. 1 (Murakami, 1988; Lemaitre,
1996).

In some researches, in order to be able to define the
damage variable, a RVE has been considered that has a K
number of micro cracks. While the open or active part of
any k™ micro crack has been shown by A®, its closed or
passive surface has been shown by A™. Active or
passive surfaces of a crack can switch positions among
each other depending on stress, temperature and humidity
percentage. Despite that, Weitsman states that these
open and closed surfaces can be selected as independent
variables characterizing the state of a material at a certain
time range (Weitsman, 1988a, b).

Stress and strain at the macro level are average values
over the RVE volume. Infinitesimal deformations can also
be considered among these macro values. To fully
consider the behaviors of RVE it is necessary to deal with
a K number of crack parameters representing A® and A™,
(no sum on k, k=1....,K) surfaces. Because the real shape
of these surfaces is unknown on the meso scale,
assuming them to be equivalent plane surfaces, Weitsman
represented mthem by vectors A® = A® n® and A™
=A"™ n®, Here, n® stands for a unit normal vector of a
micro crack surface (Weitsman, 1988a). Let us consider
two micro cracks inside a material with different
convexities around a material point. Depending on the
load applied on the material the cracks having different
convexities can demonstrate different types of behavior
depending on their crack surfaces. Different infinitesimal
crack surfaces with very big curvature radii can be
accepted topologically and mechanically equivalent. In
this case topologic representation of the crack surface can
be expressed independent of the direction of that surface.
Mathematically that representation can be shown by
using the symmetric tensor, which is a dyadic product of
two  vectors. Boldface letters are used to describe
vectors and tensors. Thus, any micro crack can be defined
using symmetric dyads as follows.

HY =AY® AV and HY =A™ ® A"

H(k) — A(R)A(k)
c oA ©

Because detailed information about the value and
location of surfaces A® and A™ can only be found
statistically on the micro scale, on the meso scale where
Continuum Mechanics is used, we can show the
combined effects of the tensor expressions stated in (6)
by the sum of the dyadic products given below. This
operation represents homogenization when moving from
the micro to the meso scale.

H= AY® AY andH =

K K A“”@ ATH (7)
k=l k=l

Thus, the effect of damage on the meso scale can be
expressed with two interior conditional variables, the
variables bearing second degree symmetric tensor
characteristics, as stipulated by their definitions. Dealing
with infinitesimal deformations does not mean that
tensors representing damage bear separate infinitesimal
characteristics (Weitsman, 1988a). Therefore, while power
series is being used for representative strains is may not
be useable for the damage tensors. As the constitutive
variable, in this study we are going to deal with only one
damage tensor taking into consideration only the effect of

open micro surfaces.
FORMULATION-BALANCE EQUATIONS

In this part, in order not to keep the size of our study
compact, we provide the summary of the local form of
Continuum Mechanics equilibrium equations. Researches
wishing to obtain detailed information on this subject are
advised to refer to basic sources related with Continuum
Mechanics (Eringen, 1967; Suhubi, 1993; Spencer, 1972).

p+pV-v=0 (Conservation of mass) 8)

V-t+p(f-a)=0 (Balance of lincar momentum)  (9)

t=t ort, =t (Balance of angular momentum) (10)

ji

pe¢—t:d+ V-q—ph=0 (Conservation of energy (11)

. h . .
pl-p—+V- (%) >0  (Entropy inequality)

0 (12)

Here, p, v, t, f, a, d, q, h, | and O respectively
represent, mass density per unit volume, velocity
vector, stress tensor, body force density per unit
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volume, acceleration vector, deformation rate tensor
1
d, = 5 (Vk,l + Vu) > heat flux vector, heat source per

unit mass, entropy density and absolute temperature.
Dots over the symbols show derivatives of the related
values following the motion (e.g. p= ap +V-Vp).

After the expressions (11) and (12) stated below are
suitably combined, we get the following inequality
—E(é—eﬁ)+lt:d—iq-vezo (13)

0 0 g?

