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Abstract: The objective of this study 1s to develop improved LO-moments that do not impose restrictions on
the value of p and ¢ such as the median, trimean or the Gastwirth but we explore an extended class of LQMOM
with consideration combinations of p and & values in the range 0 and 0.5. The popular quantile
estimator namely the Weighted Kernel Quantile (WKQ) estimator will be proposed to estimate the quantile
function. The performances of the proposed estimators of the Extreme Values Type 1 (EV1) distribution were
compared with the estimators based on conventional LMOM, MOM (method of moments), ML (method
of maximum likelihood) and the LOQ-moments based on LIQ (linear interpolation quantile) for various

sample sizes and return periods.
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INTRODUCTION

The L-moments, certain linear functions of the
expectations of order statistics, were introduced and
comprehensively reviewed by Hosking (1990). L-moments
have found wide applications in such fields of applied
research as civil engimeering, meteorology and hydrology.
The method of L-moments has become a standard
procedure in hydrology for estimating the parameters of
certain statistical distributions. The L-moments are
defined as:

a, i‘i(l)“(r; 1JE<X,M), r=12.. )

T k=0

Mudoelkar and Hutson (1998) extended LMOM to new
moment like entitles called L.Q moments (LQMOM). They
found LOMOM always exists, are often easier to compute
than LMOM and m general behave similarly to the
LMOM. The LQ-moments are defined as:

;LI_13(_1){1"1{1}13&(}(“_,), r=12.. (@

T k=D

Where, O<i<1/2, 0<p<1/2 and

Tpo (Xo) = PQ, () + (1-2p)Q, . (1/2)
+pQ,, (-

3)

is the linear combination and defined as a quick measures
of the location of the sampling distribution of the order
statistic X, and Qx(u) is the quantile function. Mudolkar
and Hutson (1998) discussed a robust modification in
which the mean of the distribution of X ., in (1) 1s
replaced by the common quick estimators ¢ (X, )using
the median (p =0, ¢ = 1), the trimean (p=1/4, o« = 1/4) and
Gastwirth (p = 0.3, & = 1/3) for some symmetric and
asymmetric distributions.

The objective of this research is to develop improved
LQ-moments that does not inpose restrictions on the
value of the quick estimators parameters p and ¢ such as
p =0, & = 0.5 for the median, p = 1/4, ¢ = 1/4 for the
trimean and p = 0.3, ¢ = 1/3 for the Gastwirth but we
explore an extended class of LQ-moments with
consideration combinations of p and ¢ values in the
range O and 0.5. Rather, we seek to determine optimal
combination of p and & values of LQ-moments, assuming
that the underlying distribution s correctly specified.
More specifically, we develop the method of LQ-moments
for the Extreme Values Type 1 (EV1) distribution, which is
often employed in statistical analyses of hydrological
data. The popular quantile estimator namely the Weighted
Kemel Quantile (WKQ) estimator will be proposed to
estimate the quantile finction. The performances of the
proposed estimators of the EVI1 distribution were
compared with the estimators based on conventional
LMOM, MOM (method of moments), ML, (method of
maximum likelthood)and LIQ (linear mterpolation quantile)
estimator for various sample sizes and return periods.
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DEFINITION AND PROPERTIES OF
LQ-MOMENTS ESTIMATORS

Tet X, X,,.. X, be a random sample from a
continuous distribution  function F() with quantile
function Q(u) = F'(u) and let ¥, <X, <...<X,, denote the
corresponding order statistics (Mudolkar and Hutson,

1998). Then the rth LQ-moments £ is given by:

r—1

1 k
&=_2(1) { . }rm (X..) r=12.. “)
Where, O<a<1/2, O<p<cl/2,
Too (3 1= Py, (o) +(1-2p)Q, | (1/2)
TpQs . (1-a) (5)

=pQ[B.L. ()] +(1-2p)Q[B.(1/2)]
+PQIB.L, (1~ a)]

is the quick estimator of location and B (c)is the
quantile of a beta random variable with parameter r—k and
k+1 and Q(.) denotes the quantile estimator. The first four
LQ-moments of the random variable X are defined as:

51 = Tp,a(X)a (6)
&,z = é_[rp,a (X0 - Toa (X, 7
aa = ?[Tp,u (X3.3) - 21:}),\1 (X2.3) TTx (X1.3 L (8)
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The quantile estimators: The sample quantiles estimators
of the values of the population quantile Q(.), are used
widely 1 a variety of applications such as a Q-Q plots and
a box plot in the exploratory data analysis, non-parametric
estimators involving statistics such as the quartiles and
their ranges, to theoretical topics such as density function
estimation.

