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Abstract: Generally, researchers are faced to identify the true statistical distributions for the analysis of a
various hydrologic data sets. Using traditional statistical analysis methods one choose a hypothesized
distribution to describe the observed data, estimate the distribution parameters and then apply the goodness
of fit test such as the Chi Square test (CS) or Kolmogorov Smirnov (KS) test. For more accurate, several factors
or criteria should be considered in selection of the best distribution. However when more than two criteria are

used to identify the best distribution, it is more difficult and more subjective. In this paper, we propose a new
Multi Criteria Decision Making method (MCDM) based on nonlinear programming for selection of the best
distribution to fit a set of data. The Generalized Extreme Value (GEV), Generalized Pareto (GP), Pearson 3 (P3)
and Lognormal 3 (ILN3) are used and their goodness of fit has been examined by various test statistics. A
numerical example is used to illustrate the applicability of the proposed approach.
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INTRODUCTION

In order to do effective planmng, design and
management of water resources engineering such as water
supplies, hydropower, irrigation systems, etc., the
statistics of annual streamflow series are required, which
can be understood by conducting frequency analysis on
annmual streamflow. The purpose of Flood Frequency
Analysis (FFA) is to select an appropriate distribution
type for representing a hydrological variable of interest at
a site or in a region. There is a wide range of flood
frequency models developed in hydrology. In the open
literature, there are a few studies to identify the
probability type of annual streamflow in the world
(Yue and Wang, 2004). The search for the proper
distribution function has been subjective of several
studies.

The commonly used procedure is to first choose a
hypothesized distribution, then estimate the parameters of
the hypothesized distribution using the moment method,
the maximum likelihood method or L-moment method
and finally apply the goodness of fit such as
Kolmogorov-Smimov test (KS) or Chi-square (CS) test to
see 1f the hypothesized distribution can be rejected or not
(Wang et al., 2004).

Cunnane (1985) discussed factors affecting the
choice of a distribution for FFA, mcluding the method of
parameter estimation, treatment of outliers, inclusion of

large historical flood values, data transformations and
causal compositions of flood population. He concluded
that distribution choice could not be based on theoretical
arguments alone or one criterion

Many researchers proposed several criteria good test
statistics in selection of the best statistical distribution to
fit the data. For example, Turkman (1985) used the
Akaike’s Information Criteria (AIC) for the choice of
extremal models and analyzed its effectiveness in
choosing the most likely among the Gumbel, Frechet and
Weibull distributions. Onoz and Bayazit (1995) considered
the C3, KS, AD (Anderson-Darling) and PPCC tests for
evaluating the suitability of seven distributions for the
flood data from 19 stations all over the world. Kim and
Heo (2002) used the statistic CS, KS, CvM (Cramer von
Mises) and PPCC tests to see if the hypothesized of the
Gamma, GEV, Gumbel, Log-Gumbel, TLognormal,
Log- Pearson or Weibull distribution can be rejected or
not to fit the annual maximum flood of Goan station in
Korea. Zalina et al. (2002) applied the PPCC test, the Root
Mean Square Error (RMSE), the relative root-mean square
error (RRMSE) and the Min Absolute Error (MAE) to
assess the capability of eight distributions to describe the
annual extreme rainfall data of Pemunsular of Malaysia.

In these procedures, the choice of the hypothesized
distribution is often based on the rule of thumb. The
selected statistical distributions for the same data may be
different for different analysis. This will occur when two
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or more statistical distributions were tested by only one
or two test statistics. However when more than two test
statistics are used to identify the best distribution, it 1s
more difficult and more subjective.

The selection of the “best” distribution from a set of
test statistics 15 a multi-criteria decision making
problem. Many methods have been proposed to solve
a multi-criteria decision making problem such as the least
deviation method (Xu and Da, 2004), linear goal
programming method (Fan ef af, 2004, 2005) and the
fuzzy majority approach (Chiclana et «f, 1998,
Herrera et al., 2001).

In this study, a new method based on a non linear
programming 1s proposed to solve multi criteria decision
making problem. In the proposed approach, a non linear
programming model is constructed to integrate the fuzzy
preference relation and to compute the collective ranking
values of the altermatives. Once the collective ranking
values are known, the selection of the best distribution
can be obtained.