Because the material derivative of the entropy density
cannot be controlled mside a thermodynamic process,
Helmholtz free energy should be defined by a Legendre
transformation as follows

Y=g— 8 mn (1 4)
in order to get rid of this derivative in the inequality (13).
1 here is called Helmholtz free energy and represents the
thermodynamically usable portion of energy. By
separating € out of the definition (14) stated above, talkang
its material derivative and using it back in the inequality

(13), the entropy inequality can be written in terms of
controllable independent variables as follows

: - 1
—p(‘P-&-nB)-&-tMV(Lk)—6qk9’k20 (15)
Here,
1.
Von = d,, = E Cut XK,k XL,1=
. DC
CKL =Xk % CKL = D:L (16)

Cy 18 known as Green deformation tensor whereas d
15 the deformation rate tensor. Dots over the symbols
show the derivatives of the related values following the
motion. Using the expression of mass conservation on
material coordinates

i1

p=p, i ( Conservation of mass),
j=det| x,, |=detF 17)
and expressions (15) and (16),
,PD(LI-’Jr'I’]G)Jrth dlkféqke,kzo (18)

can be written. Here, p, shows the object’s imtial
mass density. By defiming the stress potential as below
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L=p, ¥ (19)
We obtain the expression provided below:
~(Lrpmb)eitd-a,0,20  (Q0)

Because all arguments of ¥ in expression (20) depend
on spatial coordmates, let us express the other terms in
expression (20) objectively, as required by the
Objectivity axiom. For this purpose, if we write the
definitions below:

T = § Xew Xyt ta =7 X %y Ty (21
Q=X 4 4 =17 %, Qy (22)
L=p¥=p(e-0n) (23)
1.

5 Co=d, %, x,,0,=0, %, (24)

integrating them  into the entropy inequality given by
Eq. 20 the entropy inequality in terms of components of
vector and tensor values on material coordinates should
be written as follows (Usal, 1994).
. A R |
*(Zeru"']e)*ETKL CKLngK 8,1(20 (25)
Now that this stage is over, it should be
clearly expressed on  what arguments the stress
potential depends, using the necessary constitutive
axioms. These operations are to be completed in the next
part.

DEFINITION OF STRESS POTENTIAL

According to the causality and determinism axioms
(Ermgen, 1967, Suhubi, 1993), X (stress potential of a
material point X at point t in time) depends on the history
of motion and temperature of all material points
comprising the object. According to this:

(Xt = I x(X,0).0(X.1),X],
XeB, —w<t' <t (26)

Here, t 13 any tume, present or past while t' 1s time 1n
the past. According to the situation discussed here,
presuming that the material does not have any memory,
this expression is converted to be as follows:

L(Xt) = X[ x(X.1),0(X,t1).X | (27)
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On the other hand, the objectivity axiom determines
that ¥ depends on the difference of motions X’ and X,
rather than on mdividual motion of material points of X'.
In the meanwhile, the axiom of neighborhood expressed
that dependence of % on its arguments will damp fast as
the distance between X' and X decreases. To realize these
axioms the stress potential should be specified as follows.

(X t)=E[ Cp (X, 1), 0(X, 1), X, Lo | (28)

Ly here 1s called the material description vector and
15 used to determine amsotropy of the medium.
Furthermore, the thermodynamic processes in the studied
medium have been accepted to run under isothermal
conditions.

The expression (28) stated above constitutes a
prototype in the aspect of ability to take into account the
other physical interactions on non-linear media
(Usal, 1994). In this study, due to the existence of micro
voids m the material 1s 1t assumed that the material has
gained directed medium characteristics, i.e. that an
anisotropic structure has appeared due to the damage.
We assume that imtially the material was 1sotropic and
that the amisotropy is only caused by the dispersion of
micro voids. For a medium like that the role of material
description vectors will be played by the vector
representing the mean values n RVE and the vector
A (X,t) representing the change in time of the preceding
vector (Korkmaz, 2001). We believe that, by dividing these
vectors by the area of any characteristic surface
pertaining to RVE, we render them dimensionless.
Therefore, arguments in the stress potential of an elastic
medium undergoing a mechanical load application,
bearing voids and where these voids are believed to be
changing with time, can be expressed as follows:

L(X.t)=

B[ Ca ()0t ACLELA(X), X] (29

On the other hand, because the material will not be
able to detect the positive and negative sides of micro
void surfaces, we had previously specified that the
dependence on vectors A (X, ) and A (X.t) can be
expressed by a product of tensors.

H=AQAH=AQA+ADA (30)
We can specify it as follows in the index form:
HKLEAK AL>HKLEAK AL+AK AL (31)
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In this case the stress potential will be as follows:

(X, t)=2(Cy.Hy . H, ,0) (32)

Thus, assuming that the material is homogeneous
(isotropic damage), its direct dependence on X is out of
question. At this stage, the arguments determining the
stress potential of the micro void medium studied by us
have been found out. However, the flow of this
determination process will be explained during later
stages.