Tet X,<3,,<...<X,, be the comresponding order
statistics. The population quantiles estimators of a
distribution is defined as:

Qu)=F'(u)=inf{x:F(x)2u}, O<u<l (10)

Where, F(x) is the distribution function (Hydnman
and Fan, 1996).

The linear interpolation quantile estimator: The linear
mterpolation (LIQ) quantile estimator 1s used commonly
in statistical packages such as MINITAB, SAS, IMSL and
S-PLUS. The LIQ estimator is given by:
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Q(u) =(1- S)X[n'u]n + SX[n‘u]Hn an

Where, £ = n'u—[n'y], n' = n+1 and [nu] denotes the
integral part of nu (Mudolkar and Hutson, 1998).

The weighted kernel quantile estimator: A popular class
of L quantile estimators 1s called kernel quantile estunators
has been widely applied (Sheather and Marron, 1990). The
L quantile estimators 1s given by:

Ou) = 2[ i KJtu)dt}Xm
= (i-1)/n

&

(12)

Where, K 15 a density function symmetric about 0 and
Ky () = (/K (/h)
In this study, the approximation of the L quantile
estimator is called as the weighted kernel quantile

estimator (WKQ) proposed by Huang and Brill (1999). The
WKQ is given by:
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And the data point weights are:
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1=2,3,..,n-1

1

{1_ n-2

1 YD)
1
1/11(1171)’

Where, K(t) = (21n)™" exp(-t*/2) is the Gaussian
Kemnel, h = [uv/n]"* and v = 1-u is an optimal bandwidth
proposed by Sheather and Marron (1990).

(14)

in

THE EV1 DISTRIBUTION

The EV1 distribution or Gumbel distribution, named
after Gumbel (1958), has been extensively used in various
fields including hydrology for modeling extreme events.
The EV1 CDF has Cumulative Distribution Function (CDF)

Fix)=exp{-exp[-(x - W)/C]} —ec<x<oo (15)

Where, | and o are location and scale parameters,
respectively. Quantiles function of EV1 distribution 1s
given by:

Q(w = p— olog(-log(w) (16)
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METHOD OF LQ-MOMENTS

The LQ-moments estimators for the EV1 distribution
behave similarly to the LMOM. From Eq. 6,7 and 16,
the first two LOQ-moment of the EV1 distribution can be
written as:

él =u+ G[Tp,u (X, )] a7

&,z = IEG[TF,D‘ (Xzz) T (Xl.z )] (1 8)

The LOMOM estimators p and ¢ of the parameters
are the solution of (17) and (18). & and [i can be estimated
successively from Eq.(18) and (17) as:

2€,
%p,ﬂ (Xzz ) - %p,ﬂ (Xl 2 )

(19)

&

& -6[t, . (X,)] (20)

i
OTHERS METHODS OF PARAMETER ESTIMATION

Several methods can be used to estimate the
parameters of the EV1 distribution. The methods of
L-moments (LMOM), ordinary product moments (MOM)
and maxmmum likelihood (ML) are commonly used to
estimate the parameters of the EV1 distribution. The
method of ML is known to be asymptotically unbiased
and optimal for the EV1 distribution. However, there 1s no
guarantee that the ML method 1s the best m small
samples. The method of probability weighted moments
(PWM) or L-moments method has a become a standard
procedure in hydrology for estimating the parameters of
certain statistical distributions.

Landwehr et al. (1979) was developed the method of
probability weighted moments (PWM) or L-moments
(LMOM) method. The LMOM method was compared to
the MOM and the ML method. The results show that
LMOM estimates were comparable to other estimators.

A number of methods of fitting the EV1 distribution
to sample data were compared by Jamn and Singh (1987).
The MOM methed was found to be most accurate, next to
the ML, method. The MOM method also found to be
virtually unbiased and the simplest to apply.