Five selection test statistics, namely the MSEC
(mean square relative error m cumulative distribution
function, CDF), MAE, RMSE, KS and NIFL (normalized
likelihood function index) test and four distributions,
namely the Generalized extreme value (GEV), Generalized
Pareto (GP), Pearson 3 (P3) and Lognormal 3 (LN3)
distributions are considered in the illustration of the
proposed approach. The performance of the new
approach is compared to the fuzzy majority approach that
proposed by Chiclana et al. (1998).

PROBABILITY DISTRIBUTION FUNCTIONS OF
FLOOD FREQUENCY ANALYSIS

Four of the commonly distributions used in
hydrology  are  considered  in  this study
(e.g., Hosking, 1990; Hosking and Wallis, 1997;

Sveinsson et al., 2002). The forms of the probability
density function of these distributions are follows:

TLognormal (LN3):
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Pearson Type Three (P3):
1 (x-¢& - o x-& 3
f(X)_oarac)[ K J exp{ o J =
Generalized Pareto (GP):
f(x):l{lfk(xfﬁ)} ) (4)
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where, «, £ and k are scale, location and shape
parameters respectively. Parameters of these distributions
are estimated by the L-moments method. We do not give
here any equations for the parameter estimation of
the considered distributions because they are well
known and commonly appear in many publications
(Rao et al., 1997, Sveinsson et al., 2002; Hosking, 1990;
Hosking and Wallis, 1997).

GOODNESS OF FIT CRITERIA

Five criteria, which measure the relative goodness of
fit test statistics, were employed for comparison of the
probability distributions for fitting on a data set. The set
of criteria as follows:

a. The Mean Square Relative Error (MSEC) In CDF
statistic test

The MSEC test is based on mean square distance

between the hypothesized CDF and the empirical CDF
(Whalen et al., 2002). The MAE is given by:

MSEc:i[i*—lfF(x,)j (5
=in-1

b. The Mean Absolute Error (MAE) statistic test

The MAE test is based on the mean absolute
distance between the observed data values, x;, and

the estimated data values, X,, respectively
(Zalina et al., 2002). The MAE is given by:
MAE = L[5 =% (6)
n=| X

¢. The Root Mean Square Error (RMSE) statistic test

The RMSE test is based on the mean square distance
between the observed data values, x; and the estimated
data values, X, , respectively (Guo et o, 1996). The
RMSE is given by:
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d. The Keolmogorov-Smirnov (KS) test statistics

The K8 test statistic is use to measure the maximum
deviation between the hypothesized CDF and the
empirical CDF at the same observation point or among a
pair of consecutive observation points (Wang, 2004). The
K8 is given by:

KS=max{ Fx)-i/n}.[F)-G-D/nf} (8
e. The Normmalized Likelihood Function Index (NLFI) test
statistics

The NLFI test statistic 1s the mean of the
logarithm of the probability distribution function,
f(x) (Jain and Singh, 1987). The NLFT test statistic is
given by:

L 0gfix) )]

n=

NLFI =

The smaller value of the test statistics in case of
criteria (a)-(e) 1s the better the sample data fits the chosen
distribution.

MAKING THE MEASUREMENT VALUE UNIFORM

In MCDM approach, the rating or the performance
measurement value given by each test statistics to the
distributions is used in the field. The higher the rating, the
better the distribution satisfies the test statistics. The
ratings assumed are given in the range between O and 1.

However, in our study the five criteria test statistics
may take values out of the range [0, 1]. In addition, based
on each of the five criteria, smaller the value, the better the
distribution fit to the sample. There is need to standardize
these measures such that they are all in the range of [0, 1]
and the higher the measurement value, the better the fit.
The transform function based on the Cauchy
distribution function is used to standardize the measures
(Wang et al., 2004). The Cauchy distribution function 1s
given by:

1
1+tv?

r(v)= 10

(t=0v=0)

where,v, 1s the test statistic value of a hypothesized
distribution and t is a constant determined empirically to
make sure that the performance measures will spread in
the range [0, 1].
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MULTIPLE CRITERTA

Multt Criteria Decision Making (MCDM) 1s an
important part of modem decision science. It has been
extensively applied to various areas such as economic
analysis, urban or regional planning and forecasting etc.
In a MCDM problem, we have a set of alternatives to be
analyzed according to different purposes in order to select
the best one (Chiclana et al., 2001). A decision maker is
often faced with the problem of selecting or ranking
alternatives associated with non-commensurate and
conflicting attributes (Fan et al., 2004).