FORMULATION OF CONSTITUTIVE THEORY

From the Eq. 32 the material derivative of X can be
written as follows:

5 Z) . Z) N 0% 0% a
ac,,  a&H, ** a&H, - ap  (33)
Substituting this expression into the entropy

inequality (29) and arranging the inequality afterwards, we
obtain the following expression:

1 ar |. oy - oy .-
- KL CKL7 HKL7 ; HKL
2 aC,, oH,, oH,,
10K, 1
Po {ﬂ*j%JBEQK e,l( =0 (34)

Because in the inequality (34) stated above, starting
from the right, we can change the arguments to in the
Oas©and O,  consecutive order, as well as arbitrarily
represent the derivative of Has Hand Has H for  the
expression (34) to be valid for any thermodynamic
> He, and C,, have to be
equal to zero. Coefficient of H, camnot be equal to
zero because, due to the presence of Hi in the
arguments of £, H,,, cannot be arbitrarily changed.
Therefore, is Yy, called as the strain energy density
release rate, is assigned as the coefficient of Hyr- Ve
can be defined as follows (Lemaitre and Chaboche, 2000,
Simo and Ju, 1987):

process, coefficients of 8,0

= oz
Yir = (35)
oH,,
Furthermore, using the definition Y, = Yo in

order to deal with a positive value, the strain energy
density release rate can be re-written as follows:
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ox
JH

KL (36)

KL

By making coefficients C,,, H,,, 8 and 0, equal to

zero 1 the mequality (34), the following expressions are
obtained:

o0r % 1 2%
TKL: s L= ) T]:*__ B QKZO
aC,, =~ o, p, 86
?KL HKL =0 > YI(L HKL =0 » YKL HKL =0
Y, >0 . Dy >0 . Dy >0 (37)

From the expressions (37) stated above it 1s clear that
there is no heat transfer in the medium and that the free
energy density does not depend on the material change
rate of the damage, as we assumed in the beginmng.
Therefore, arguments determimng the free energy density
and the internal energy can be expressed as follows:

(38)

1
g= —(Z+p,6n) (39)
Py
In sources related with CM, Cauchy stress tensor is
expressed as follows:

E@Z

t %,
pU axk,K *

k1

(40)

If the medwm 1s incompressible, the condition
7’=det C=1 orlll =1 should be justified (Eringen, 1967,
Suhubi, 1993). Therefore in the Eq. 40, the function below
that is equivalent to X but that contains the said
limitation, can be used 1n lieu of Z.

Z-p(x.t)(i-1) (41)
p mn the expression (41) 1s called Lagrange multiplier. If the
derivative of the function in this expression 1s taken
according to x,, and then substituted to the Eq. 40, the
Equation

or
tkl = ~P 51«1 +2 Xk,l{ XI,L
KL

(42)

15 obtamed. Form of tlis expression on material
coordinates 1s found to be (Usal, 2001).
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. o
TKL =P cl(lL +2 W

KL

(43)

Here, Ch = Xey Xy 18 known as Piola deformation
tensor.
The strain energy density release rate has been

[
dH

KL

previously defined to be  Ye = Because the
derivative of X according to the deformation gradient
does not exist m this expression the Lagrange coefficient
will be equal to zero. In this case the constitutive
equations that we should obtain, depending on the
assumption made, are T, and Yy, their free energy
function depending on %, as clearly shown by Eq. 36 and
43. Therefore, the first thing to do 1s to find out the open
form of %.

CONSTITUTIVE MODEL FOR
DAMAGED-ELASTIC-ISOTROPIC MEDIA

In this study, a micro void elastic medium exposed to
a mechanic load has been assumed to be isotropic.
Therefore, for concrete determination of arguments of %,
findings of the invariant theory have been used. The
medium owes its anisotropy only to micro cracks or micro
voids. Accordingly, form of the ¥ stress potential should
remain mvariant under the fully orthogonal transformation
group of material coordinate system (Spencer, 1971). To
express it mathematically, 2 should justify the limitation
below:
Z(C.H,8) = Z(MCM' ,MHM", 6) (44)
M here 15 an orthogonal matrix showing the fully
orthogonal transformations of material coordinate
systems that justifies the condition M™ = M’ As we
know from the invariant theory, X being a scalar function
of these arguments, it has to be dependent on these
arguments through common mvariants. Thus, we can
show that symmetric matrices C and H have 8 common
invariants that are not interdependent.

L =trC, L=, I, =t
IL=twH, I, =wrH’,[,=trCH,

L =trC*H, I, =trC H*, 1, = trC° H?