Raynal and Salas (1986) analyzed six different
methods of parameter estimation and preferred PWM for
large samples. Phien (1987) compared the MOM, ML and
ME (maximum entropy) and LMOM methods for the EV1
distribution. The LMOM method was found to be best in
terms of bias and the ML method was found to be best in
terms of mean square error.
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Methods of moments: This is one of the most popular
methods of estimating the parameters of EV1 distribution.
The MOM estimators of the EV1 parameters are given by:

& (21)

Ve
T

[l =X —0.450041s (22)

Where, X and s are the mean and standard deviation
of a sample of size n.

Method of maximum likelihood: The ML estimators of the
EV1 are given by:

Zn‘,xl exp(-x, /&)

Sexp(-x, / 6)
i=1

(23)

G=X-

- N la N
(i =-6log { Y exp(—x, /G)} (24)
n =

Method of L-moments: The LMOM estimators for the EV1
distributions are given by:

5= (25)
log 2
f=b, &y (26)
L,=2b —b

Where,

(=Di-2-3).(-1)

b= -2

i

b
in
=1

And y = 0.577 is Euler’s constant.
SIMULATION STUDY

A number of simulation experiments were conduct to
investigate the properties of LQ-moments estimators for
the EV1 distribution. A set of 10 000 random samples of
sizes varying from 10 to 100 were generated from EV1
distribution. The location and scale parameters (u, 0) were
set O and 1, respectively. From each generated sample
of a given size nthe root mean square error (RMSE) for
F =05, 095, 099 and 0.999 corresponding to return
periods T =10, 20, 100 and 1000 years, respectively were
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Table 1: Combination ¢ and p that produces of Root Mean Square Error (RMSE) for the LOQ-Moments method based on the WKQ and LIQ estimator of a

100-year EV1 quantile from 50 observations

WK estimator (o) L.IQ estimator (o)

P 0.20 0.22 0.24 0.26 P 0.26 0.28 0.30 0.32
0.10 0.6334 0.6350 0.6394 0.6463 0.10 0.7578 0.7751 0.7951 0.8176
0.12 0.6298 0.6281 0.6288 0.6318 0.12 0.7379 0.7497 0.7641 0.7811
0.14 0.6330 0.6291 0.6273% 0.6275 0.14 0.7217 0.7284 0.7376 0.7493
0.16 0.6400 0.6347 0.6311 0.6292 0.16 0.7158 0.7188 0.7242 0.7318
0.18 0.6490 0.6427 0.6379 0.6345 0.18 0.7153 0.7156 0.7180 0.7225
0.20 0.6591 0.6523 0.6467 0.6422 0.20 0.7168 0.7148 0.7147* 0.7163
0.22 0.6699 0.6629 0.6568 0.6516 0.22 0.7251 0.7218 0.7202 0.7202
0.24 0.6812 0.6742 0.6680 0.6624 0.24 0.7285 0.7233 0.7195 0.7170
0.26 0.6928 0.6861 0.6799 0.6743 0.26 0.7410 0.7355 0.7312 0.7280

*Indicates the smallest RMSE obtained

Table 2: Values of the quick estimator parameters (x, p) leading to minimum RMSE of L.OQ-moments estimators for (a) WKQ and (b) linear interpolation

quantiles
T=10 T=100 T =1000

n o ] RMSE o ] RMSE o p RMSE
Weighted kernel quantiles
10 0.26 0.26 0.780 0.26 0.26 1.423 0.26 0.28 2,110
25 0.18 0.24 0.492 0.16 0.24 0.894 0.16 0.26 1.302
50 0.14 0.24 0.346 0.14 0.24 0.627 0.14 0.26 0.913
75 0.14 0.24 0.283 0.14 0.24 0.513 0.12 0.24 0.747
100 0.14 0.22 0.248 0.12 0.24 0.449 0.12 0.24 0.654
Linear interpolation quantiles
10 0.14 0.26 0.800 0.14 0.28 1.445 0.14 0.28 2,110
25 0.16 0.26 0.550 0.16 0.26 1.081 0.16 0.28 1.559
50 0.18 0.24 0.386 0.16 0.24 0.726 0.16 0.24 1.071
75 0.18 0.24 0.307 0.16 0.24 0.575 0.16 0.24 0.847
100 0.16 0.26 0.263 0.16 0.26 0.496 0.16 0.26 0.730

