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Abstract: The L.Q-moments are analogous to L-moments, found always exists, easier to compute and have the
same potential as T.-moment were re-visited. The efficiency of the Weighted Kernal Quantile (WK Q), HD (Harrell
and Davis) quantile the weighted HD quantiles estimators compared with the Linear Interpolation Quantile (LIQ)
estimator to estimate the sample of the LQ-moments. In this study we discuss of the quantile estimator of the
LQ-moments method to estimate the parameters of the Generalized Extreme Value (GEV) distribution. In order
to determine which quantile estimator 1s the most suitable for the LQ-moment, the Monte Carlo simulation was
considered. The result shows that the WKQ is considered as the best quantile estimator compared with the

HDWQ, HDQ and LIQ estimator.
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INTRODUCTION

Mudholkar and Hutson (1998) introduced
LQ-moments as a robust version of L-moments. The
LQ-moments are constructed by using a class of robust
location measures defined in terms of simple linear
combinations of symmetric quantiles of the distribution of
the order statistics, such as the median, trimean or
Gastwirth, in places of expectations in L.-moments. The
LQ-moments are defined as

12! r-1
hr—Z(—l)k{ . Jep_u(Xr_kr),r—l,Z,... 1)
Tico

where

ep,u(Xr—k r) = pQXH" (G') + (1 - 2’13)(2}1,,k:x (2)
(1/2)+ pQx,,, (1)

The linear combination, €, , (.) is a quick measure of
the location of the sampling distribution of the order 2.,
andQy () denotes the quantile estimator.

Mudholkar and Hutson (1998) found the
performances of LQ-moments method depends on the
quantile estimators and they suggested the kemnel
estimator or some quasi-quantile may be used in the
estimation. They proposed the simplest quantile function
estimator based on the Linear Interpolation Quantile (L.IQ)
to estimate the sample LO-moments.

Ani and Aziz (2006) proposed the LOMOM based
on the Weighted Kernel Quantile (WKQ) estimator to
estimate the EWVI1 distribution parameters. The
performances of the WKQ estimator of the EVI

distribution were compared with the estimators based on
conventional LMOM, MOM (method of moments), ML
(method of maximum likelihood) and LIQ estimator for
various sample sizes and return periods. The results show
that the LQMOM based on the WKQ performs better than
LIQ, MOM and LMOM.

In this study, we focused on the chose the best
quantile estimator of LQ-moments method to estimate the
parameters of the distribution function. A popular
quantile estimator namely the Weighted Kemel Quantile
(WKQ) estimator, Harrell and Davis Quantiles (HDQ)
estimators and the weighted HD quantiles (WHDQ)
estimators will be used and compared with the LIQ
estimator. We develop the method of T.Q-moments for the
(Generalized Extreme Value (GEV) distribution. which is
often employed in statistical analyses of hydrological
data. Although the results for the GEV distribution cannot
be directly transferred to other distributions, the
conclusions drawn from this study should have general
implications for the use of LQ-moments in hydrology. In
order to determine which quantile estimator is the most
suitable for the LQ-moment, Monte Carlo simulation 1s
considered.

DEFINITION AND PROPERTIES
OF LQ-MOMENTS

Let X, X,,.... X, be a random sample from a
continuous  distribution function F(.) with quantile
function Q(u) =F'(u) and let X, <X, <...<X_, denote the
corresponding order statistics. Hosking (1990) defined the
rth L-moment A, as
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hr—li(l)k(rk }E(err), r=12.. &

Mudholkar and Hutson (1998) suggested a robust
modification in which the mean of the distribution of
Ko 10 (1) is replaced by its median or some others
population location measure. In particular, they defined
the rth LQ-moment £, as

g, = lrZ_lj(—l)k [rkllep,m(err), r=12..