3

: , I, =trH,

(45)

Because we have selected the damage tensor H so
that it is the tensor product of vector A with itself (30),
and because I, = I, T, and T, = T, I; we can ignore the
invariants [, and I, from the list of mvariants, depending
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on this. Relying on the fact that invariants must be a
symmetric function of units comprising them, the
assumption that we made above for the damage tensor
does not prejudice the generality. Thus, our free energy
function can be written as follows as a function of the
arguments defined above:

E:E(IIIIIIII

121230394353t 110 g

)

(46)

A second degree tensor, the Green deformation
tensor 18 n the form of its principal mvariants.

1

1
=1 11:5(13712), 111:5(13731112%13)

_1 (47)
Taking this mto account, the principal mvariants
given in the Eq. 47 can be used in lieu of mvariants
(T1,, T,, T,) in the expression (45). Because the medium is
assumed to be incompressible, TIT = 1. Tn this case, X in
terms of owns mvariants can be stated as follows using
the expressions (45) and (47):
LI, L,,1,,1. 1.1

stgatsalgatyaiy

L=x )

Because the medium 18 incompressible the
constitutive equation of stress and strain energy density
release rate has been defined as follows:

(48)

- oz
T,, = 7pc;Q+2f (49)
FQ
ar
P ﬁ (50)

Partial dervatives in expressions (49) and (50) can be
written as follows from the expression (48):

0L 0T o1 or ol
ac,, a1 ac,, ol ac,,
oz o1, 0T ol
o1, aC,, al, ac,,

(31

8T 8T 81, 9T ol
=— +— +
oH

@1, 8H,, a1, 8H,, &I, 8H,,

T oL ot o,
a1, 8MH,, &I, aH,,

3% a1,

FQ

(32)

After the derivatives of invariants, stated in the
expressions (45) and (47) taken according to C, that are
not equal to zero, are substituted at the Eq. 51 and
mtegrated in the Eq. 49 and after those derivatives of the
mvariants taken according to Hy,, that are not equal to
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zero, are substituted at the Eq. 52 and integrated in the
Eq. 50, the constitutive equation and the
constitutive equation of the strain energy density release
rate m an elastic medium exposed to a mechanical load,
assumed to have micro voids and to be incompressible in
terms of components on material coordinates can be
obtained as follows:

stress

TPQ = - pC;IQ +
ox% oL oz
a1 0 gl Ore Con = Cra) = G M
T
o
+6—IS(CMHRQ+HPRCRQ) (53)
o o0x o
YPQ = E BPQ + 2 E HPQ + 3 EHPM HMQ
4 5 6
ox% oL
+ g CPQ - E Cor CLQ (54)
O :d

Expressions (53) and (54) can be further rearranged
and expressed in the matrix form as follows:

§I+§(t{'clfc)+
} a1 el
T=-pC +2 oy oy
—H+—(CH+HC
oL 618( ) (55)
Y = §I+2@H+3EHZ+EC+ECZ (56)
a1, ol a1, a1 ol

The Lagrange multiplier p observed in the Eq. 55 18
known as hydrostatic pressure and can be defined by
area equations and limit conditions. To obtain more the
Eq. 55 and 56 in more concrete forms, derivatives of X
according to its invariants in these equations should be
used.

The mvariants determining ¥ in Eq. 53 and 54 have
been previously shown in the expression (48). However,
we have not yet defined how X depends on these
wvarlants. If X 15 an analytic function of these
invariants, it can be represented by a power series.
However, the degree of the said power series and the
mumber of terms to be taken into account, to put it
differently, the grade of the polynomial to represent X,
depends on the size of the deformation mvariant and on
their interaction proportion in the event, shortly on the
grade of non-linearity.

On the other hand, because the mternal energy has a
positive defimtion, this polynomial must also be defined
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positively. Besides, for the order of invariant multiplication not to affect X, the polynomial must have symmetric
coefficients, i.e., must be in the quadratic form. If a polynomial approach is accordingly selected, the following expression
can be written for the free energy function X in terms of existing invariants.