Table 3: Relative Performance of the method of WKQ over the method of
LIQ, LMOM, MOM and ML as measured by the ratio of RMSE
of quantile estimators

n Methods T=10 T=100 T =1000
10 LIQ 0.973 0.985 0.984
LMOM 0.972 0.972 0.972
MOM 0.962 0.953 0.949
ML 1.044 1.072 1.081
25 LIQ 0.890 0.855 0.843
LMOM 0.978 0.979 0.981
MOM 0.939 0.915 0.908
ML 1.016 1.038 1.046
50 LIQ 0.910 0.881 0.865
LMOM 0.981 0.986 0.982
MOM 0.927 0.903 0.888
ML 1.011 1.038 1.042
75 LIQ 0.921 0.892 0.881
LMOM 0.984 0.987 0.991
MOM 0.924 0.8% 0.887
ML 1.022 1.049 1.061
100 LIQ 0.929 0.905 0.896
LMOM 0.996 1.002 1.003
MOM 0.939 0.913 0.902
ML 1.069 1.109 1.124

Values<1 indicate that WKQ are superior

computed. The presentation of our results will focus on
the properties of quantile estimators because they are
more direct practical interest. Initially, parameters were
estimated using combinations of the quick estimators
parameters (¢ and p) values n the ranges O to 0.5. In the
computer simulations the values of cand p were chosen
insmall steps by adding 0.02 and all possible combination
of cand p were examined in order to find the best
combmation m term of RMSE.
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All possible for combmations of aand p that
produces of RMSE of a 100-year quantile estimator
computed from 50 observations for the LQ-moments
method based on the WKQ an LIQ estimator were
examined and only limited result presented as shown in
Table 1. The minimum value of RMSE lies at ¢ 15 0.24 and
p 18 0.14 for WKQ estimator and ¢ 15 0.30 and p1s 0.20 for
LIQ estimator. The results show that the choice & and p
of LQ-moments based on the median, trimeans and
Gaswirth 13 not optimal.

The Table 2 shows that the mmumum value of RMSE
decreases as the sample size increases. The optinal
values of & lies n the range (0.14, 0.26) and p in the range
(0.22, 0.26) for WKQ and « value fall m the range
(0.14, 0.20) and p in the range (0.24, 0.28) for the LIQ
estimator. The WKQ has consistently performed better
than the LIQ quantile estimators for any combinations of
return period and sample size.

COMPARISON OF WKQ, L1Q, LMOM, MOM
AND ML METHODS

The RMSE of 10-year, 100-year and 1000-year
quantiles estimated by conventional LIQ, LMOM, MOM
and ML, relative to the new WKQ estimator for different
combinations of sample size, are compared and shown in
Table 3. Values less than one suggest superiority of the
new method. For any values of sample size, n, the ML
estimator generally has the lowest RMSE i comparison
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to the other estimators. The WKQ perform next followed
by LMOM, MOM and LIQ.

The results show that the new estimator performs
better than LIQ, MOM and LMOM. It 1s however, slightly
inferior to the ML method in terms of RMSE.

CONCLUSIONS

The T.Q-moments are constructed by using functional
defining the quick estimators, such as the median, trimean
or Gastwirth, in places of expectations m L-moments
have are re-examined. The quick estimators based on
three-mean of quantiles using weighted kernel estimators
are introduced for fitting the data and for characterizing
the upper part of distributions 1n a sample. This study has
compared the LQMOM based on LIQ estimator, the
traditional method of MOM, LMOM and MI, commonly
used in hydrological frequency analysis with the
LOMOM based on the WK estumator in which the quick
estimators parameters ¢ and p are not restricted, such as
the median, trimean or Gastwirth.

Results from fitting the EV1 distribution function to
generated EV1 samples for the WK(Q estimator shows that
the optimal values of ¢ lies in the range (0.14, 0.26) and p
in the range (0.22, 0.26) for different combinations of
return period and sample size. In many cases of practical
mterest, the method of WKQ outperforms the method of
ML over the entire sample size n considered but always
perform better than the TMOM, LIQ and MOM methods
in term of RMSE.

This study has demonstrated that the conventional
L moment 1s not optimal for the estmation of the EV1
distribution. The new method of estimation, denoted the
LQ-moments based on WKQ method, in many cases
represents ligher efficiency in the quantile estunation
compared the L moments method. The simplicity and

997

generally good performance of this method make it an
attractive option for estimating quantiles in the EV1
distribution.
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