Tio

where 0<<1/2,02p<1/2. Examples of 6, () are the
median (p =0, ¢ = 1), the trimean (p = 1/4, &« = 1/4) and
Gastwirth (p = 0.3, ¢ = 1/3). The three LQ-moments of the
random variable X are defined as

& =6,.(X) )
E—‘Z = %[ep,m(xz:z) B ep,m(Xl:Z)] (6)
g, :%[ep,u‘.(XBB)_ zep,m(xza)+ep,m(x1 8] (7

The skewness based upon the ratios of LQ-moments
to be called 1.Q-skewness is given by

N, =&,/&, ®)

Estimation of L.Q-moments: For samples of size n, the rth
sample L.Q-moment £_is given by

E - ! i(fl)k [r N 1jép,m(xr_k:r), r=12,.. )

Ty k

where the quick estimater 0, (3, ) of the location of
the order statistic X, in a random sample of size r. The
three sample L.Q-moments from Eq. ¢ are given by

él = ép,m(Xll) (10)
é.»z = IE[ép,u(Xz - ép,u(Xl:z)] ab
& =40,.060-20, 0%, 4 B,k (D)

where
6, .(X, ) =pQy_ (o) +(1-2p)
Qx, (1/2)+pQy_ (1-w)

(13)

pQIB,, (o] + (1-2p)A B, ,
(1/2)]+pQIB.,,(1-w)]

B ., (@) is the quantile of a beta random variable
with parameter -k and k+1 and ¢ ) denotes the sample
quantile estimator.

THE QUANTILE FUNCTION ESTIMATOR

The sample quantiles estimators of the values of the
population quantile Q(.), are used widely in a variety of
applications such as a Q-Q plots and a box plot in the
exploratory data analysis, non-parametric methods
involving statistics such as the quartiles and their ranges,
to theoretical topics such as density function estimation.

Let X, <¥X,,<..<X,, be the corresponding order
statistics. The quantile of a distribution 1s defined as

Qu) =F Wy =inf{x:F(x)>u}, O<u<l (14)

where F(x) 1s the distribution function (Hyndman and
Fan, 1996).

A traditional estimator of Q(u) is the uth sample
(David and Nagaraja, 2003) quantile given by

Q(u) = X[nu]+1n (1 5)

where [nu] denotes the integral part of s The
sample quantiles experience a substantial lack of
efficiency, caused by the varability of mndividual order
statistics (Huang, 2001). Many authors use L quantile
estimators to reduce this variability. A popular class of L
quantile estimators 1s kermnel quantile estimators has been
widely applied (Sheather and Marron, 1990). But selection
of kernel or bandwidth of the kernel estimators has always
been a sensitive problem. Huang (2001) proposed an L
quantile estimator namely quantile estimator HD performs
as well as other L. quantile estimators in large sample.

The estimation of population quantiles has been
considered from a variety of viewpoints may be used
(Sheather and Marron, 1990; Huang and Brill, 1999,
Huang, 2001). Four quantile estumators are considered in
the 1llustration of the proposed approach.

The linear interpolation quantile estimator: Mudholkar
and Hutson (1998) proposed the smmplest quantile
function estimator based on the linear interpolation (L.IQ).
This quantiles is used commonly in statistical packages
such as MINITAB, SAS, IMSL and S-PLUS. The LIQ
estimator is given by

Qlu)=(1- )X, +8X (16)

[n'ul+in

where e =n’u - [n’u] and ° = n+1.
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The weighted kernel quantile estimator: A popular class
of L quantile estimators 15 called kernel quantile estimators
has been widely applied (Sheather and Marron, 1990). The
1. quantile estimators is given by

ifn
j K, (t— w)dt

(171)!11

X, (17)

Q(u)—i{

where K 1s a density fimction symmetric about O and
Ki(#) = (1/)K(e/h)

In this study, the approximation of the I. quantile
estimator is called as the weighted kemel quantile
estimator (WKQ) proposed by Huang and Brill (1999) 1s
considered. The WKQ is given by

Q) = Z{nll{h {Z W, - uJ X, . 0<u<1 (I8
1=1 1=1
and the data point weights are
g(lngﬂ;ir), i=1n,
W _ nin-1) (1 9)

1 H.
Wreent 1=273

where K(t) = (2m)™"* exp(-1/2t") is the Gaussian
Kemel, h = [uv/n]" is an optimal bandwith proposed by
Sheather and Marron (1990) and v =1-u.

