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Abstract: In general, analysis of mountains 1s performed at singular scales of measurement. However, analysis
of a location at multiple scales allows for a greater amount of information to be extracted from a DEM about the
spatial characteristics of a feature. In this study, the variation in the spatial extent over which mountains are
defined 1s used as the basis to characterize the size distribution of mountains. First, the hifting scheme 15 used
to generate multiscale DEMs. Mountamns extraction is then performed on the generated multiscale DEMs. The
size distribution of the extracted mountains is characterized by implementing opening by reconstruction
iteratively on the extracted mountains using square kernels of increasing size. A power law relationship is
observed between the number and total area of mountan objects remaining. This power law arises as a
consequence of the fractal properties of the size distribution of mountains extracted from multiscale DEMs.
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INTRODUCTION

Mountains are the portions a terrain that are
sufficiently elevated above the surrounding land (greater
than 300 to 600 m) and have comparatively steep sides. In
a mountain, two parts are distinctive:

¢ The summit, the highest pomt (the peak) or the
highest nidges

¢+  The mountainside, the part of a mountain between
the summit and the foct (Bates and Jackson, 1987).

The mapping of mountains 1s generally performed
manually through fieldwork and visual interpretation
of topographic maps, which is a time consuming and
labor intensive activity. In recent times, extraction
techmques have evolved from manual through
computer assisted to automated methods; with Digital
Elevation Models (DEMs) as the input data. Tn seeking
the efficient extraction of mountains from DEMs, varicus
algorithms have been proposed (Graff and Usery,
1993; Miliaresis and Argialas, 1999, Miliaresis, 2000,
Dinesh, 2006). Dinesh (2006) proposes a mathematical
morphological based mountain extraction algorithm.
First, ultimate erosion 1s performed on the DEM to
extract the peaks. Conditional dilation is performed on
the extracted peaks to obtain the mountains of the DEM.

Feature detection and characterization often need to
be performed at different of scales measurement. Wood
(1996a, b) shows that analysis of a location at multiple
scales allows for a greater amount of mformation to be
extracted from a DEM about the spatial characteristics
of a feature. The term scale refers to combination of
both spatial extent and spatial detail or resolution
(Tate and Wood, 2001). In this study, the variation in the
spatial extent over which mountains are defined 1s used as
the basis to characterize the size distribution of
mountains. It 1s shown, via power law relationships, that
the size distribution of mountams possesses fractal
properties.

MATHEMATICAL MORPHOLOGY

Mathematical morphology 1s a branch of image
processing that deals with the extraction of image
components that are useful for representational and
descriptional purposes. Mathematical morphology 1s well
suited to the processing of elevation data because in
morphology, any image is viewed as a topographic
surface, the grey level of a pixel standing for its elevation
(Soille and Ansoult, 1990). The fundamental
morphological operators are discussed in Matheron
(1975), Serra (1982) and Soille (2003). Morphological
operators generally require two inputs; the input image A,
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which can be in binary or grayscale form and the kernel B,
which is used to determine the precise effect of the
operator.

Dilation sets the pixel values within the kernel to the
maximum value of the pixel neighbourhood. The dilation
operation is expressed as:

AaB= {atb: acA, beB} (1

Erosion sets the pixels values within the kernel to the
mimmum value of the kernel. Erosion is the dual operator
of dilation:

AsB)e (AteB)° (2)

An opening (Eq. 3) is defined as an erosion followed
by a dilation using the same kernel for both operation.
Binary opening preserves foreground regions that have
a similar shape to this kernel, or that can completely
contain the kernel, while eliminating all other regions of
foreground pixels.

A°B=(AcB) s B (3)

Morphological reconstruction allows for the isolation
of certain features within an image based on the
manipulation of a mask image X and a marker image Y. It
is founded on the concept of geodesic transformations,
where dilations or erosion of a marker image are performed
until stability is achieved (represented by a mask image)
(Vincent, 1993).

The geodesic dilation, &° used in the reconstruction
process is performed through iteration of elementary
geodesic dilations, &, until stability is achieved.

B9Y) = 8.,(Y) 0 8y (Y) 0 8,y (V). until stability (4)

The elementary dilation process is parformed using
a standard dilation of size one followed by an intersection.

8u(Y)=YoBnX (5)

The operation in Eq. 6 1s used for elementary dilation
in binary reconstruction. In gravscale reconstruction, the
intersection in the equation is replaced with a pointwise
minimum (Vincent, 1993),

Morphological reconstruction is a usefil filtering
tool. Figure la shows an image with circles of various
sizes. In order to filter the smaller sized circles, first
opening is performed using a square kemel of size 30. The
circles that are unable to completely contain the kernel are

(@

(©

Fig. 1: The application of morphological reconstruction in
filtering: (a) The original image, (b} The opened
image and (¢) The reconstructed image

removed, while the shape of remaining circles is altered
(Fig. 1b). Morphological reconstruction is implemented
with Fig. 1a being the mask and Fig. 1b being the marker.
This restores the original shape of the remaining circles
(Fig. 1¢). This process is known as opening by
reconstruction.