L=3a, L1, (1,j=1,2,4,5,6,,7.8), a, =a, (57)
ihJ

All a; coefficients m this expression depend cn the X particle and on the medium temperature 0. Derivatives of
according to its mvariants in the expressions (55) and (56) can be found using the polynomial expansion in (57). By taking
derivatives of X according to invariants in the expression (57) and substituting them in the Eq. 55, considering the terms
of deformation tensor C and damage tensor H up to the second degree, the equation

TPQ = 7PC:Q +2 <{2a11 CKK 6PQ +a, CKK CLL 6PQ —a, CKL CLK 6PQ
+ 2a14 HKK 6PQ + 2a'lj HKL HLK 6PQ + 2 al? CKL HLK BPQ
+2a,C,, C H, 6,+28,C 8,Cn—2a, C\p Cpp

MK TPQ KK YPQ
+2a, H, 6,C,-2a,H, C,+2a, H, H,6,C,
-2a,H H, C +2a,C H 6,C—2a, C H, C,
+2a,C Hyy+ta, Cp C Hyy—a, G G Hy
+2a, Hy H+2a,, Cy H Hyy+2a, Cp Cy Hy Hey
+2a,C, CH,+2a,C H, C,+2a,H,C, H,
+2a, H,H,, C,+2a,C, H, C, Hy

(58)
+ 2 a78 CKL HLK HPR C

RQ}

can be obtained. To re-define coefficients in the Eq. 38 using coefficients such as ¢, (i=1, 2, 3, ..., 13), the following
expressions can be written:

o, =day o, =2a, .« =48, ,0,=4a;,a;=4a,,q;=4a,, a, = 4a,

(39)

(x'll = 4a (I'IZ = 4a78 » (x'13 = 4a48

By using these coefficients the constitutive stress equation can be re-written as follows:

TPQ = _pcl;lQ + 0"’1 CKK 6l“Q + G’E CKK CLL 6PQ - G’2 CKL C:LK 6PQ + (x'B HKK 6PQ
+o,H H, 6, +a,C H, & +oC, C, H, &

LK “PQ LE “FPQ ME TPQ

+20,C & Cop —20,C . G+, H & Cop — 0, Hy G

KE “PQ KK “FQ

T 0 HKL HLK 6PQ CRR - O HKL HLK CPQ + 20‘9 CKL HLK 6PQ CRR

- 20(‘9 CKL HLK CPQ + CKK HPQ T, CKK CLL HPQ -, CKL CLK HPQ
+ Oy HKK HPQ + Gy CKL HLK HPQ + Oy CKL CLM HMK HPQ

T CKK CPR HRQ O CKK HPR CRQ 0y, HKK CPR HRQ

+ 0“13 HKK HPR CRQ + 0('12 CKL HLK CPR HRQ + 0('12 CKL HLK HPR CRQ (60)

Taking partial derivative of X according to invariants in the expression (57) and substituting them in the Eq. 56,
considering terms of deformation tensor C and damage tensor H up to the second degree, we can reach the following
eXPression:
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Yoo =28, Cryp 8 2, Crpe Oy Sog — 85 Cp Crp &g + 28, Hy 85y

+2a,H, H, 6,+2a,C H, 5, +2a,C C, H,8,
+4a,C Hy, +2a,C,C Hy —2a,C, C  H, +4a,H,  H
+4a,C H H+4a,C C  H, H,+6a,C  H, Hy.
+3a,C,C HH,,-3,C, C H, ,H, +2a,C, C,
+2a,, Hy Cog +2a, H  Hy G + 28, C H Cpg

+2a’48 HKKCPL CLQ +2asz HKN HNK CPLCLQ (61)

To re-define coefficients in the Eq. 61 using coefficients suchas B, =(1=1, 2, 3, ....,4), the following expressions can

be written:

Bl E2314 :Bz
B852a25 > Bg

=a,,B,=2a,.B=2a,,.B=2a,,B,=2a,.B,=4a,
2a; . P, =2a,,B, =6a,.P,=3a,,B,=2a,.P,=2a,

(62)

By using these coefficients, constitutive equation of the strain energy density release rate can be written as follows

1 terms of components on material coordinates:

YPQ = B1 CKK 6PQ + B2 CKK CLL 6PQ

7B2 CKLC

LK 6PQ + BB Hl{l{ 6PQ

+ Ba HKL HLK 5PQ + Bs CKL HLK 8PQ + Bﬁ CKL CLM HMK 5PQ + B? CKK HPQ
+ Bg CKKCLL HPQ - Bg CKL CLK HPQ +2 B4 HKK HPQ + 2BBCKL HLK HPQ
+ ZBm CKL CLM HMK HPQ + Bu CKK HPM HMQ + BIZ CKK CLL HPM HMQ

B Bn CKL CLK HPM HMQ

+ BIB CKK CPQ + BS Hl{l{ CPQ + BQ HKL HLK CPQ
+ BM CKL HLK CPQ + Bﬂ HKK CPL CLQ + BID HKN HNK CPL CLQ

(63)