The HD-quantile estimator: Huang (2001) used the L
quantile estimator to be called HD quantile estimators
(HDQ), which not only gives better efficiencies but also
avolds the problems of selection of kernel or bandwidth.
The HDQ is given by

1
n ifn
ow-3| | Blorbua+ny |x,
i-1 (i—l)fny(n+1)ufl(1_y dy

(20)
)(n+1)vfl

with v = 1-u, B(s, t) is the beta function with
parameters s and t.

The weighted HD quantile estimators: Huang (2001)
proposed a new estimator of the HD quantile estimator to
be called the weighted HD quantile estimator (WHDQ).
This quantile is more efficient in many cases, especially
for the tails of the distributions and small sample sizes.
The WHDQ is given by

117

1
-3 [ BlorbusDvy x|
=1 W, y(n+1)u—1 (1 - y)(n+1)v71 dy
Vi:n = lewj,n 1
j=1

where and w,, is givenin (19).

(21)

V,

n U:n:O

2.

3

GENERALIZED EXTREME VALUE

The Generalized Extreme Value (GEV) distribution,
introduced by Jenkinson in 1955, has found many
applications in hydrology. It was recommended for at-site
flood frequency analysis in the United Kingdom,
for rainfall frequency in the United States and for sea
For regional frequency analysis the GEV
distribution has received special attention since the
introduction of the index-flood procedure based on
probability weighted moments (Martins and Stedinger,
2000). Many studies in regional frequency have used the
GEV distribution (Hosking et al., 1985; Chowdhury et al.,
1991). In practice, it has been used to model a wide variety
of natural extremes, including floods, rainfall, wind
speeds, wave height and other maxima. Mathematically,
the GEV distribution is very attractive because its inverse
has aclosed form and parameters are easily estimated

by L-moments (Hosking, 1990) and LQ-moments
(Mudholkar and Hutson, 1998).

The GEV distribution has Cumulative Distribution

Function (CDF)

F(x) =exp { {1 -k [Hﬂ } (22)
a

where £ +a/k «x < fork <0and - <x <£+a/k for
k=0, Here p, oand k are location, scale and shape
parameters, respectively. Quantiles function of GEV
distribution is given by

waves.

QF)=p+cQ,(F)

where

Qy(F) =[1- (- log F)* 'k (23)
The 1.Q-moments of GEV distribution: The L.Q-moment
estimators for the GEV distribution behave similarly to the
L-moments. From Eq. 4-7 and 2, the first three LQ-moment
of the GEV distribution can be written as

g =p+cb (X)) (24a)
&, =500, (X,,) -0, (X, (24b)
E—‘E = %G[ep,u(XB:S) - Zep,u(XZ:B) + ep,u(Xl 3)] (240)
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where

6, . (X, 1) = PQy[B, Ly ()] + (1 2p)
QD[B;—lk H(1/2)]+pQ, [B:k Aa)]

(25)

The LQ-moments estimators P, 0 and k of the
parameters are the solution of 24a-c, when £ are replaced
by their estimators £. To obtain k we must solve by
numerically solving the Eq. 8 given by

n, = A, (26)

For ease of computation the following approximation
equation with good accuracy has been constructed based
on 24b, cand § as

k = 0.2985 — 2.02341, + 03743/ — 0.14507] + 0.0381#
+0.0189150.0148R} + 0.0050%] — 0.0009%; (27)

The k function is a very good approximation for k&
in the range (-1.0, 1.0). Once the value of k is obtained &
and [ican be estimated successively from Eq. 24b and
24a as

o (28)
[ep,u_(XZ 2) - ep,U_(Xl 2)]

l',l:éu 766}3 DL(X“) (29)