Presentation of the problem: Let X = {x,, x,, K, x.}, (n>2)
be a finite set of the distributions and E = {e,, e,, K, e},
(m=2) be a fimte set of test statistics. Let C=(c¢,. ¢,, K. ¢,)
be the weight vector of the test statistics, where
yoe=L.¢ =0, h=1 K, mand ¢ ,denctes the
important degree of test statistic ¢, and 1s usually
determined by the decision makers.

The problem concerned in this paper is to rank
distributions or to select desirable distributions among a
finite set X based on fuzzy preference relations.

The fuzzy majority approach: Chiclana et al (1998)
proposed the fuzzy majority approach to solve the
Mults Criteria Decision Making (MCDM) problem for the
aggregation and to select desirable of the information in
decision making. The approach consist the three
steps: (i) uniform the preference information through a
transform  function, (1) aggregate the umformed
preference mformation into a collective one and (111) rank
alternatives or select the most desirable alternative of
distributions by means of the weighted average operator.

In generally, the mformation provided by a set of
criteria is supposed to be of a diverse nature. To make the
information uniform, a transformation function 1s used to
transform the preference utilities into the format of the
preference relations. The transform function 1s called the
preference degree of the alternative x; over x; is given by:

)’

() + )y

P = (1)

where, u! represents the measurement value given
by the test statistics e,.

Since the important degree of each test statistics 1s
not equal, hence the fuzzy majority criteria with the fuzzy
quantifier such as most, at least half or as many as
possible, is used to aggregate the uniformed preference
information mto a cellective one. The collective fuzzy
preference relation is obtained as follows:
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where, q;1s the k th largest value in the set
{pj»----p;} and Q(r) 15 given by:

0, O<r<a,
Q= r—a, asr=b, 13
b-a
1, b=r=l.
a,be[0, 1]andc, = Qk/m)—Q((k—1)/m) (14

Thus by Eq 13, the fuzzy preference relations,
P', K, P*, are aggregated into a collective fuzzy preference
relation as follows:

P*=(p)),., a3

In order to the rank the distributions or select the
most desirable distribution (s), the fuzzy quantifier also 1s
used to compute the collective ranking values of
distribution, 1.e.,

k
i

W= O(ph j= Lo j=i) (16
where, w’ 1s the collective ranking value of the [ th
distribution. From Eq. 16, we can obtain that the collective
ranking value vector of the distributions 1s
W= (W, W) a7
According to the obtamed ranking values, the
ranking of the distributions or selection of the most
desirable distribution(s) is done. The greater the ranking
value w is the better the corresponding alternative
%, will be.

The proposed approach: Suppose the collective ranking
value of alternative x; 1s w, (1 = 1, K, n)and w,1s unknown
variable where wi = 0, 3* w_=1. The problem in this
research 1s how to determine the collective ranking values
of alternatives based on the preference relation provided
by the decision makers.

In order to do that, we proposed the fuzzy preference
relation P* =[p;]  , (Chilana efal, 1998) where

WZ

i

1s)

Li=Lnk=1Kmi#]

k
Py =
! W?er]z

From Eq. 18, the deviation degree between pjand
wi/(w; +w) 1s given by:

g, (w)=w —pi(w] +w))
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The collective deviation degree g as follows

2wy =g wi=Se [wi—piowi =wh|  (19)

To make the group consensus better, we can minimize
z; (w) by assessing the collective ranking values wi(i = 1,
K, n). Thus, the following multiple objective constrained
optimization model:

= 2 ko2 2
Minimize %(W)= %0 ‘w‘ — Py Wy W )‘

(20a)

j=1LK,n,i#j
Subjectto 32w, =1, (20b)
wi>0, i=1,K,n (20c)

Solution to the above minimization problem is found
by solving the following non linear programming model:

5
AL
iy

Minimize z:i i (s (2la)

[

+t.u’.)
i

Subject to ick[wl2 —pyw] +wl-u; +u =0 (21b)
k=l

shw, =1, (2le)

wiz0, 1=1,K,n 21d)

u =0,u; =0anduu; =0,j=1,...,n,i# j (21e)
i i it

Where, s; is the weighting factor corresponding to
positive deviation u! and t; is the weighting factor
corresponding  to positive deviation. By solving
model (21), the collective ranking value vector,
w*=(w,,w,, K,w’), can be obtained. The greater the
ranking value wis the better the corresponding
alternative x, will be.

Based on Eq. 19, the total deviation degree of group
consensus is given by:

Obviously, the smaller the value of total deviation
degree D(w) is the better the group consensus are.