The Eq. 63 is a constitutive equation obtained under the above-mentioned assumptions for strain energy
density release rate that we were trying to find out mn this study and should be restricted so as to justify the

=0.

mequality Y, HPQ,

CONCLUSIONS

A path has been followed m scope of the modem
Contimmum Mechanics in hope of providing an
opportunity to model the non-linear behavior of an elastic
medium with micro voids exposed to a mechanical load.
Domg this modeling, first and second law of
thermodynamics (Clausius-Duhem mequality),
constitutive theories in general and especially axioms of
objectivity and material symmetry from among them,
concepts related with a material’s symmetry group,
findings of the invariant theory for determining to
structure functionals and concrete determination of
arguments have been taken as theoretic basis in modeling
the non-linear behavior of the material in question.

Constitutive equation as well as stress potential with
Green deformation tensor and damage tensor as its
arguments has been determined for the material in

question. Due to this constitutive, functional the
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constitutive equations pertaiming to stress and strain
energy density release rate i the material under
mechanical load have been obtained m terms of
components on material coordinates. The studied material
being structurally isotropic, it was believed that, due to
the existence of micro voids, 1.e., due to the damage that
occurred, the material gained anisotropic characteristics.
Therefore an isotropic material was picked up and
constitutive equations of stress and strain energy density
release rate were determined in a non-linear form with
Eq. 54 by using the findings of the invariant theory (53).
Because derivatives of £ must be known according to its
determining invariants in order to solidify the said
comstitutive equations, the stress potential X was
represented by a second degree polynomial and its
derivatives according to its invariants have been
calculated. During these operations in order to determine
the degree of non-linear behavior, effects of the
deformation tensor C and the damage tensor H have been
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taken into account up to the second degree. In this case
constitutive equations of stress and strain energy density
release rate have been presented in terms of components
on material coordinates by expressions (60) and (63). Of
these equations, the expression (60) that gives
constitutive equations of stress, can be simplified by
considering the linear contribution of the deformation
tensor and taking the damage tensor into account linearly
or its terms up to the second grade.

The Eq. 60 is the expression yielding a constitutive
equation for stress in an incompressible elastic medium
with micro voids exposed to a mechanical load, where
mechanical interactions are accepted to be non-linear. In
this expression the first term is produced by the
assumption of incompressibility. While the second term
1s produced by the linear effect of the deformation tensor,
the 5th term is caused by the linear effect of the damage
tensor, terms 3, 4, ¢ and 10 are caused by the non-linear
effect of the deformation tensor, terms 6 and 20 are caused
by the non-linear effect of the damage tensor, terms 7, 11,
12 and 17 are caused by the linear interaction between
deformation and damage tensors, terms 8, 15, 16, 18,19, 23
and 24 are caused by non-linear interaction of the
deformation tensor and linear mteraction of the damage
tensor, terms 13, 14, 21, 25 and 26 are caused by the linear
interaction of the deformation tensor and non-linear
mteraction of the damage tensor and terms 22, 27 and 28
are caused by non-linear interaction of the deformation
and the damage tensors.

Equation 63 is an expression yielding the constitutive
equation of the strain energy density release rate mn an
mcompressible elastic medium with micro voids, which 1s
exposed to a mechanical load. Terms of the equation and
their causes are stated as follows: first term-linear effect of
the deformation tensor, 4th term-linear effect of the
damage tensor, terms 6, 8 and 18-linear interaction of the
deformation and damage tensors, terms 2, 3 and 17-non-
linear effect of the deformation tensor, terms 5 and 11-
non-linear effect of the damage tensor, terms 7, 9, 10, 20
and 21-non-linear mteraction of the deformation tensor
and linear interaction of the damage tensor, terms 12, 14
and 19-non-linear interaction of the damage tensor and
linear interaction of the deformation tensor, terms 13, 15,
16 and 22-non-lnear interaction of the deformation and
the damage tensors.

As a continuation of this study, material and spatial
of the damage can be suitably
mtercomnected and compenents of the obtained
constitutive equations in spatial coordinates-determined.
Besides, considering multiple damage
representing damage new models can be developed.

forms tensor

tensors

Furthermore, damage interactions in plastic areas can be
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considered and constitutive equations can be developed
contaiming  different resulting
incorporation of a damage tensor nto independent
variables of visco-elastic, thermo-elastic and pieso-electric
materials.

interactions from
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