SIMULATION STUDY

A number of simulation experiments were conducted
to investigate the properties of quantile estimators of T.OQ-

moment for GEV distribution. Monte Carlo (MC)
simulations were performed for sample sizes 15, 25, 50 and
100 and parameters of GEV are p = 0 and 0 = 1 with
different values of k between -0.4 and 0.4. The samples are
fitted by the GEV distribution function using the method
of LQ-moment methods based on LIQ, WKQ, HDWQ
and HDQ. The quick estimator, namely the trimean
(p=1/4, a = 1/4) 15 employed to estimates ép‘u(xr_kr)
given by Eq. 12. For each sample size, 10,000 replicates
were generated and quantile estimators of Q(F), F = 0.01,
0.1, 0.2, 0.5, 0.8, 0.9, 0.98, 0.99, 0.998 and 0.999, are
examined in terms of the BIAS and RMS (root-mean-
square error). The RMSE is an accepted criterion to
compare alternative estimators of flood quantiles and
shows in general the precision of particular estimator. The
estimator with the lower RMSE 1s considered more
precise. The sample RMSE is estimated by

RMSE = %Z [QF) — O, (F)F (30)

where N 18 the number of replicates of MC samples
(10 000). Bias 1s defined as the difference between the
expected value of the estimators and the true value. The
estimator that exhibits the smallest bias (close to zero) is
considered best. The sample bias 1s estimated by

Bias = %Z[Q(F) _&.F)] (31)

1=1

Table 1 shows the bias and RMSE of the F = 0.01-
0.999 quantile estimators for L.Q-moment methods based
on LIQ, WKQ, HDWQ and HDQ estimators whenk =-0.1.

Table 1: The bias and RMSE of the F = 0.01-0.999 quantile estimators for L.Q-moment methods based on LIQ, WKQ, HDW(Q and HDQ estimators for

k=-0.1
Bias RMSE

n F QAE) LIQ WKQ HDOQ WHDQ LIQ WKQ HDQ WHDQ

25 0.010 -1.418 0.107 0.057 0.045 0.027 0.602 0438 0.455 0.456
0.100 -0.801 0.035 0.018 0.006 -0.016 0.301 0.237 0.249 0.250
0.200 -0.465 0.013 0.013 -0.007 -0.026 0.238 0.207 0.215 0.218
0.500 0.373 -0.022 0.029 -0.038 -0.040 0.281 0.260 0.273 0.273
0.800 1.618 -0.120 0.069 -0.142 -0.084 0.499 0.441 0.502 0.478
0.900 2.524 -0.303 0.067 -0.311 -0.182 0.945 0.724 0.909 0.831
0.980 4.773 -1.630 -0.232 -1.349 -0.905 4.610 2435 3.587 3.118
0.990 5.841 -3.014 -0.605 -2.309 -1.615 9.043 3.975 6.197 5.305
0.998 8.615 -11.425 -2.709 -7.169 -5.296 48.543 11.961 21.726 17.906
0.999 9.952 -20.177 -4.553 -11.363 -8.481 106.613 19.263 37.995 30.721

100 0.010 -1.418 0.031 0.036 0.016 0.011 0.297 0.253 0.251 0.251
0.100 -0.801 0.010 0.013 0.002 -0.003 0.152 0.133 0.134 0.134
0.200 -0.465 0.003 0.007 -0.002 -0.007 0.119 0.110 0.111 0.111
0.500 0.373 -0.005 0.006 -0.010 -0.010 0.138 0.133 0.134 0.134
0.800 1.618 -0.024 0.021 -0.031 -0.020 0.233 0.223 0.230 0.228
0.900 2.524 -0.061 0.028 -0.068 -0.044 0.411 0.377 0.396 0.389
0.980 4.773 -0.316 -0.023 -0.297 -0.225 1.467 1.201 1.322 1.287
0.990 5.841 -0.550 -0.104 -0.497 -0.394 2317 1.825 2.042 1.982
0.998 8.615 -1.639 -0.561 -1.383 -1.172 5.956 4.270 4.936 4.766
0.999 9.952 -2.474 -0.938 -2.038 -1.758 8.712 5.962 6.983 6.728
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Table 2: RMSE of the 0.1 and 0.99 Quantiles, n = 25 and 100