DOW) =227, (w) =3 %

i=l =l i=l j=t

u
2.Cy

k=1

W, =Py (w4 w))

} (22)

ILLUSTRATIVE EXAMPLE

To illustrate the application of MCDM problem,
the annual flood peaks series data of the station
3516422-Selangor in Peninsular Malaysia for the past
40 years (1961-2001) was analyzed. The data is given in
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Table 1: Recorded annual flood peaks series of the station 351 6422-Selangor (values in m® s71)

46.07 34.18 61.00 57.50 33.86 63.00 69.68 46.33 51.17 67.22
67.32 13.36 65.96 2948 23.48 43.60 67.34 83.98 60.88 40.07
62.20 21.63 124.31 2587 44.41 53.01 61.80 38.11 81.69 20.07
52.92 97.57 67.49 3595 17.54 84.88 80.25 55.00 96.00 14.48
Table 2: Estimated parameters for candidate distributions _ _
Distribution GEV LN3 GP P3 0.500 0.501 0.504 0.500
Shape (k) 0.183 0.119 0.780 31.373 0.499 0.500 0.503 0.500
Scale () 44.079 52.534 70.047 4498 Pl : : :
Location () 23.560 24.945 14,661 -87.099 0.496 0.497 0.500 0.497
Table 3: Statistics calculated with Eq. 5-9 —0'500 0.500 0.503 0'500—
Distribution
No. Test Statistic  GEV LN3 GP P3 (0500 0499 0499  0.499]
1 MSEC 0.02141 0.02107 0.03165 0.02102
2 MAE 005927 0.06047  0.06724  0.05998 pr_| 02010300 0501 0.500
3 RMSE 0.11534 0.12210 0.08227 0.12038 0.501 0.499 0.500 0.500
4 K8 0.08398 0.08113 0.16105 0.08146
5 NLF 4.6064 4.6072 4.4444 4.6066 | 0.501 0.500 0500  0.500
Table 4: The rating values obtained with Eq. 10 ~ -
Distribution 0.500 0.503 0.520 0.502
No. Rating GEV N3 GP D3 pé_ 0.497 0.500 0.517 0.499
1 MSEC 0.9033 0.90469 086337 0.9049 0 48 0483 0500  0.4%2
2 MAE 0.94405 0.94298 0.93700 0.94341
3 RMSE 0.92253 0.92496 092308  0.92468 10.498 0501 0518  0.500
4 KS 0.89659 0.89119 0.86129 0.89255
5 NLFI 0.81280 0.81277 0.81818 0.81279
[0.500 0500 0497  0.500]
Table 1. The parameters of the all distributions. were 0500 0500 0497 0.500
estimated with the L-moments method. The estimated P = 0.503 0.503 0.500 0.503
parameters of these four distributions are listed n ’ ’ ’ ’
Table 2. 1 0.500 0.500 0.497 0.500 |

For the data in Table 3, we then used Eq. 10 to
transform them into values in (0, 1) with larger value
indicating a better performance against each criteria. The
constant values t of Eq. 10 used for the five rows of the
data given in the Table 3 are 5, 1, 1, 1 and 0.05,
respectively. The transformed performance measures
obtained using Eq. 10 are given m the Table 4.

From Table 4, we can see that based on the
MSEC test statistic alone, P3 distribution provides the
best fit. If only the MAR test statistic is considered, the
GEV best fit. If only the RMSE test statistic 1s considered,
the GP distribution provides the best fit. The other results
are shown m Table 4.

The fuzzy majority approach: To apply the fuzzy majority
approach, a transform function given in Eq. 11 is used to
transform the rating values into the formats of fuzzy
preference relation. The fuzzy preference relation are
given by:

0.500 0.499 0.523 0.499

. 10.501 0.500 0.523 0.500
- 0.477 0.477 0.500 0.477
0.501 0.500 0.523 0.500

930

Since the important degree of each decision maler is
not equal, the fuzzy majority criterion with the fuzzy
quantifier “at least half” with the pair of values (0, 0.5)
based on the Eq. 14 is used. The weighting vector
cl =04 ¢2 =04 ¢c3 =02 c4=0andc5=0using the
Eq. 14. Then the collective fuzzy preference relation
15!