GENERATION OF MULTISCALE DEMs USING
THE LIFTING SCHEME

In this study, multiscaling is performed using the
lifting scheme (Sweldens, 1996, 1997). The lifting scheme
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Fig. 2: Lifting stage: Split, predict, update; k., and k,
normalize the energy of the underlying scaling and
wavelet functions. (Source: Claypoole and

Baraniuk (2000)

Fig. 3: The GTOPO30 DEM of Great Basin. The clevation
values of the terrain (minimum 1005 m and
maximum 3651 m) are rescaled to the interval of 0 to
255 (the brightest pixel has the highest elevation).
The scale is approximately 1:3,900,00

is a flexible technique that has been used in several
different
implementation of traditional wavelets and of second
generation wavelets, such as spherical wavelets. Lifting
consists of the following three basic operations (Fig. 2):

settings, for easy construction and

Step 1

Split: The original data set x[n] is divided into two disjoint
subsets, even indexed points x,[n] = x[2n] and odd
indexed points x,[n] = x[2n+1].

Step 2

Predict: The wavelet coefficients d[n] arc gencrated as
the error in predicting x,[n] from x,[n] using the prediction
operator P:

d[n]=x,[n |- P(x.[n]) (6)

Step 3

Update: Scaling coefficients ¢[n] that represent a coarse
approximation to the signal x[n] are obtained by
combining x.[n] and d[n]. This 1s accomplished by
applying an update operator U to the wavelet coefficients
and adding to x,[n]:

e} i

Fig. 4: Multiscale DEMs generated using scales of
(a) 1, (b) 3, (¢) 5. (d) 10, () 15 and (f) 20

e[n]=x[n] + U @

These three steps form a lifting stage. Using a DEM
as the input, an iteration of the lifting stage on the output
¢[n] creates the complete set of multiscale DEMs ¢,[n] and
the elevation loss caused by the change of scale d[n].

The DEM in Fig. 3 shows the area of Great Basin,
Nevada, USA. The area is bounded by latitude 38° 15° to
42° N and longitude 118° 307 to 115° 30°W. The DEM
was rectified and resampled to 925 m in both x and y
directions. The DEM is a Global Digital Elevation Model
(GTOPO30 DEM) and was downloaded from the USGS
GTOPO30 website (hitp://edowww.cr.usgs. gov/landdaac
/gtopo30/gtopo30.html). GTOPO30 DEMs are available at
a global scale, providing a digital representation of the
Earth’s surface at a 30 arc-seconds sampling interval. The
land data used to derive GTOPO30 DEMs are obtained
from digital terrain elevation data (DTED), the 1-degree
DEM for USA and the Digital Chart of the World (DCW).
The accuracy of GTOPO30 DEMs varies by location
according to the source data. The DTED and the 1-degree
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dataset have a vertical accuracy of £30 m while the
absolute accuracy of the DCW vector dataset is £2000 m
horizontal error and £650 vertical error (Miliaresis and
Argialas, 2002). Tensional forces on the terrain’s crust
and thins by normal faulting have caused the formation an
array of tipped mountain blocks that are separated from
broad plain basins, producing a basin-and-range
physiography (Howell, 1995).

Multiscale DEMs of the Great Basin region are
generated by implementing the lifting scheme on the DEM
of Great Basin using scales of 1 to 20. As shown in Fig. 4,
as the scale increases, the merge of small regions into the
surrounding grey level regions increases, causing removal
of fine detail in the DEM.

APPLICATION OF OPENING BY
RECONSTRUCTION TO CHARACTERIZE THE
SIZEDISTRIBUTTION OF MOUNTAINSEXTRACTED
FROM MULTISCALE DEMS

The mountains extraction algorithm proposed in
Dinesh (2006) is implemented on the generated multiscale
DEMSs. As shown in Fig. 5, the merge of small regions into
the surrounding grey level regions increases and the
removal of fine detail cause a reduction in the area of the
extracted mountains.

The size distribution of the extracted mountains is
characterized by performing opening by reconstruction

2L
s,
; / 33

(d)

iteratively on the extracted mountains using square
kernels of increasing size. In each iteration, opening
removes mountain cbjects that are unable to completely
cover the kernel, while modifying the shape of the
remaining mountain objects. The reconstruction step
returns the original shape of the remaining mountain
objects. The number of mountain objects remaining N and
the total area of the remaining mountain objects S are
computed.

Log-log plots of N against S are drawn for the
mountains extracted from the generated multiscale DEMs
(Fig. 6). For each plot, the slope and y-intercept is
computed. In each of the plots, a power law relationship
is observed between the two parameters. In general, these
power laws take the following form

N = ¢*gP (8)

This power law arises as a consequence of the fractal
properties of the size distribution of the extracted
mountain objects. In Eq. 7, ¢ is a constant of
proportionality, while D is the fractal dimension of
the size distribution of the
objects D, which indicates the variability of the size
distribution of the extracted mountain objects; a
higher value of D indicates a more varied distribution,
while a lower value of D indicates a more even
distribution.

extracted mountain

Fig. 5: The mountains extracted from the corresponding multiscale DEMs in Fig. 4. The white pixels represent mountain
regions, while the black pixels represent non-mountain regions
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Fig. 6: Log-log plots of the No. of remaining mountain objects N against the total area of remaining mountain objects S

CONCLUSION

In this study, the characterization of the size
distribution of mountains extracted from multiscale
DEMs performed by performmng opemng
reconstruction iteratively on the extracted mountains.
A power law relationship is observed between the
mumber and total area of mountain objects remaining.
This power law arises as a comsequence of the
fractal properties of the size distribution of the
extracted mountains. More experiments are being
carried out to further quantify the fractal properties of
the size distribution of mountains extracted from
multiscale DEMs.
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