Q(F),F=01 Q(F), F=0.99
n LIQ WKOQ HDQ WHDOQ LIQ WEKQ HDQ WHDQ
25 -0.3 0.298 0.213 0.231 0.232 88.268 14.834 47.380 27.290
-0.2 0.296 0.225 0.238 0.240 20.186 6. 793 12.830 9981
-0.1 0.301 0.237 0.249 0.250 9.043 3.975 6.197 5.305
Q.0 0.311 0.255 0.266 0.266 5.107 2.546 3457 3.135
01 0.327 0.273 0.283 0.282 3.268 1.735 2174 2.039
0.2 0.347 0.294 0.305 0.302 2.194 1.237 1.444 1.392
0.3 0.372 0.318 0.330 0.325 1.535 0.913 1.007 0.991
100 -0.3 0.151 0.121 0.123 0.123 5.482 4.146 4.828 4.603
-0.2 0.150 0.126 0.128 0.128 3.510 2.719 3104 2,088
-0.1 0.152 0.133 0.134 0.134 2.317 1.825 2.042 1.982
0.0 0.155 0.140 0.141 0.141 1.568 1.257 1.378 1.348
0.1 0.162 0.150 0.149 0.149 1.110 0.898 0.969 0.954
0.2 0.173 0.162 0.161 0.161 0.793 0.643 0.683 0.676
0.3 0.184 0.174 0.173 0.172 0.586 0.477 0.501 0498
Table 3: RMSE of Quantile Estimators of GEV Quantiles CONCLUSION
k=-0.2 k=0.2
Method F=01 F=099 F=01 F=0.99 The GEV distribution has found wide application for
15 LIQ 0.392 15.879 0.444 3.205 describing annul floods, rainfall, wind speeds, wave
WKQ 0.261 9.633 0.340 1.639 heicht depth d oth . . d in thi
HDO 0,200 28,020 0377 1501 eights, snow depth and other maximum is used 1n this
WHDQ 0.293 21.061 0.370 1.769 Study
25 LIQ 0.296 20.186 0.347 2.194 :
WKQ P 6703 0204 1237 In this study, we compare the per.fomlance of WKQ,
HDOQ 0.238 12.830 0.305 1.444 HDQ and WHDQ with the LIQ estimator proposed by
WHDQ 0.240 9.981 0.302 1.302 Mudolkar and Hutson (1998) to estimate the sample of
50 LIQ 0.216 6.521 0.245 1.248 .
WKQ 0170 4147 0222 0.998 LQ-mgmepts meﬁlod to estimate the. parameters of the
HDQ 0.173 5394 0.221 1.006 GEV distribution. The Monte Carlo simulation was used
100 EE]DQ g-};g :-g?g g'ﬁg 8'222 in order to assess the accuracy of the quantile estimators.
WKQ 0: 126 2:719 0: 162 0:643 Analysis results show that the WKQ has
HDQ 0.128 3.104 0.161 0.683 consistently performed better than the other quantile
WHDOQ 0.128 2.988 0.161 0.676

In generally, the WKQ method always performs the
best and the smallest bias and RMSE for any value of
p. HDWQ estimator has the second smallest bias and
RMSE followed by HDQ and LIQ estimators.

For different values of k the RMSE of LQ-moments
based on the quantile estimators for the GEV distribution
are determined and shown in Table 2 for samples sizes of
25 and 100.

For any values of k and sample sizes, the WKQ
estimation has the smallest RMSE followed by the
HDWQ, HDQ and LIQ estimators. For the Q(F), F = 0.99
quantile, the RMSE decreases as the sample size increases
while for the Q(F), F = 0.10 quantile, the RMSE increases
as the sample size increases for all methods while, but the
performance of the WKQ is still the best. The LIQ
estimator generally has a relatively higher RMSE for all
samples.

Table 3 reports for k =-0.20and 0.20, the RMSE of
F = 0.1 and 0.99 quantile estimators for sample sizes of
15,25, 50 and 100.

The Table 3 shows that WKQ was found to give
results superior to the other estimators in all samples
except forn =50 and 100 for F = 0.1.
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estimators. Although the lmear interpolation quantile
estimator available and commonly used in most statistical
software packages, but it does not perform as well as
WKQ to estimate the sample of L.Q-moments for GEV
distribution.
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