0.500 0.503 0.521 0.502
0.501 0.500 0.520 0.500
- 0.495 0.495 0.500 0.495
0.501 0.501 0.520 0.500

In order to rank the alternatives or select the most
desirable alternatives, the fuzzy quantifier “most” with the
pair (0.3, 0.8), i.e., the corresponding with the weighting
vectorcl =0,¢2=0.4, c3=0.5andc4 = 0.1 1s found. From
Eq. 17, we obtained that the collective ranking value
vector of the alternatives 1s

wr=(w, W W, W) =
(0.50195, 0.50028, 0.49498, 0.50063)"
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Collective ranking values of alternatives

Approaches based on W] Wy W3 Wy Ranking of alternatives Di(w)
Nonlinear programiming 0.25111 0.25095 0.24689 0.25105 X P Xy P Xy > Xy 0.00778
The fuzzy majority 0.25125 0.25041 0.24776 0.25058 ES T TED 0.00807

According to the obtained ranking value vector

w', the ranking result of the four distributions is

X, > X, > X = X, This means that the GEV distribution,

provides the best fit to describe the annual flood peaks
series data of the station 351 6422-Selangor in Peninsular
Malaysia.

To obtain the total deviation degree of group
consensus, i.e., D(w"), in Eq. 10, the sum of the entries of
ranking value vector w' must has a sum of 1. However, the
sum of the collective ranking value vector w’ had a sum
more than 1. The ranking value vector was scaled so that
the sum the entries ranking value vector had a sum of 1.
The total deviation degree of group consensus after
scaled, i.e., D(w") = 0.00807.

The proposed approach: In this study, the important
degree of each test statistic is equal, i.e., ¢, =K =C;=1/5.
For simplicity, let s; and t; be equal to 1. Using Eq. 21a-e,
we can set up the following non linear programming
model:

2z
Minimize z=3 > (u:' + u:)
i=1 fFlLizj ) 1

Subject to  0.4999w’ — 0.5001w? —u}, +u, =0

0.4915w" — 0.5085w —u, +u;, = 0
0.4998w* — 0.5002w” — u?, + u;, = 0
0.4918w* - 0.5082w" —u’, +u;, = 0
0.5002w? — 0.4998w” — u, +u,, = 0
0.5084w’ - 0.4916w* —u}, +uj, = 0
0.5003w? — 0.4997w’ —u' +u, = 0
0.4916w* — 0.5084w’ —u’, +u;, = 0
0.5001w? — 0.4999w? —u’, +u;, = 0

0.4997w? — 0.5003w; —u}, +u;

21 = 0
0.5085w? — 0.4915w* —u, +u, = 0

0.5082w. — 0.4918w: —ul +u, =0

931

W, W, W, +w, =1
w, 20, i=1LK.n
. , — e -
u;=0,u; >0, anduuulj =0,j=1..,mi#]

By solving the above non linear programming
problem, we have the following results:

w, = 0.25111, w, = 0.25095, w, = 0.24689, w, = 0.25105

Therefore, the collective ranking value vector of
alternatives is

w' =(0.25111, 0.25095, 0.24689, 0.25105)

According to the obtained ranking value vector
w', the ranking results of the four distributions is
X, > X, > X,> x ; The total deviation degree of group
consensus, D{w’) can be obtained by substituted
w (i=1,2,3,4)inEq 10, i.e, D(w")=0.00622.

The computational results of the nonlinear
programming approach and the fuzzy majority approach
after scaled are compared and shown m Table 5.

It can be noticed from above table that the two
collective ranking value vectors obtained by the two
approaches are similar. But it can be seen that the total
deviation degree of the group consensuses obtained by
two approach are different and D (w") < D (w. This
illustrates that the group consensus of the proposed
approach 13 better than one based on the fuzzy majority
approach.

CONCLUSIONS

The search for the proper distribution function has
been subjective of several studies. The best distribution
choice could not be based on one theoretical argument
alone or one criterion. However, when more than two
criteria are used, it more difficult and more subjective.

In thus study, we proposed a new Multi Criterion
Decision Making (MCDM) approach for selection of the
best distribution to fit a set of data. A numerical example
1s used to ilustrate the use of the proposed method. The
approach 1s based on the non linear programming which
can be used to assess attribute weight and then to select
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the most desirable distributions. The five commonly
distributions considered are: GEV, GL, LN3, GP and P3.
For the distributions selection, five criteria test statistics
were used.

The performance of the new approach is compared to
the fuzzy majority approach. The result show that the new
approach performs as well as the fuzzy majornity approach.

The proposed approaches provides decision makers
to improve quality of decisions by making its more explicit
and efficient, especially m order to selection the best
distribution 1n specific field of application.
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